A hierarchical Model for the Analysis of Efficiency and Speed-up of Multi-Core Cluster-Computers

H. Kredel¹, H. G. Kruse¹_{retired}, S. Richling²

¹IT-Center, University of Mannheim, Germany ²IT-Center, Heidelberg University, Germany

3PGCIC-2015, Krakow, Poland, 4.-6. November 2015

Outline

Introduction

Clusters with multi-core nodes

Multi-core node performance Cluster of Multi-core nodes performance Dependency of the performance on q, p and x

Applications

Summary and Future Work

Introduction

Motivation

- We see a widening gap between theory and practice in performance analysis.
- Focus on simple models and mathematical methods.
- Try to identify a few key parameters describing main aspects of a computing system and algorithms.
- Device a simple hierarchical model for clusters assembled from multi-core nodes connected by a (high-speed) network.
- Applicable from compute clusters to clouds for big data analysis.
- ► Few, but not too few parameters (TOP500), now emerging multiparameter studies (HPCG, GREEN500, GRAPH500).

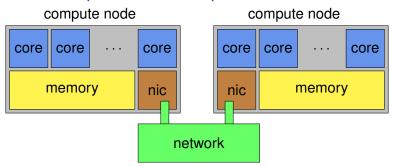
Goals

- Practical performance analysis of computer systems insight, evaluation and assessment for
 - computer design, planing of new systems, acquiring performance data, estimation of run-times.
- Using speed-up, efficiency and operations per time unit as dimensionless metric.
- Key hardware parameters
 - number of compute nodes, number of cores per node,
 - theoretical performance of a core,
 - bandwidth between cores and memory, and between nodes
- Key software parameters
 - number of bytes, number of operations,
 - number of bytes communicated.
- Validation of the results by modeling of standard kernels
 - scalar product, matrix multiplication, solution of linear equations (Linpack), Fast Fourier transformation (FFT).

Related Work

- Early performance models:
 - distinguished computation and communication phases, introduced speed-up and efficiency (Hockney 1987, Hockney & Jesshope 1988)
- Performance models with dimensionless parameters:
 - analogies to Newtons classical mechanics or electrodynamics (Numrich 2007, 2015)
 - dimension analysis and the Pi theorem (Numrich 2008, 2010)
- Linpack performance prediction model (Luszczek & Dongarra 2011)
- Performance models based on stochastic approaches (Gelenbe 1989, Kruse 2009, Kredel et al. 2010)
- Performance models for interconnected clusters (Kredel et al. 2012, 2013)
- Roofline model for multi-cores (Williams et al. 2009)

Basic concepts and assumptions



Hardware scheme

- p compute nodes
- q cores per compute node
- memory per compute node
- network interface per compute node
- nodes connected by a (fast) network

Hardware parameters

- p, number of nodes
- ► I_m, node performance [GFLOP/sec]
- \triangleright b_{cl} , bandwidth between two nodes [GB/sec]
- q, number of cores per node
- I_c, core performance [GFLOP/sec]
- ▶ b_m, bandwidth between cores (caches) and memory [GB/sec]

Software parameters

- #op, number of arithmetic operations per application problem
- ▶ #b, number of bytes per application problem
- #x, number of bytes exchanged between nodes per application problem

Performance

- ▶ t, computing time for a problem on a given system
- ▶ $I(q, p, ...) = \frac{\#op}{t}$, **performance** in terms of the parameters
- ▶ $\eta(q, p, ...) = \frac{l(q, p, ...)}{q p l_c}$, **efficiency** as a measure of how well the application uses its compute resources
- ▶ $S(q, p, ...) = \frac{l(q, p, ...)}{l_c}$, **speed-up** as a measure of how well the application scales with varying core and node numbers

efficiency and speed-up give insights

- what is the optimal number of cores and nodes for a given (or future) application on a given (or future) hardware?
- use these optima as parameters for the batch system on a compute cluster to allocate the right number resources:

determination of the right number of cores on clusters operated by sharing nodes between jobs

