
COMPUTERALGEBRA ON A KSR1 PARALLEL COMPUTER

HEINZ KREDEL

RECHENZENTRUM UNIVERSITÄT MANNHEIM∗

Abstract: We give a preliminary report on the implementation of the MAS
computer algebra system on a KSR1 virtual shared memory parallel computer
with 32 processors. The first topics discussed are dynamic memory management
with garbage collection, a parallel integer product, and a parallel version of
Buchbergers Gröbner Basis algorithm.

1. Computer Algebra. Computer algebra software is concerned with exact and symbolic
computation. E.g. with the computation of the following expressions. The computation of large
numbers (e.g. 1000!), the expansion of polynomial expressions (e.g. (x+y)^20), the symbolic
integration of functions (e.g. int(sin(x),x)) or the determination of all solutions to systems of
algebraic equations (e.g. solve({x+2*y = 2, x^2-3*y = 10},{x,y})). Prominent products in
this class of software are Maple, Mathematica, Reduce and Derive.

With the availability of parallel computing hardware several attempts have been made to port
computer algebra software to this machines. For an overview see the conference proceedings [3, 12]
and the report [11]. It turned out that shared memory multiprocessor machines [7, 6] and also
workstation clusters [10] are well suited for the implementation of computer algebra software.

In our installation at Mannheim we started porting several systems (Maple, Reduce, PARI and
MAS) to the KSR1 computer with 32 processors. The machine runs OSF1 Unix and has a
virtual shared memory with 64 bit integer architecture. The port of Maple was unsuccessful
until now, since the system strongly relies on 32 bit integers and pointers. The port of Reduce
is making slow progress also due to difficulties with 64 bit integers and pointers. For PARI the
DEC Alpha version was installable. All these ports first focused on the single processor version of
the programs. The next step would be the exploitation of the parallel processors and the virtual
shared memory. Only for the MAS system the single processor version was relatively easy to
port (as is also reported from other ALDES/SAC-2 originated systems [7, 6, 10]). So after a
few weeks the development of the multiprocessor version could be started. We concentrated the
porting effort to the kernel, the integer product, the construction of Gröbner bases and introduced
some parallel language constructs for the interaction language (not discussed here).

The plan of the article is as follows. First we give a short introduction into the KSR1 architecture,
then we present a few facts about the MAS system and start the discussion of the multiprocessor
memory management. Then we discuss the development of some applications such as arbitrary
precision integer product and Gröbner bases. Parallel language constructs for the interaction
language are not discussed here. Finally we draw some conclusions on the suitability of the
KSR1 architecture for the implementation of computer algebra software. The references given at
the end are only a short selection of the actual literature on the topic.

2. KSR1 Virtual Shared Memory. The KSR1 computer is a multiprocessor computer
with up to 1088 combined processor and memory boards. The CPU is a custom made processor
with a 64 bit integer and address architecture especially designed for the use in multiprocessor
machines. All CPUs have a subcache of 512 KB and are connected to a local main memory of 32
MB. So a machine with 32 processors has a total of 1 GB main memory. The distinguishing feature
of the KSR1 is its hardware connection of all local main memories, the so called allcache engine.
This connection has a bandwidth of 1 GB/sec and provides the memory coherence mechanisms
to make the local memories look as a single globally shared memory to the software. A schematic
overview of the hardware design gives figure 1.

The KSR1 machine runs under OSF1 Unix, provides most GNU utilities, X-windows and a C,
C++ and a FORTRAN 77 compiler with KAP (semi-automatic parallelization preprocessor).
Low-level concurrent programming is possible with the POSIX threads library based on the

∗ E-MAIL: KREDEL@RZ.UNI-MANNHEIM.DE

1



processor 1

CPU

local memory

processor 2

CPU

local memory

processor 3

CPU

local memory

. . .

processor n

CPU

local memory

allcache engine

Fig. 1. Hardware Architecture of KSR1

MACH kernel. In the threads model of computation an application creates several tasks (called
threads) which are scheduled by the operating system to available processors (or time-sliced on
processors) and which communicate among each other via the globally shared memory. Task
synchronization and event signaling is provided by mutual exclusion primitives and condition
variables. A schematic overview of the software model gives figure 2. In the next section we will

thread 2

thread 1

thread 4

thread 3

thread 2

thread 1

thread 3

thread 2

thread 1 . . . thread 1

virtual shared memory

Fig. 2. Software Model of KSR1

discuss how the parallel kernel of the MAS computer algebra system is implemented with the
POSIX threads and virtual shared memory.

