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Introduction

● API design of Java libraries for symbolic and 
numeric computations

● requirements
– separately compiled library

– generic and object oriented

– statically type safe

– usable in parallel and distributed environments

● possible because JVM run-time with automatic 
garbage collection

● generic libraries : use data types and algorithms  
from other groups



Interoperability levels

● System level
– OpenMath XML interfaces for monolithic 

systems (Maple, Mathematica, etc.)

● Scripting level
– Sage a Python implementation of Magma

– use C/C++ libraries of other CAS from Python

– Singular, Pari, Gap, Kant, ...

● Library level
– here Java libraries :

– JAS, Apache commons Math, JLinAlg
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Interfaces and classes

● each library consists of a set of interfaces and 
implementing classes tailored to its focus

● here focus on rings and ring elements since 
common and central for interoperation

● common characteristics : 
– elements of algebraic structures

– factories to create specific instances

– agree on 3 of the library requirements

– thread-safety requirement seems accepted

– transportable objects (Serializable) not generally 
accepted



Apache Commons Math (1)

● focus on linear algebra
● central data type : fields for vector spaces
● interfaces : Field and FieldElement

● minimal set of methods for field elements
– add(), subtract(), multiply() and 

divide()

● and for field factories
– getZero() and getOne()

● type parameter <T> is not restricted





Apache Commons Math (2)

● implementing classes, for example rational 
numbers

– BigFraction and BigFractionField

● implement additionaly
– Serializable and Comparable

● and extend the class Number

– mandate conversion methods like intValue()

● interface methods four times overloaded
– for the class itself, for BigInteger 

– and for the primitive types int and long



Apache Commons Math (3)

● overloaded methods not reflected in the 
interface

● negate(), abs(), pow() not defined in the 
interface

● conversion methods bigDecimal(), could 
also go to an interface

● methods related to rational numbers 
getDenominator() and getNumerator()



JLinAlg (1)

● focus on linear algebra
● central data type : modules over rings
● interfaces : IRingElement and 
IRingElementFactory

● methods for ring elements
– add(), subtract(), multiply(), 

divide(), inverse(), negate(), abs()

– isZero(), isOne()

– lt(), gt(), le(), ge()

– norm(), apply()





JlinAlg (2)

● and for ring factories
– zero() and one(), m_one()

– randomValue(), gaussianRandomValue()

– conversion methods from other types : get() 

– construct arrays : getArray()

– convert between vectors and matrices

● type parameter <RE> is restricted to 
IRingElement



JLinAlg (3)

● abstract classes RingElement, 
RingElementFactory

● implement subtract() in terms of negate() 
and add()

● implementations divide() and inverse() 
throw exceptions if not overwritten

● get() is implemented using conversion with 
String representations



Java Algebra System, JAS (1)

● focus on (non-linear) algebra
● central data type : polynomials over rings
● interfaces : RingElem and RingFactory

– composed from AbelianGroupElem and 
MonoidElem

– both in turn composed from Element

● Element

– extends Clonable, Comparable, 
Serializable

– defines factory(), toScript()





JAS (2)

● AbelianGroupElem

– sum(), subtract(), negate(), abs()

– isZERO(), signum()

● MonoidElem

– multiply(), divide(), inverse(), 
remainder()

– isONE(), isUnit()

● RingElem adds 

– gcd(), egcd()

● FieldElem no further methods



JAS (3)

● ElementFactory defines

– conversion : fromInteger(), parse()

– construction : random(), generators()

– predicate : isFinite()

● AbelianGroupFactory defines

– getZERO()

● MonoidFactory defines

– getONE()

– isCommuntative(), isAssociative()



JAS (4)

● RingFactory defines

– isField()

– characteristic()

● FieldFactory no further methods

● type parameter <C> is restricted to respective 
interface
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Comparison (1)

● all provide generic algebraic objects and 
algorithms for computation with them

● implemented using Java 5 type parameters
● basic design similar

– split between elements and factories

– factories to create elements

– agreement on 3 of the library requirements

– thread-safety requirement seems accepted

– Serializable not generally accepted

● comprehensive : JAS > JLinAlg > AC Math



Comparison (2)

● different goals :
– ACMath : linear algebra over commutative fields 

of characteristic 0, numeric computations with 
rounding errors

– JLinAlg : linear algebra over fields of arbitrary 
characteristic, also numeric objects

– JAS : more general algebraic structures like 
commutative and non-commutative (non-
linear) algebras, arbitrary characteristic, 
mostly exactly represented objects, few 
numeric objects



Comparison (3)
● trade-offs

– many methods in interfaces  →
● more implementations required

– to few methods in interfaces →
● many case distinctions in usage 
● generic design limited or impossible

– thread-safety
● design immutable objects
● or maintain method synchronization

– transport, distributed computing
● maintain object serialization 

● extra unit tests required and to be maintained



Comparison (4)

● Note : add() versus sum()

– mutable in Java collections framework

– need immutable for parallel usage

– problem of confusion, so different names

● JAS started with a smaller set of defined 
methods in the interfaces

● current set of methods proven to be required in 
implementation of large parts of (polynomial) 
algebras / rings



Comparison (5)

● need to distinguish :
– finite and infinite fields of finite characteristic

– isFinite() and characteristic()

● required in generic algorithms :
– isCommutative() and isAssociative()

– isField()

● conversion methods :
– fromInteger(), parse()

– eventually more general valueOf()



Comparison (6)

● for distributed algorithms :
– need Serializable

● for interoperation with Java collections :
– Comparable

– Clonable

● interoperation using adapter classes :
– needs two adaptors for each pair of libraries

– does not scale well to more libraries

– run-time overhead using delegation



Proposal

● use revised interfaces from JAS as basis
– check flat versus structured interfaces

– burden to implement more methods and tests
● only three predicates besides arithmetic

– check where to place scripting methods, not 
useful in ACMath

● toScript() in Element

– will need some time

● make them available under Apache Commons 
Math and Apache licence



State of the cooperation

● contact with ACMath via mailing list
● offered proposal and explained questions
● ACMath now preparing for release 3.0
● then think about the interfaces
● no response from JLinAlg developers



Conclusions

● studied three interfaces
● not so different in concepts
● different number of methods
● different emphasis of interfaces vs. (abstract) 

classes
● will need some time to sort issues out
● defined a useful subset of methods for 

interoperation in a future standard



Thank you for your attention

Questions ?

Comments ?

http://krum.rz.uni-mannheim.de/jas/

http://jscl-meditor.sourceforge.net/
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