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Introduction
The modeling of algebraic structures in a strongly typed, generic, object oriented
computer algebra software has been presented with the systems JAS [5, 6] and ScAS
[3]. The design and implementation of these strongly typed, generic and object oriented
polynomial algorithm libraries in Java and Scala is presented in [4]. The libraries are
enhanced for interactive usage with the help of the Jython and JRuby scripting
languages. The libraries now provide several algorithm versions for greatest common
divisor, squarefree decomposition, factorization and Gröbner bases computation in
separate packages.
In this poster we discuss the problem of code organization and algebraic structure
configuration and deployment. Elements of algebraic structures are implemented by
classes and instantiated as objects with methods implementing the ‘inner’ algorithms of
the structure in the programming language. The algorithm libraries, for example the
construction of Gröbner bases, are kept in separate source code trees and packages.
This code organization helps in the separation of the various possibilities for algorithm
implementation and in the transparent selection of appropriate algorithms for a given
problem. However, it is not always clear where to draw the line between ‘inner’ structure
algorithms and ‘external’ library algorithms, and it is sometimes possible to implement
calculation engines as part of the algebraic structures themselves. This technique is
paralleled with the concept of categories as found in competing computer algebra
software.

Generic, strongly typed, object oriented
computer algebra software

Ring.Element[T]
<<interface>>

Ring[T]
<<interface>>

Polynomial.Element[C] Polynomial[C: Ring]

<<realize>> <<realize>>

Example
impor t s c a s .
impor t I m p l i c i t s .QQ
i m p l i c i t v a l r : Po l ynomia l [ R a t i o n a l ] = Po l ynomia l . f a c t o r y (QQ, ”w”)
v a l Ar ray (w) = r . g e n e r a t o r s
v a l a : Po l ynomia l . Element [ R a t i o n a l ] = pow(w, 2) − 2

Algorithm libraries
focus on multivariate polynomials over UFDs

greatest common divisor: interface GreatestCommonDivisor with gcd(),
content(), implementations for various polynomial remainder sequence (PRS)
algorithms: simple, monic, primitive and the sub-resultant algorithm generic for any
(UFD) coefficient ring, other implementations use Chinese remainder algorithms or
Hensel lifting

squarefree decomposition: interface Squarefree, generic implementations for
finite or infinite coefficient fields or rings of characteristic 0 or p

factorization: interface Factorization, implementation depends on the explicit
coefficient ring but is generic in the sense that it can factor over arbitrary stacked
coefficient field extensions, like mixed transcendental and algebraic extensions

factories select appropriate algorithms for given coefficients

Code organization problem
The algebraic structures and elements together with the algorithm libraries provide a
way to define precisely suitable combinations for given situations. Depending on the
considered algortihms however, it can be desirable to implement calculation engines as
part of the algebraic structures themselves.

Categories in computer algebra systems
1 Axiom, Aldor: abstract classes in OOP [2, 9]

2 Magma, Sage: classes with same representation [1, 8]

Mixins for category-like code organization
Reusable components [7] consist in splitting software in as many pieces as needed or
possible, and to re-assemble these according to the principle of composition.
Hierarchical composition and peer composition (also called mixin composition) are two
variations of this principle. We illustrate their respective usage with the example of GCD
computation. We consider components for each algorithm flavor and combine them
using either hierarchical or mixin composition. The code samples are given in the
computer language Scala using its concept of traits.
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Preliminary settings
impor t s c a s . s t r u c t u r e . Ring // d e c l a r e s method p l u s e t c .
impor t Po l ynomia l . Element
t r a i t Po l ynomia l [C : Ring ] e x t end s Ring [ Element [C ] ] {

de f p l u s ( x : Element [C ] , y : Element [C ] ) = . . .
. . .

}
o b j e c t Po l ynomia l {

t r a i t Element [C ] e x t end s Ring . Element [ Element [C ] ]
}

Peer vs hierarchical composition
In hierarchical composition, work is delegated to a member ring:
t r a i t GCDEngine [C : Ring ] {

v a l r i n g : Po l ynomia l [C ]
de f gcd ( x : Element [C ] , y : Element [C ] ) : Element [C ]

}
t r a i t GCDSimple [C : Ring ] e x t end s GCDEngine [C ] {

de f gcd ( x : Element [C ] , y : Element [C ] ) = // use r i n g . p l u s e t c .
}
v a l e = new GCDSimple [ B i g I n t e g e r ] {

v a l r i n g = new Po l ynomia l [ B i g I n t e g e r ]
}

The same effect can be obtained through inheritance (peer composition):
t r a i t GCDSimple [C : Ring ] e x t end s Po l ynomia l [C ] {

de f gcd ( x : Element [C ] , y : Element [C ] ) = // use t h i s . p l u s e t c .
}
v a l r = new GCDSimple [ B i g I n t e g e r ]

Delegation decouples components - inheritance increases coupling.

Mixin composition and categories
In the mixin case, we can combine several algorithms through multiple
inheritance:
t r a i t GCDEngineX [C : Ring ] e x t end s Po l ynomia l [C ] {

de f gcd ( x : Element [C ] , y : Element [C ] ) = . . .
}
t r a i t Squa r e f r e eEng ineY [C : Ring ] e x t end s Po l ynomia l [C ] {

de f s q u a r e f r e eP a r t ( x : Element [C ] ) : Element [C ] = . . .
d e f s q u a r e f r e e F a c t o r s ( x : Element [C ] ) : L i s t [ Element [C ] ] = . . .

}
t r a i t Facto rEng ineZ [C : Ring ] e x t end s Po l ynomia l [C ] {

de f f a c t o r L i s t ( x : Element [C ] ) : L i s t [ Element [C ] ] = . . .
d e f f a c t o r s ( x : Element [C ] ) : Map [ Element [C ] , Long ] = . . .

}
v a l r = new GcdEngineX [ B i gRa t i o n a l ]

w i th Squa r e f r e eEng ineY [ B i gRa t i o n a l ]
w i th Facto rEng ineZ [ B i gRa t i o n a l ]

Then r represents a polynomial category. Some algorithms may need
further specialization of the coefficient type:
t r a i t GCDModular e x t end s Po l ynomia l [ B i g I n t e g e r ] {

de f gcd ( x : Element [ B i g I n t e g e r ] , y : Element [ B i g I n t e g e r ] ) = . . .
}
v a l r = new GCDModular

The desired packaging can be pre-setup or chosen automatically
according to the coefficient type:
v a l r = Po l ynomia l . f a c t o r y ( r i ng , pp )

The factory method might return an object of type GCDModular if ring
is BigInteger and so on. This category scheme using mixins ties
together algebraic structures with some specific algorithm
implementations and so solves the packaging problem.
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