Multi-core node performance

computation time on one node

$$t \geq \frac{(\#op/q)}{I_c} + \frac{\#b}{b_m} = \frac{\#op}{qI_c} \left(1 + q \cdot \frac{I_c}{b_m} \frac{\#b}{\#op} \right)$$
 (1)

assume communication with the shared memory and the computation phases *do not overlap*

define
$$a = \frac{\#op}{\#b}$$
, $a^* = \frac{I_c}{b_m}$

$$t \geq \frac{\#op}{q l_c} \left(1 + q \frac{a^*}{a}\right)$$

a "software and problem demand", a* "hardware capabilities"

performance of a node $I_m = \#op/t$

$$I_m \le q I_c \frac{1}{1 + q \cdot \frac{a^*}{a}} = q I_c \frac{\frac{a/a^*}{q}}{1 + \frac{a/a^*}{q}}$$

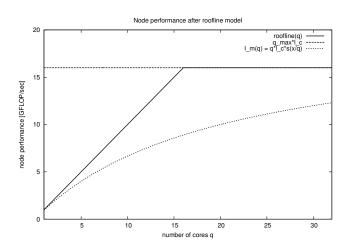
with dimensionless operational intensity $x = a/a^*$

$$I_m(q) \leq q I_c \frac{\frac{x}{q}}{1 + \frac{x}{q}}.$$

with Hockney $s(z) = \frac{z}{1+z}$, overlapping $s(z) = \min(1, z)$

$$I_m(q) \leq q I_c s(\frac{x}{q}).$$

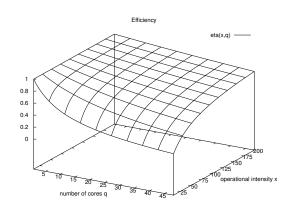
Performance of multi-cores in the roofline model for $I_c = 0.5$ GFLOP/sec and operational intensity x = 20



Efficiency of multi-cores depending on x and q

$$\eta_m(x,q) = \frac{I_m(q)}{q I_m(1)} \leq \frac{1}{q} \frac{1+x}{1+\frac{x}{q}}$$

Amdahl's law: along x-axis, Gustafson's law: along y-axis



Cluster of Multi-core nodes performance

computation time of all nodes

$$t \geq \frac{(\#op/p)}{l_m(q)} + \frac{\#x}{b_{cl}(q,p)} \tag{3}$$

Bandwidth $b_{cl}(q,p)$ between the nodes of the cluster choosen as $b_{cl}(q,p) = \beta(q,p) \, b_{cl} = \frac{\beta_1(p)}{q} b_{cl}$, where b_{cl} is a constant.

using $\beta(q, p)$ and sorting the expression

$$\frac{t}{\#op} \geq \frac{1}{p I_m} \left(1 + \frac{p I_m}{\beta(q, p) b_{cl}} \cdot \frac{\#x}{\#op} \right)$$

using the transformations

$$\frac{p \, l_m}{\beta(q,p) b_{cl} \, \#op} \ = \ \frac{q \, p}{\beta(q,p)} \frac{l_c}{b_m} s(\frac{x}{q}) \frac{b_m}{b_{cl} \, \#op} \frac{\#x}{\#b}$$

already known definitions of a, a^* and x and the new definitions of r and v

$$a = \frac{\#op}{\#b}, \ a^* = \frac{I_c}{b_m}, \ r = \frac{\#b}{\#x}, \ v = \frac{b_{cl}}{b_m}, \ x = \frac{a}{a^*}.$$

r defines the ratio of total number of bytes #b to the number of exchanged bytes between the nodes #x, and v defines the ratio of the bandwidth in the cluster network b_{cl} to the memory bandwidth in a node b_m .

performance $I_{cl}(q, p)$ of the whole cluster

$$I_{cl}(q,p) \leq q p I_c \cdot \frac{s(\frac{x}{q})}{1 + \frac{q^2 p}{\beta(q,p)} \cdot \frac{s(\frac{x}{q})}{v r x}}.$$
 (4)

efficiency $\eta_{cl}(q,p) = \frac{l_{cl}(q,p)}{q p l_c}$

$$\eta_{cl}(q,p) \leq \frac{s(\frac{x}{q})}{1 + \frac{q^2 p}{\beta(q,p)} \cdot \frac{s(\frac{x}{q})}{v r x}}$$
 (5)

speed-up
$$S(q,p) = \frac{l_{cl}(q,p)}{l_c} = q p \eta_{cl}(q,p)$$

Dependency of the performance on q, p and x

assumptions

The ratio $v = \frac{b_{cl}}{b_m}$ of the bandwidths will be chosen as 0.25 by current hardware.