3. Dynamic Memory Management and Pthreads. In this section we give some more
information on the MAS system and discuss the implementation of the MAS kernel. The MAS
Modula-2 Algebra System was developed by the computer algebra group at the University of
Passau, Germany, its current version is 0.7 as of April 1993. The system abstract says that it
is an experimental computer algebra system, combining imperative programming facilities with
algebraic specification capabilities for design and study of algebraic algorithms. The source code
of the system is approximately 70 000 lines of Modula-2 code. There are about 1650 library
functions and the code originated from Unix workstations, PCs and Atari STs.

The first step towards a new parallel kernel is the implementation of a parallel dynamic mem-
ory management and parallel work scheduling based on the operating system primitives. The
importance of this topics stems from the fact that the computations in computer algebra are
done without roundoff errors, the computer algebra software faces the problem of so called in-
termediate expression swell. Even the computation of a small expression like (x^n-1)/(x-1)
leads to the huge expression x^(n-1)+...+x+1 when n is big (e.g. 1000). So nearly all computer
algebra software has some form of dynamic memory management to cope with arbitrary sized
expressions and the collection of any ’garbage’ expressions left over during the computation. This
consideration also shows that the amount of work generated by a run of an algorithm may vary
dynamically.

For dynamic memory management the MAS system uses list processing. The list processing code
is contained in one Modula-2 module. The list processing memory is allocated and initialized as
one large memory space (called cell space) at program start time.

A first consideration shows that the tasks (threads) generated by an application algorithm should
not be moved between processors after they have been started. This is meaningful because a thread
could reference a large portion of global cell space and if this thread would be migrated from
one processor to another this data would have to be transferred to. And although the allcache
engine does this transfer automatically and fast it needs more time than the usage of the local
memory. So our memory model consists of a distributed list cell space on each processor and
multiple threads per processor which are bound to the processor they started on. To maintain
this distributed cell space, the input and output parameters for newly created tasks are copied

2



if the subthreads start on different processors.

Garbage collection is done by the well known mark and sweep method, were in a first step all cells
which are possibly in use are marked and then in a second step all unmarked cells are swept to a
free cell list. Since the cell space is distributed the garbage collection can be performed on each
processor which runs out of list memory independently of the threads on other processors. Only
the threads executing on the same processor (as the garbage collecting thread) stop creating new
list cells (read operations in the cell space are not interrupted). During the mark step references
into the cell space of other processors are ignored. To ensure that this local mark and sweep is
correct, we allow only global read access for copying data to the local cell space and then do only
local update and modification of list elements. The global variables are handled by one dedicated
processor. In summary the garbage collection is performed in the following steps.

1. A mark of global variables if appropriate.
2. A local mark of all stacks on all (mach-) threads on this processor and a local mark of

the stack of the current thread.
3. A local sweep.

In this model the scheduling of threads is left to the operating system. However after some time
we experienced that this scheduling was not efficient under our model. So we had to introduce
a global task queue from which started threads take some new work when they have finished
their last assignment. The disadvantage is now the queue bottleneck but the load balance for
our application programs improved considerably. In figure 3 we have summarized the overhead
which is introduced by thread creation in our first and second scheduling model together with the
overhead which is introduced by the POSIX thread mechanism. The POSIX threads are named
’pthread’ and the new MAS thread layer is named ’mthread’ (’1’ for the first and ’2’ for the
second scheduling method).

quotient

function call / assignment 10.4

pthread create / function call 40.2
pthread join / function call 7.8
pthread / function call 48.1

mthread 1 create / pthread create 3.7
mthread 1 join / pthread join 4.2
mthread 1 / pthread 3.8

mthread 2 / pthread 0.6 - 1.1

Fig. 3. Overhead of thread creation and scheduling

This figures also raise the question of algorithm grain size, i.e. the number of basic computation
steps performed within a parallel task. And as the figures indicate we should have at least 50 to
100 function calls within a pthread to equal the time lost during the creation and destruction of
a pthread. In the second mthread model almost no new overhead is introduced.

Having designed and implemented a list processing kernel our next task is the development of
algorithms with suitable grain size to make efficient use of all processors during the computation.

4. Integer Product. The first application program which uses the new parallel kernel is
the arbitrary precision integer multiplication. The method is due to Karatsuba and uses the
identity a ∗ b = (a1β + a0) ∗ (b1β + b0) = a1b1β

2 + (a1b1 − (a1 − a0)(b1 − b0) + a0b0)β + a0b0 to
recursively compute the product a∗b with 3 multiplications, 4 additions and some ’shifting’. In the
sequential version it is known that Karatsubas method is superior to the ordinary multiplication if
the sizes of the integers exceed 16 machine words. The parallel version starts a new thread for the
computation of 2 of this subproducts if the size of the integers is greater than 64 words. If the size
of the integers becomes smaller during recursion, first the sequential Karatsuba multiplication
and then the ordinary multiplication is used. Also for very large integers, if ’much’ more threads
have been created than processors are available, the sequential versions are used. The preferred
parallel/sequential scheduling method can be determined using a function exported from the
MAS kernel.

