
A Systems Perspective on A3L

Heinz Kredel

University of Mannheim

Algorithmic Algebra and Logic 2005

Passau, 3.-6. April 2005



Introduction

● Summarize some aspects of the development of 
computer algebra systems in the last 25 years. 

● Focus on Aldes/SAC-2, MAS and some new 
developments in Java.

● Computer algebra can more and more use 
standard software developed in computer science 
to reach its goals.

● In CA systems theories of Volker Weispfenning 
have been implemented to varying degrees.



Relation to Volker Weispfenning

● Determine the dimension of a polynomial ideal 
by inspection of the head terms of the 
polynomials in the Gröbner base.

● Constructing software for the representation and 
computation of Algebraic Algorithms and Logic

● Covering Aldes/SAC-2, time in Passau using 
Modula-2 and today Java.



ALDES / SAC-2

● Major task was the implementation of Compre-
hensive Gröbner Bases in DIP by Elke Schönfeld

● Distributive Polynomial System (DIP) with R. 
Gebauer

● Aldes/SAC-2 developed by G. Collins and R. 
Loos

● Algebraic Description Language (Aldes) 
translator to FORTRAN

● SAC-2 run time system for list processing with 
automatic garbage collection



CAD

● Aldes/SAC-2 orginated in SAC-1, a pure 
FORTRAN implementation with a reference 
count garbage collecting list processing system

● Cylindrical algebraic decomposition (CAD) by 
G. Collins

● Quantifier elimination for real closed fields
● Provided a comprehensive library of fast and 

reliable algebraic algorithms
● integers, polynomials, resultants, factorization, 

algebraic numbers, real roots



Gröbner bases

● One of the first Buchberger algorithms in 
Aldes/SAC-2

● not restricted, no static bounds
● Used for zero-dimensional primary ideal 

decomposition
● and real roots of zero-dimensional ideals



Time of micro computers

● up to then mainframe based development 
environments

● wanted modern interactive development 
environment like Turbo-Pascal

● tried several Pascal compilers
● but no way to implement a suitable list 

processing system
● things getting better with Modula-2



Modula-2

● development of run time support for a list 
processing system with automatic garbage 
collection

● Boehm: garbage collector in an uncooperative 
environment in C

● bootstrapping translator to Modula-2 within the 
Aldes/SAC-2 system

● all of the existing Aldes algorithms (one 
exception) were transformed to Modula-2

● called Modula Algebra System (MAS)



Interpreter

● Modula-2 procedure parameters
● interpreted language similar to Modula-2
● release 0.30, November 1989
● language extensions as in algebraic specification 

languages (ASL)
● term rewriting systems, Prolog like resolution 

calculus
● interfacing to numerical (Modula-2) libraries
● (Python in 1990)



MAS content (1)

● implementation of theories of V. Weispfenning:
● real quantifier elimination (Dolzmann)
● comprehensive Gröbner bases (Schönfeld, Pesch)
● universal Gröbner bases (Belkahia)
● solvable polynomial rings
● skew polynomial rings (Pesch)
● real root counting using Hermites method 

(Lippold)



MAS content (2)

● other implemented theories:
● permutation invariant polynomials (Göbel)
● factorized, optimized Gröbner Bases (Pfeil, Rose)
● involutive bases (Grosse-Gehling)
● syzygies and module Gröbner bases (Phillip)
● d- and e-Gröbner bases (Becker, Mark)



Memory caching micro processors

● dramatic speed differences between cache and 
main memory

● concequences for long running computations:
● the list elements of algebraic data structures tend 

to be scattered randomly throughout main 
memory

● thus leading to cache misses and CPU stalls at 
every tiny step

● Other systems replace integer arithmetic with 
libraries like Gnu-MP



MAS problems (1)

● no transparent way of replacing integer arithmetic 
in MAS

● due to the ingenious and elegant way G. Collins 
represented integers

● small integers (< 2^29 = beta) are represented as 
32-bit integers

● large integers (>=beta) are transformed to lists
● code full of case distinctions 'IF i < beta THEN'
● distinction between BETA and SIL, but LIST as 

alias of LONGINT



MAS problems (2)

● Integer and recursive polynomials are not 
implemented as proper datatype (as defined in 
computer science)

● zero elements of algebraic structures as integer '0'
● this avoided constructors and eliminated 

problems with uniqueness but lost all structural 
information



MAS parallel computing

● parallel computers (32 – 128 CPUs) in Mannheim
● parallel garbage collector and parallel list 

processing subsystem using POSIX threads 
● parallel version of Buchberger's algorithm
● pipelined version of the polynomial reduction 

algorithm
● but no reliable speedup on many processors
● version was not released due to tight integration 

with KSR hardware



Problems

1.respect and exploit the memory hierarchy

2.find good load balancing and task granularity

3.find a portable way of parallel software 
development

● for basic building blocks of a system
● for implementation of each algorithm



Alternatives

● developments of languages of N. Wirth, Modula-
2 and Oberon was not as expected

