Performance Analysis and Prediction for distributed homogeneous Clusters

Heinz Kredel, Hans-Günther Kruse, Sabine Richling, Erich Strohmaier

IT-Center, University of Mannheim, Germany IT-Center, University of Heidelberg, Germany Future Technology Group, LBNL, Berkeley, USA

ISC'12, Hamburg, 18. June 2012

Outline

Background and Motivation

- D-Grid and bwGRiD
- bwGRiD Mannheim/Heidelberg
- Next generation bwGRiD

2 Performance Modeling

- The Roofline Model
- Analysis of a single Region
- Analysis of two identical interconnected Regions
- Application to bwGRiD

3 Conclusions

D-Grid and bwGRiD

- bwGRiD Virtual Organization (VO)
 - Community project of the German Grid Initiative D-Grid
 - Project partners are the Universities in Baden-Württemberg
- bwGRiD Resources
 - Compute clusters at 8 locations
 - Central storage unit in Karlsruhe
- bwGRiD Objectives
 - Verifying the functionality and the benefit of Grid concepts for the HPC community in Baden-Württemberg
 - Managing organizational, security, and license issues
 - Development of new cluster and Grid applications

Bundesministerium für Bildung und Forschung

bwGRiD - Resources

Compute Cluster			
Site	Nodes		
Mannheim	140		
Heidelberg	140		
Karlsruhe	140		
Stuttgart	420		
Tübingen	140		
Ulm/Konstanz	280		
Freiburg	140		
Esslingen	180		
Total	1580		

Central Storage	
with backup	128 TB
without backup	256 TB
Total	384 TB

bwGRiD MA/HD – Hardware

Hardware	Mannheim Heidelberg		total
Blade Center	10	10	20
Blades (Nodes)	140	140	280
CPUs (Cores)	1120	1120	2240
Login Server	2	2	4
Admin Server	1	_	1
Infiniband Switches	1	1	2
HP Storage System	32 TB	32 TB	64 TB

Blade Configuration

- 2 Intel Xeon CPUs, 2.8 GHz (each CPU with 4 Cores)
- 16 GB Memory
- 140 GB hard drive (since January 2009)
- Gigabit-Ethernet (1 Gbit)
- Infiniband Netzwork (20 Gbit)

bwGRiD MA/HD - Overview

bwGRiD MA/HD – Interconnection

Network Technology

- InfiniBand over Ethernet over fibre optics (28 km)
- 2 Obsidian Longbow (150 TEUR)

MPI Performance

- Latency is high: 145 $\mu \text{sec} = 143 \ \mu \text{sec}$ light transit time + 2 μsec
- Bandwidth is as expected: 930 MB/sec (local 1200-1400 MB/sec)

Operating Considerations

- Operating the two clusters as single system image
- Fast InfiniBand interconnection to the storage systems
- MPI performance not sufficient for all kinds of parallel jobs
 - \rightarrow Keep all nodes of a job on one side

Next generation bwGRiD

Questions

- What bandwidth is required to allow all parallel jobs running accross two cluster regions?
- Is the expected bandwidth for the new system sufficient?
- Is there an optimal size for a cluster region?

Performance Charateristics	bwGRiD 1	bwGRiD 2
Bandwidth between two nodes	1.5 GByte/sec	6 GByte/sec
Bandwidth between two regions	1.0 GByte/sec	15 – 45 GByte/sec
Performance of a single core	8.5 GFlop/sec	10 – 16 GFlop/sec

Outline

Background and Motivation

- D-Grid and bwGRiD
- bwGRiD Mannheim/Heidelberg
- Next generation bwGRiD

2 Performance Modeling

- The Roofline Model
- Analysis of a single Region
- Analysis of two identical interconnected Regions
- Application to bwGRiD

3 Conclusions

Basic Roofline

 Performance is upper bounded by both the peak flop rate, and the product of streaming bandwidth and the flop:byte ratio

Gflop/s = min {Peak Gflop/s Stream BW * actual flop:byte ratio

1

Roofline model for Opteron (adding ceilings)

flop:DRAM byte ratio

- Peak roofline performance
- based on manual for single precision peak
- and a hand tuned stream read for bandwidth

2

A Performance Model based on the Roofline Model

Roofline Principles:

- Bottleneck Analysis
- Bound by Peak Flop and Measured Bandwidth

The following steps will be used to develop a performance model for single and multiple regions:

- Transform basics scales to dimensionless quantitates to arrive at universal scaling law
- Assume optimal floating-point operations and scaling with system size
- Introduce effective bandwidth scaling with system size
- Formulate result with dimensionless code-to-system balance factors

Performance Modeling The Roofline Model

Performance Model – Overall System Abstraction

Hardware

number of cores ncore performance l_{th} bandwidth b^{l} number of cores ncore performance l_{th} bandwidth b^{l}

Application (Load)

#op number of arithmetic operations performed on #b number of bytes (data)

Analysis of a single Region

Total time =

 $Computation \ time \ + \ Communication \ time$

Total time with ideal floating-point operations:

$$t_V \sim \begin{cases} \frac{\#op}{d^s} + \frac{\#b}{b^I} \\ \max\left(\frac{\#op}{d^s}, \frac{\#b}{b^I}\right) \end{cases} \geq \begin{cases} \frac{\#op}{d^{\text{th}}} \left(1 + \frac{\#b}{b^I} \frac{d^{\text{th}}}{\#op}\right) & \text{additive} \\ \frac{\#op}{d^{\text{th}}} \max\left(1, \frac{\#b}{b^I} \frac{d^{\text{th}}}{\#op}\right) & \text{overlapping} \end{cases}$$

Identify a **code-to-system balance factor** *x* based on: *a*: Arithmetic intensity (roofline model, Williams et al. 2009) *a**: Operational balance ('architectural intensity'):

$$x = \frac{a}{a^*} = \frac{\#op}{\#b}\frac{b'}{d^{\text{th}}} = \frac{\#op}{d^{\text{th}}}\frac{b'}{\#b}$$

Throughput:

$$d = rac{\#op}{t_V} \leq \left\{egin{array}{cc} d^{ ext{th}}rac{x}{x+1} & ext{additive} \ d^{ ext{th}}\min(1,x) & ext{overlapping} \end{array}
ight.$$

Kredel, Kruse, Richling, Strohmaier (ISC'12)

Single Region – Throughput

Throughput d for additive (green) and overlapping (red) concepts.