The application parameter r(x,q,p) depends on hard- and software, assume $r(x,q,p) = \frac{c(x)}{d(p)}$ where c(x), d(p) are monotone increasing functions of their arguments.

The interesting cases are $c(x)=c_0,\,c(x)=c_1x$ and $d(p)=d_1p,\,d_2\sqrt{p}$, $d_3\log_2p$

cases considered

$$q = p = 1 : \eta < x/(1+x) \le 1$$

$$\mathbf{q} \geq \mathbf{1}$$
 fixed, $\mathbf{p} \gg \mathbf{1}$ resp. $\mathbf{p} \rightarrow \infty : \eta \sim \mathbf{0}$,

$$\mathbf{q}\gg\mathbf{1}$$
, \mathbf{p} fixed: $\eta\sim\mathbf{0}$.

efficiency $\eta(q, p)$

The derivatives $(\frac{\partial \eta}{\partial a}, \frac{\partial \eta}{\partial D})$ show no extrema.

 $\eta_{cl}(q,p,x)$ is monotone decreasing with increasing arguments (q,p). This behaviour is due to Amdahl's Law.

The translation of the efficiency-surface with increasing load *x* reflects Gustafson's Law.

$$S(q, p, x)$$
 maximum for q : $\frac{\partial S(q, p, x)}{\partial q} = 0$

$$q_E^3 = \frac{\beta_1(p)}{2p} v r(x,p) x$$

$$S(q, p, x)$$
 maximum for p : $\frac{\partial S(q, p, x)}{\partial p} = 0$

$$p_E^2 \frac{\partial}{\partial p} \left(\frac{1}{\beta_1(p) r(x,p)} \right) \bigg|_{p=p_E} = v \frac{x+q}{q^3}.$$

reasonable solution for $\beta_1(p) = \beta_0$, β_0 constant

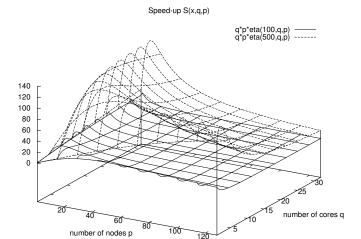
$$p_E^2 \cdot d'(p) = \frac{\beta_0}{q^2} w(x)$$
, with $w(x) = v \frac{x}{q} c(x)$.

Optimal values p_E for communication d(p)

Values of p_E for different functions d(p) increasing from left to right

	d(p) = p	$d(p) = \sqrt{p}$	$d(p) = \log_2(p)$
p _E	$\sqrt{\frac{\beta_0}{q^2}}W(x)$	$(2\tfrac{\beta_0}{q^2}w(x))^{\frac{3}{2}}$	$\frac{\beta_0}{q^2} w(x) \cdot \ln(2)$

Speed-up depending on $\beta_0 = 1$ and d(p) = p

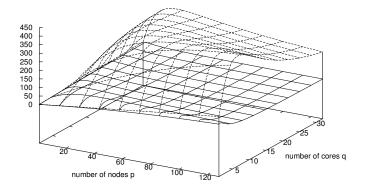


Note the existence of an optimal number of cores q_E and nodes p_E

Speed-up depending on $\beta_0 = 1$ and $d(p) = \sqrt{p}$.

Speed-up S(x,q,p)

q*p*eta(100,q,p) —— q*p*eta(500,q,p) ------



Note the existence of an optimal number of cores q_E and nodes p_E

PGCIC-2015

Applications

Verifying the model

with real life compute systems and some important HPC codes and kernels.