● others used C language for the implementation 
– like H. Hong with SACLIB 

– W. Küchlin with PARSAC

● others used C++ for algebraic software 
– like LiDIA from T. Papanikolaou 

– like Singular of H. Schönemann

● others turned to commercial systems like Maple, 
Mathematica

● have GNU-MP, but other problems with C++ or 
memory management



Java

● first use for parallel software development
● got confident in the performance of Java 

implementations 
● and object oriented software development
● in 2000: Modula-2 to Java translator
● first atempt with old style list processing directly 

ported to Java
● about 5-8 times slower on Trinks6 Gröbner base 

than MAS



Basic refactoring

● integer arithmetic with Java's BigInteger class 
showed an improvement by a factor of 10-15 for 
Java

● so all list processing code had to be abandoned 
and native Java data structures should be used

● Polynomials were reimplemented using 
java.util.TreeMap

● now polynomials are, as in theory, a map from a 
monoid to a coefficient ring

● factor of 8-9 better on Trinks6 Gröbner base 



OO and Polynomial complexity

● Unordered versus ordered polynomials
● LinkedHashMap versus TreeMap (10 x faster)
● sum of a and b, l(a) = length(a):

● Hash: 2*(l(a)+l(b))
● Tree: 2*l(a)+l(b)+l(b)*log2(l(a+b)) 

● product of a and b: coefficients: lab = l(a)*l(b) :

● Hash: plus 2*l(a*b)*l(b)
● Tree: plus l(a)*l(b)*log2(l(a*b))
● sparse pol: TreeMap better, dense: HashMap better
● sparse l(a*b) ~ lab, dense l(a*b) ~ l(a)[+l(b)] 



Developments

● use of more and more object oriented principles
● shared memory and a distributed memory parallel 

version for the computation of Gröbner bases
● solvable polynomial rings
● modules over polynomial rings and syzygies
● Unit-Tests for most Classes with Junit
● Logging with Apache log4j
● Python / Jython interpreter frontend



Parallel Gröbner bases

● shared memory implementation with Threads
● reductions of S-polynomials in parallel
● uses a critical pair scheduler as work-queue 
● scalability is perfect up to 8 CPUs on shared 

memory
● provided the JVM uses the parallel Garbage 

Collector and aggressive memory management
● correct JVM parameters essential



Distributed Gröbner bases

● distributed memory implementation using 
TCP/IP Sockets and Object serialization

● reduction of S-polynomials on distributed 
computing nodes

● uses the same (central) critical pair scheduler as 
in parallel case

● distributed hash table for the polynomials in the 
ideal base with central index managing

● communication of polynomials is easily done 
using Java's object serialization capabilities



Solvable polynomial rings

● new relation table implementation
● extend commutative polynomials



Jython

● Python interpreter in Java
● full access to all Java classes and libraries
● some syntactic sugar in jas.py



ToDo

● generics coming in with JDK 1.5
● Cilk algorithms in java.util.concurent
● three (orthogonal) axis:
– parallel and distributed algorithms

– commutative polynomial rings

– solvable polynomial rings



Conclusions (1)

● Not all mathematically ingenious solutions like 
the small integer case can persist in software 
development.

● A growing part of software need no more be 
developed specially for CA systems but can be 
taken from libraries developed elsewhere by 
computer science

● e.g. STL for C++ or java.util



Conclusions (2)

● programming language features needed in CAS
– dynamic memory management with garbage 

collection, 

– object orientation (including modularization) 

– generic data types 

– concurrent and distributed programming 

● are now included in languages like Java (or C#)



Conclusions (3)

● In the beginning of CA systems development 
only a small part was taken from computer 
science (namely FORTRAN).
– 10% computer science in CAS

● Then a bigger part in Modula-2 or C++ based 
systems was employed.
– 30% computer science in CAS

● Today more than the half part (Java) can be used 
from the work of software engineers
– 60% computer science in CAS



Conclusions (4)

● go and use the improvements of computer science 
and systems engineering for implementation of 
A3L algorithms

● But don't forget to observe and adapt to hardware 
developments: 
– memory hierarchy

– multi-core CPUs

– distributed systems



Thank you

● Questions?
● Comments?
● http://krum.rz.uni-mannheim.de/jas
● Thanks to
– Volker Weispfenning

– Thomas Becker, Michael Pesch

– Andreas Dolzmann, Thomas Sturm, Manfred Göbel

– all others

http://krum.rz.uni-mannheim.de/jas

