
Fostering Interoperability
in Java-Based

Computer Algebra Software

Heinz Kredel, University of Mannheim

FINA at AINA 2012, FIT Fukuoka

Overview

● Introduction
● Interfaces and classes

– Apache Commons Math

– JLinAlg

– Java Algebra System

● Comparison

– Proposal
● Conclusions

Introduction

● API design of Java libraries for symbolic and
numeric computations

● requirements
– separately compiled library

– generic and object oriented

– statically type safe

– usable in parallel and distributed environments

● possible because JVM run-time with automatic
garbage collection

● generic libraries : use data types and algorithms
from other groups

Interoperability levels

● System level
– OpenMath XML interfaces for monolithic

systems (Maple, Mathematica, etc.)

● Scripting level
– Sage a Python implementation of Magma

– use C/C++ libraries of other CAS from Python

– Singular, Pari, Gap, Kant, ...

● Library level
– here Java libraries :

– JAS, Apache commons Math, JLinAlg

Overview

● Introduction
● Interfaces and classes

– Apache Commons Math

– JLinAlg

– Java Algebra System

● Comparison

– Proposal
● Conclusions

Interfaces and classes

● each library consists of a set of interfaces and
implementing classes tailored to its focus

● here focus on rings and ring elements since
common and central for interoperation

● common characteristics :
– elements of algebraic structures

– factories to create specific instances

– agree on 3 of the library requirements

– thread-safety requirement seems accepted

– transportable objects (Serializable) not generally
accepted

Apache Commons Math (1)

● focus on linear algebra
● central data type : fields for vector spaces
● interfaces : Field and FieldElement

● minimal set of methods for field elements
– add(), subtract(), multiply() and

divide()

● and for field factories
– getZero() and getOne()

● type parameter <T> is not restricted

Apache Commons Math (2)

● implementing classes, for example rational
numbers

– BigFraction and BigFractionField

● implement additionaly
– Serializable and Comparable

● and extend the class Number

– mandate conversion methods like intValue()

● interface methods four times overloaded
– for the class itself, for BigInteger

– and for the primitive types int and long

Apache Commons Math (3)

● overloaded methods not reflected in the
interface

● negate(), abs(), pow() not defined in the
interface

● conversion methods bigDecimal(), could
also go to an interface

● methods related to rational numbers
getDenominator() and getNumerator()

JLinAlg (1)

● focus on linear algebra
● central data type : modules over rings
● interfaces : IRingElement and
IRingElementFactory

● methods for ring elements
– add(), subtract(), multiply(),

divide(), inverse(), negate(), abs()

– isZero(), isOne()

– lt(), gt(), le(), ge()

– norm(), apply()

JlinAlg (2)

● and for ring factories
– zero() and one(), m_one()

– randomValue(), gaussianRandomValue()

– conversion methods from other types : get()

– construct arrays : getArray()

– convert between vectors and matrices

● type parameter <RE> is restricted to
IRingElement

JLinAlg (3)

● abstract classes RingElement,
RingElementFactory

● implement subtract() in terms of negate()
and add()

● implementations divide() and inverse()
throw exceptions if not overwritten

● get() is implemented using conversion with
String representations

Java Algebra System, JAS (1)

● focus on (non-linear) algebra
● central data type : polynomials over rings
● interfaces : RingElem and RingFactory

– composed from AbelianGroupElem and
MonoidElem

– both in turn composed from Element

● Element

– extends Clonable, Comparable,
Serializable

– defines factory(), toScript()

JAS (2)

● AbelianGroupElem

– sum(), subtract(), negate(), abs()

– isZERO(), signum()

● MonoidElem

– multiply(), divide(), inverse(),
remainder()

– isONE(), isUnit()

● RingElem adds

– gcd(), egcd()

● FieldElem no further methods

JAS (3)

● ElementFactory defines

– conversion : fromInteger(), parse()

– construction : random(), generators()

– predicate : isFinite()

● AbelianGroupFactory defines

– getZERO()

● MonoidFactory defines

– getONE()

– isCommuntative(), isAssociative()

JAS (4)

● RingFactory defines

– isField()

– characteristic()

● FieldFactory no further methods

● type parameter <C> is restricted to respective
interface

Overview

● Introduction
● Interfaces and classes

– Apache Commons Math

– JLinAlg

– Java Algebra System

● Comparison

– Proposal
● Conclusions

Comparison (1)

● all provide generic algebraic objects and
algorithms for computation with them

● implemented using Java 5 type parameters
● basic design similar

– split between elements and factories

– factories to create elements

– agreement on 3 of the library requirements

– thread-safety requirement seems accepted

– Serializable not generally accepted

● comprehensive : JAS > JLinAlg > AC Math

Comparison (2)

● different goals :
– ACMath : linear algebra over commutative fields

of characteristic 0, numeric computations with
rounding errors

– JLinAlg : linear algebra over fields of arbitrary
characteristic, also numeric objects

– JAS : more general algebraic structures like
commutative and non-commutative (non-
linear) algebras, arbitrary characteristic,
mostly exactly represented objects, few
numeric objects

Comparison (3)
● trade-offs

– many methods in interfaces →
● more implementations required

– to few methods in interfaces →
● many case distinctions in usage
● generic design limited or impossible

– thread-safety
● design immutable objects
● or maintain method synchronization

– transport, distributed computing
● maintain object serialization

● extra unit tests required and to be maintained

Comparison (4)

● Note : add() versus sum()

– mutable in Java collections framework

– need immutable for parallel usage

– problem of confusion, so different names

● JAS started with a smaller set of defined
methods in the interfaces

● current set of methods proven to be required in
implementation of large parts of (polynomial)
algebras / rings

Comparison (5)

● need to distinguish :
– finite and infinite fields of finite characteristic

– isFinite() and characteristic()

● required in generic algorithms :
– isCommutative() and isAssociative()

– isField()

● conversion methods :
– fromInteger(), parse()

– eventually more general valueOf()

Comparison (6)

● for distributed algorithms :
– need Serializable

● for interoperation with Java collections :
– Comparable

– Clonable

● interoperation using adapter classes :
– needs two adaptors for each pair of libraries

– does not scale well to more libraries

– run-time overhead using delegation

Proposal

● use revised interfaces from JAS as basis
– check flat versus structured interfaces

– burden to implement more methods and tests
● only three predicates besides arithmetic

– check where to place scripting methods, not
useful in ACMath

● toScript() in Element

– will need some time

● make them available under Apache Commons
Math and Apache licence

State of the cooperation

● contact with ACMath via mailing list
● offered proposal and explained questions
● ACMath now preparing for release 3.0
● then think about the interfaces
● no response from JLinAlg developers

Conclusions

● studied three interfaces
● not so different in concepts
● different number of methods
● different emphasis of interfaces vs. (abstract)

classes
● will need some time to sort issues out
● defined a useful subset of methods for

interoperation in a future standard

Thank you for your attention

Questions ?

Comments ?

http://krum.rz.uni-mannheim.de/jas/

http://jscl-meditor.sourceforge.net/

Acknowledgements

thanks to: Raphael Jolly, Apache Commons Math
developers, JlinAlg developers, Thomas Becker,
Werner K. Seiler, Axel Kramer, Dongming Wang,
Thomas Sturm, Hans-Günther Kruse, Markus
Aleksy

thanks to the referees

http://krum.rz.uni-mannheim.de/jas/
http://jscl-meditor.sourceforge.net/

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27
	Folie 28
	Folie 29
	Folie 30