- scalar product of vectors,
- matrix-matrix multiplication,
- high performance Linpack,
- fast Fourier transformation.

efficiency $\eta(q, p)$

Use characteristic hardware parameters and characteristic values for applications. Simplification of eq (5) using s(z) = z/(1+z)

$$\eta(q,p) \leq \frac{\beta(q,p) r v x}{\beta(q,p) r v x + r v q + q^2 p}$$

Characteristic hardware parameters

 I_c in [GFLOP/sec], b_m in [GB/sec], b_{cl} in [GB/sec], $a^* = I_c/b_m$ in [FLOP/B], $v = b_{cl}/b_m$

system	I _c	b _m	b _{cl}	a*	V	q
bwGRiD	8.5	6	1.4	1.41	0.233	≤ 8
bwUniCluster	15.4	77	5.4	0.20	0.070	≤ 16
bwForHLR 1	19.1	95	5.4	0.20	0.056	≤ 20
bwForCluster	33	89	3	0.37	0.033	≤ 16

the (Intel) processores are: bwGRiD E5440, 2.83 GHz bwUniCluster E5-2670, 2.6 GHz bwForHLR 1 E5-2670v2, 2.5 GHz bwForCluster E5-2630v3, 2.4 GHz

the parameters can be estimated using the following benchmarks: l_c Linpack DGEMM b_m STREAM aggregated triade b_{cl} MPI bandwidth, 1.4 (DDR), 3 (QDR), 5.4 (FDR)

Characteristic values for applications

apps = applications, s prod = scalar product, mm = matrix matrix multiplication, lin eq = linear equations (Linpack), FFT = 2-dim FFT, FFTW = 2-dim FFTW

apps	#b	# <i>op</i>	# <i>X</i>	а	r
s prod	2nw	2 <i>n</i> – 1	pw	$\frac{1}{w}$	<u>2n</u>
mm	2 <i>n</i> ² <i>w</i>	$2n^3 - n^2$	$2n^2\sqrt{p}w$	<u>n</u> w	$\frac{1}{\sqrt{p}}$
lin eq	2 <i>n</i> ² <i>w</i>	$\frac{2}{3}n^{3}$	$3\alpha\gamma$ n^2 w	<u>n</u> 3w	$\frac{3}{\gamma}$
FFT	n²c	$2n^2\log_2(n)$	$\frac{n^2}{p}\log_2(p)c$	$\frac{2\log_2(n)}{c}$	$\frac{p}{\log_2(p)}$
FFTW	"	"	$n\log_2(p)c$	"	$\frac{n}{\log_2(p)}$

$$a = \frac{\#op}{\#b}$$
 in [FLOP/B], $r = \frac{\#b}{\#x}$, $\alpha \sim 1/3$, $\gamma = (1 + \frac{\log_2 p}{12})$.

w = 8 bytes is the size of a double and c = 2w bytes is the size of a complex double.

Hardware parameters from row bwGRiD.

Scalar product

$$\eta_{sp}(q,p,n) \leq \frac{\frac{3}{34}n - \frac{3}{68}}{qn + \frac{3}{34}n + \frac{15}{7}q^2p^2 - \frac{3}{68}}$$
(6)

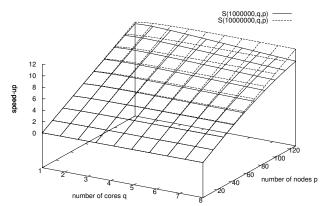
Matrix-matrix multiplication

choosing
$$\beta(q, p) = \beta_1(p) = p$$

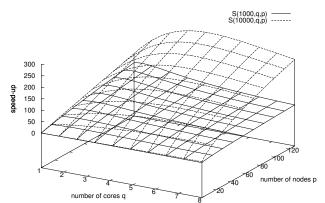
$$\eta_{mm}(q,p,n) \leq \frac{n-\frac{1}{2}}{n+\frac{340}{7}q^2\sqrt{p}+\frac{34}{3}q-\frac{1}{2}}$$
 (7)

Model speed-up of scalar product depending on q und p for $n = 10^6, 10^7$, according to eq (6).

Speed-up S(n,q,p) for scalar product



Model speed-up of MMM depending on q und p, according to eq (7).



Hardware parameters from row bwUniCluster.

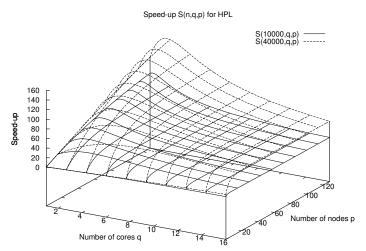
high performance Linpack

$$\eta_{hpl}(q, p, n) \leq \frac{n}{n + \frac{77}{17}q^2p\log_2(p) + \frac{308}{9}q^2p + \frac{24}{5}q}$$
 (8)

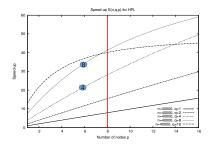
2-dim FFTW

$$\eta_{2fftw}(q, p, n) \leq \frac{n \log_2(n)}{n \log_2(n) + \frac{8}{5}qn + \frac{616}{27}q^2p \log_2(p)}$$
(9)

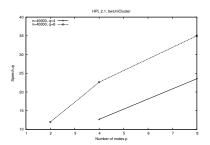
Model speed-up of HPL Linpack depending on q and p, according to eq (8).