3



0

4

8

12

16

20

24

0 4 8 12 16 20 24

Speedup

Number of processors

par iprodk ?

?
? ? ? ?

linear speedup

3

4

5

640 704 768 832 896 960

Speedup

Integer size, bit, 10 proc.

elapsed rr

r
r

r
r

time ee

e e e
e

Fig. 4. Integer Product

For the first timings see figure 4. The timings are measured in seconds by the ’time’ function of
the standard C library. An alternative are the functions ’user_timer’ and ’all_timer’ from the
KSR1 timer functions which measure the user time and elapsed time spend in a specific thread.
Although time includes all system overhead it is preferable over the others since it measures
the maximal time over all threads and this is the time one experiences in an application. The
speedups are comparable to the values reported by [7] for 12 processors.

5. Gröbner Bases. The second algorithm chosen for parallelization is Buchberger’s algo-
rithm for the computation of Gröbner bases. Roughly speaking Gröbner bases play the same role
for the solution of systems of algebraic equations as the diagonal matrices, obtained by Gaus-
sian elimination, for systems of linear equations (see e.g. [1]). It is known that the problem of
computing Gröbner bases is exponential-space hard and also NP hard [1]. Since by the parallel
computation thesis [4]: “Time-bounded parallel (Turing) machines are polynomially equivalent to
space-bounded sequential (Turing) machines”, one should not expect a parallel polynomial time
solution for the computation of Gröbner bases. Nevertheless any improvement of this algorithm
is of great importance and one would idealy like to obtain a solution in 1

p -th of the time if p
processors are utilized.

The implementation of the parallel version is based on the sequential Buchberger algorithm as
implemented in MAS. For the parallelization there is one ’natural’ choice, namely the reduction
(a kind of polynomial division with respect to several divisors) of of S-polynomials (critical pairs)
in concurrent steps (see e.g. [5, 9]). However it turned out that this way of parallelization is to
coarse to make efficient use of all processors during the computation (see the timings given in the
figures). To find a finer grain size it was proposed to perform a kind of pipelined reduction [9]. In
this proposal each division step in the reduction is performed by a new thread. Even finer grain
sizes on monomial arithmetic level did not improve the performance in the tested examples. At
this time the combination of the parallel reduction of S-polynomials with the pipelined reduction
of them showed the best speedup figures. For the timings for some standard test examples of [2]
see figures 5 and 6. Since the figures show a problem dependent maximal parallelization degree, it
seems that the grain size is still to coarse. The speedups are comparable to the values reported by
[5] for 16 processors and to the values reported by [9] for 25 processors in the Trinks 1 example.

Although the algorithms will be discussed in detail elsewhere some remarks are in order. The
original Buchberger algorithm is not very complicated (opposed to its correctness proof), the
parallel S-polynomial and the pipelined reduction algorithms are quite complicated. The new
algorithms require all sorts of communication patterns (from shared variables to message passing
with dynamic channel assignment) synchronization efforts and flow of control optimizations. But
a satisfactory solution still suffers from a poor processor utilization of about 40−60% in the tested
examples. The deficiencies could come from design decisions in the polynomial representation

4



0

4

8

12

16

20

24

0 4 8 12 16 20 24

Speedup

Number of processors

Rose

par S-pol kern ?

?
? ? ? ?

?

? ?
?

par S-pol total ?

?
? ? ? ?

?

? ?
?

pipel red kern r

r r r r r r r r

pipel red total r

r r r r r r r r

combined kern e

e e e e
e e

combined total e

e e e e
e e

linear speedup

kern = parallel part, total = parallel and sequential part

Fig. 5. Example Rose

0

4

8

12

16

20

24

0 4 8 12 16 20 24

Speedup

Number of processors

Trinks 1

par S-pol kern ?

? ? ? ? ? ? ? ?

par S-pol total ?

? ? ? ? ? ? ? ?

pipel red kern r

r r r r r r r r

pipel red total r

r r r r r r r r

combined kern e

e e e e e e e e
combined total e

e e e e e e e e

linear speedup

kern = parallel part, total = parallel and sequential part

Fig. 6. Example Trinks 1

5



(which has been optimized for sequential machines), from the design of the algorithm itself,
from the specific example or from a insufficient understanding of the machine architecture and
scheduling mechanisms. So, much research is still needed.

6. Conclusion. The efforts made in porting the approximately 70 000 lines Modula-2 code
are as follows. The number of lines changed were 50 in the Modula-2 to C translator, 200 + 500
new in the MAS kernel and starting from 100 in application programs. The porting effort was
approximately 1 person 2 weeks for the 1 processor version and 1 person 2-3 month research for
the n processor version. As we have seen the porting of the dynamic memory management needs
insight into architecture of the machine and into scheduling strategy of the operating system.
E.g. at GC time the register contents of all threads on a specific processor must be examined.
The KSR1 shared memory concept makes it easy to program this and for the OSF1 operating
system there was enough documentation, to extract the required information on the software
architecture. However the KSR1 operating system should be more stable to run the examples.