Single Region – Speed-up

Ideal floating-point $d^{\text{th}} = n \cdot l^{\text{l}}$ and Effective bandwidth scaling $z = \frac{b'}{b'_0}$ with a reference bandwidth b'_0 gives:

$$x = \frac{\#op}{\#b} \cdot \frac{b'}{d^{\mathrm{th}}} = \frac{1}{n} \cdot \frac{\#op}{\#b} \cdot \frac{b'_0}{l_{\mathrm{th}}} \cdot \frac{b'}{b'_0} = \frac{x' \cdot z}{n}$$

where x' is the balance factor of the core (or node, unit, ...) Parallel Speed-up is then:

$$Sp = rac{d(n)}{d(1)} = rac{1+x'z}{1+rac{x'z}{n}}
ightarrow 1+x'z \bigg|_{n
ightarrow \infty}$$

Single Region – Speed-up

Speed-up Sp for different values x' and z.

Analysis of two interconnected Regions

Total time =

Time (1 region, 1/2 comp. load) + Communication time between regions

Total time for #x bytes and channel bandwidth B^E :

$$t_V \sim t_V^{(1)} + \# x/B^E$$

 $t_V \geq rac{(\# op/2)}{d^{ ext{th}}} \left(1 + rac{a^*}{a}
ight) + rac{\# x}{B^E}$

Throughput:

$$d \leq 2d^{\mathrm{th}} \frac{1}{1 + \frac{a^*}{a} + 2\frac{d^{\mathrm{th}}}{B^{\mathsf{E}}} \frac{\#x}{\#op}}$$

Balance factors within (x') and between regions (y'):

$$x = \frac{a}{a^*} = \frac{x'}{n} \qquad y = \frac{\#op}{\#x} \frac{B^E}{2d^{\text{th}}} = \frac{1}{2} \frac{x'}{n} \left(\frac{\#b}{\#x}\right) \left(\frac{B^E}{b'}\right) = \frac{y'}{n}$$

Interconnection is a shared medium with a constant aggregate bandwidth B^E and an effective load factor p(n):

$$b^E = \frac{B^E}{p(n)}$$

This gives for the overall Speed-up:

$$Sp2 = \frac{x' + y' + x'y'}{p(n)x' + y' + \frac{x'y'}{n}} \to 0 \bigg|_{n \to \infty}$$

Speed-up Sp2 for different values of x'.

Focus on application and interconnection bandwidth:

$$z' = \frac{2y'}{x'} = r \cdot z''$$
 with $r = \frac{\#b}{\#x}$ and $z'' = \frac{b^E}{b'}$

z' is the ratio between balance factors 'between regions' to 'between cores' and should be as large as possible Overall Speed-up can be rewritten as:

$$Sp2 = \frac{2 + (1 + x')z'}{2p(n) + (1 + \frac{x'}{n})z'} \le \frac{x'z'}{2p(n) + \frac{x'z'}{n}}$$

Speed-up Sp2 for x' = 100 with increasing bandwidth b^E (and consequently z') and an assumed $p(n) = \frac{n}{20}$.

Two Regions – Max. Speedup

Value of the maximum speed-up of Sp2 for linear $p(n) = \alpha n$ over bandwidth z'.

Application to bwGRiD

Performance Charateristics	bwGRiD 1	bwGRiD 2
Bandwidth between two nodes b^{I}	1.5 GByte/sec	6 GByte/sec
Bandwidth between two regions B^E	1.0 GByte/sec	15 GByte/sec
Performance of a single core I_{th}	8.5 GFlop/sec	10 GFlop/sec

Reference Bandwidth: $b_0^{\prime} = 1.0 \text{ GByte/sec}$

Application = LinPack:

 $n_p = 10000, 20000, 30000, 40000$

$$\# op \sim rac{2}{3} n_p^3$$
 and $\# b \sim 2 n_p^2 \cdot w$

bwGRiD - Single Region

Speed-up comparison of measurements and model for one region.

HPL 1.0a local

bwGRiD – Two Regions

Speed-up comparison of measurements and model for two regions for an estimated bandwidth contention of p(n) = n/20

24 / 26

bwGRiD – Two Regions

Speed-up bwGRiD1 for two regions and varying bandwidth B^E .

bwGRiD - Speedup prediction

Speed-up in bwGRiD1&2 for one and two regions with $n_p = 40000$.

Conclusions

- Performance model is based on roofline model
- Throughput and speed-up are described by 2 3 scaling parameters which depend on important hardware and software characterisitics
- Model reproduces LinPack measurements for one and two regions (bwGRiD1)
- Model predicts performance of next generation system (bwGRiD2)
- Upper bounds for region sizes are derived by analyzing the maximal Speedup
- Lower bounds for region sizes are derived by analyzing the $n_{1/2}$ values (see paper)
- Next steps:
 - More detailed model for the communication within a region
 - Investigation of other applications