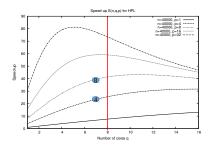
Model speed-up of HPL Linpack depending on *q* and *p*, according to eq (8).



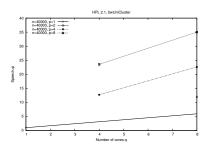
Measurement of speed-up for HPL Linpack depending on *q* und *p* for bwUniCluster.



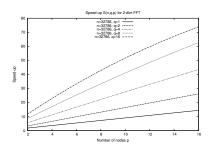
Model speed-up of HPL Linpack depending on *q* and *p*, according to eq (8).



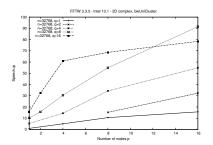
Measurement of speed-up for HPL Linpack depending on *q* und *p* for bwUniCluster.



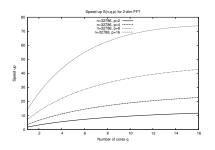
Model speed-up of 2-dim FFTW depending on *q* and *p*, according to eq (9).



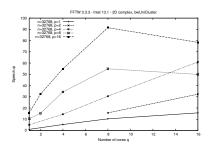
Measurement of speed-up of 2-dim FFTW depending on *q* und *p* for bwUniCluster.



Model speed-up of 2-dim FFTW depending on *q* and *p*, according to eq (9).



Measurement of speed-up of 2-dim FFTW depending on q und p for bwUniCluster.



Summary and Future Work

- Modeled a cluster of p multi-core-nodes with q cores to describe the performance by few dimensionless parameters, as metrics we choose the efficiency and the speed-up.
- ▶ Over all levels of the cluster we can find the important parameters, which integrate hard- and software-characteristics, like the operational intensity *x*, the ratio of data-bytes and exchange-bytes between nodes *r*, and the ratio of the nodes-interconnect-bandwidth and the internal bandwidth of the multi-core *v*.
- ▶ With the dimensionless product $v \cdot r(x, q, p) \cdot x$ and the scaling function s(x/q) for a single multi-core we are able to understand the behaviour of a cluster by analyzing speed-up and efficiency.
- ▶ The transformation to a flat cluster with (q = 1)-cores is possible and reproduces the results of a earlier paper [Kredel, et. al. 2013] including the measures.

Weak points and future work

- Lack of a optimization procedure in order to find the best speed-up or efficiency by a given load or application. A possible model would be a flow of "operations on bytes", shaped like the current of a river, and executed by a number of processors, like a ship crossing the river in shortest time. This corresponds a non-linear optimization and will fix the needed number of processors at each time.
- ▶ The hierarchy structure of a cluster may open the way to renormalization group theory. Using the scaling function $s(z) = \frac{z}{1+z}$ one can try to analyze the cluster-system from single cores, multi-core-nodes, region of nodes and the cluster. Such an approach could give an optimal balancing of the application, distributed on nodes and multi-cores.
- Finding the best load-balancing may be the same objective as in finding the shortest time. Our concept of few dimensionless parameters is essential for both.

Questions?

Thank you!

Acknowledgments

- We thank Erich Strohmaier for discussion and contribution to the overall modeling approach.
- Part of this work was performed on the computational resource bwGRiD of the German D-Grid initiative funded by the Ministry for Education and Research, the Ministry for Science, Research and Arts, Baden-Württemberg.
- Part of this work was performed on the computational resource bwUniCluster funded by the Ministry of Science, Research and the Arts Baden-Württemberg and the Universities of the State of Baden-Württemberg, Germany, within the framework program bwHPC.
- ► Thanks also to the anonymous referees for the helpful suggestions to extend the scope of the paper.