The challenge in parallel computer algebra is to design a parallel list processing with garbage
collection and to develop algorithms with suitable (adaptable) grain size to make efficient use of
all processors during the computation. For specific examples it is possible to obtain the expected
figures on the KSR1. However it is difficult to obtain sustained speedup across the different
subproblems which are dynamically generated. For this ongoing research the KSR1 machines
provide a well suited architecture to study a wide variety of algorithms.

REFERENCES

[1] Th. Becker, V. Weispfenning, with H. Kredel, Gröbner Bases. Springer, GTM 141, 1993.
[2] W. Böge, R. Gebauer, H. Kredel, Some Examples for Solving Systems of Algebraic Equations by Calculating

Gröbner Bases. J. Symb. Comp., No. 1, pp 83-98, 1986.
[3] J. Della Dora, J. Fitch (eds.), Computer Algebra and Parallelism. Academic Press, London, 1989.
[4] Leslie M. Goldschlager, A Universal Interconnection Pattern for Parallel Computers. J. ACM, Vol. 29, No.

3, July 1982, pp 1073-1086.
[5] David J. Hawley, A Buchberger Algorithm for Distributed Memory Multi-Processors. Springer LNCS 591, pp

385-390, 1992.
[6] H. Hong, A. Neubacher, W. Schreiner, The Design of the SACLIB/PACLIB Kernels. Proc. DISCO ‘93,

Springer LNCS 722, pp 288-302, 1993.
[7] W.W. Küchlin, PARSAC-2: A parallel SAC-2 based on threads. Proc. AAECC-8, Springer LNCS 508, pp

341-353, 1990.
[8] Computer Algebra Group Passau, Modula-2 Algebra System, Version 0.7. See eg. [11], pp 222-228.
[9] Stephen A. Schwab, Extended Parallelism in the Gröbner Basis Algorithm. Int. J. of Parallel Programming,

Vol. 21, No. 1. 1992, pp 39-66.
[10] Steffen Seitz, Algebraic Computing on a Local Net. In [12], pp 19-31.
[11] V. Weispfenning, J. Grabmeier (eds.), Computeralgebra in Deutschland. Fachgruppe Computeralgebra der

GI, DMV, GAMM, 1993. Erhältlich bei GI, Godesberger Allee 99, Bonn.
[12] R.E. Zippel (ed.), Computer Algebra and Parallelism. Springer LNCS 584, 1990.

6



0

4

8

12

16

20

24

0 4 8 12 16 20 24

Speedup

Number of processors

Gerdt

par S-pol kern ?

? ? ? ? ? ? ? ?

par S-pol total ?

? ? ? ? ? ? ? ?

pipel red kern r

r r r r r r r r

pipel red total r

r r r r r r r r

combined kern e

e e e e

combined total e

e e e e

linear speedup

0

4

8

12

16

20

24

0 4 8 12 16 20 24

Speedup

Number of processors

Geddes

par S-pol kern ?

? ? ? ? ? ? ? ?

par S-pol total ?

? ? ? ? ? ? ? ?

pipel red kern r

r r r r r r r r

pipel red total r

r r r r r r r r

combined kern e

e e e e e e e

combined total e

e e e e e e e

linear speedup

Fig. 7. Examples Gerdt and Geddes

7



0

4

8

12

16

20

24

0 4 8 12 16 20 24

Speedup

Number of processors

Katsura 3

par S-pol kern ?

?

?
? ? ? ? ?

par S-pol total ?

?

?
? ? ? ? ?

pipel red kern r

r r r r r r r r

pipel red total r

r r r r r r r r

combined kern e

e
e e

e e e e
e

combined total e

e e e e e e e e
linear speedup

0

4

8

12

16

20

24

0 4 8 12 16 20 24

Speedup

Number of processors

Katsura 4

par S-pol kern ?

? ? ? ? ? ? ?

par S-pol total ?

? ? ? ? ? ? ?

pipel red kern r

r r r r r r r r

pipel red total r

r r r r r r r r

combined kern e

e e e e

combined total e

e e e e

linear speedup

Fig. 8. Examples Katsura 3 and 4

8



0

4

8

12

16

20

24

0 4 8 12 16 20 24

Speedup

Number of processors

Summary

Rose 3

3

3 3 3

3

3

Gerdt +

+
+ + +

Geddes 2

2 2 2 2 2 2 2

Katsura 3 ×

×

×
×

×
× ×

×

×

Katsura 4 4

4
4 4 4

Trinks 1 ?

? ? ? ? ? ? ? ?

linear

Fig. 9. Summary of examples

9


