nL
A Systems Perspective on A3L

Heinz Kredel

University of Mannheim

Algorithmic Algebra and Logic 2005
Passau, 3.-6. April 2005



»

Introduction

Summarize some aspects of the development of
computer algebra systems in the last 25 years.

Focus on Aldes/SAC-2, MAS and some new
developments in Java.

Computer algebra can more and more use
standard software developed in computer science
to reach its goals.

In CA systems theories of Volker Weispfenning
have been implemented to varying degrees.




»
Relation to Volker Weisptenning

e Determine the dimension of a polynomial ideal
by inspection of the head terms of the
polynomials in the Grébner base.

e Constructing software for the representation and
computation of Algebraic Algorithms and Logic

* Covering Aldes/SAC-2, time in Passau using
Modula-2 and today Java.



ALDES / SAC-2

»

Major task was the implementation of Compre-

hensive Grobner Bases in DIP by E]

Gebauer

Distributive Polynomial System (D]

ke Schonfeld

P) with R.

Aldes/SAC-2 developed by G. Collins and R.

L.oos

Algebraic Description Language (Aldes)

translator to FORTRAN

SAC-2 run time system for list processing with

automatic garbage collection

L



CAD

e Aldes/SAC-2 orginated in SAC-1, a pure
FORTRAN implementation with a reference
count garbage collecting list processing system

e Cylindrical algebraic decomposition (CAD) by
G. Collins

e Quantifier elimination for real closed fields

e Provided a comprehensive library of fast and
reliable algebraic algorithms

 integers, polynomials, resultants, factorization,
algebraic numbers, real roots




Grobner bases

* One of the first Buchberger algorithms in
Aldes/SAC-2

* not restricted, no static bounds

e Used for zero-dimensional primary ideal
decomposition

e and real roots of zero-dimensional ideals



Time of micro computers

 up to then mainframe based development
environments

e wanted modern interactive development
environment like Turbo-Pascal

e tried several Pascal compilers

* but no way to implement a suitable list
processing system

 things getting better with Modula-2



Modula-2

development of run time support for a list
processing system with automatic garbage
collection

Boehm: garbage collector in an uncooperative
environment in C

bootstrapping translator to Modula-2 within the

Al

all

des/SAC-2 system

of the existing Aldes algorithms (one

exception) were transformed to Modula-2
called Modula Algebra System (MAS)




Interpreter

Modula-2 procedure parameters
interpreted language similar to Modula-2
release 0.30, November 1989

language extensions as in algebraic specification
languages (ASL)

term rewriting systems, Prolog like resolution
calculus

interfacing to numerical (Modula-2) libraries
(Python in 1990)




rnL
MAS content (1)

implementation of theories of V. Weispfenning;:
real quantifier elimination (Dolzmann)
comprehensive Grobner bases (Schonfeld, Pesch)
universal Grobner bases (Belkahia)

solvable polynomial rings

skew polynomial rings (Pesch)

real root counting using Hermites method
(Lippold)



MAS content (2)

other implemented theories:

permutation invariant polynomials (Gobel)
factorized, optimized Grobner Bases (Pfeil, Rose)
involutive bases (Grosse-Gehling)

syzygies and module Grobner bases (Phillip)

d- and e-Grobner bases (Becker, Mark)




I
nL
Memory caching micro processors

dramatic speed differences between cache and
main memory

concequences for long running computations:

the list elements of algebraic data structures tend
to be scattered randomly throughout main
memory

thus leading to cache misses and CPU stalls at
every tiny step

Other systems replace integer arithmetic with
libraries like Gnu-MP



»

MAS problems (1)

no transparent way of replacing integer arithmetic

in MAS

due to the ingenious and elegant way G. Collins
represented integers

small integers (< 2729 = beta) are represented as

32-bit integers

large integers (>=

beta) are transformed to lists

code full of case d

istinctions 'IF i < beta THEN'

distinction between BETA and SIL, but LIST as
alias of LONGINT

L



nL
MAS problems (2)

e Integer and recursive polynomials are not
implemented as proper datatype (as defined in
computer science)

* zero elements of algebraic structures as integer '0'

e this avoided constructors and eliminated
problems with uniqueness but lost all structural
information



* parall

* parall
processing subsystem using POSIX threads

* paral

le

* pipel

€.

e

»
MAS parallel computing

1 computers (32 — 128 CPUs) in Mannheim

| garbage collector and parallel list

1 version of Buchberger's algorithm

ined version of the polynomial reduction
algorithm

* but no reliable speedup on many processors

e version was not released due to tight integration
with KSR hardware




Problems

1.respect and exploit the memory hierarchy

2.1ind good load balancing and task granularity

3.1ind a portable way of parallel software
development

e for basic building blocks of a system

 for implementation of each algorithm




»

Alternatives

developments of languages of N. Wirth, Modula-
2 and Oberon was not as expected

others used C language for the implementation
- like H. Hong with SACLIB
— W. Kiichlin with PARSAC

others used C++ for algebraic software
- like LiDIA from T. Papanikolaou

— like Singular of H. Schonemann

others turned to commercial systems like Maple,
Mathematica




Java

first use for parallel software development

got confident in the performance of Java
implementations

and object oriented software development
in 2000: Modula-2 to Java translator

first atempt with old style list processing directly
ported to Java

about 5-8 times slower on Trinks6 Grobner base
than MAS



rL
Basic refactoring

 integer arithmetic with Java's Biglnteger class
showed an improvement by a factor of 10-15 for
Java

5o all list processing code had to be abandoned
and native Java data structures should be used

e Polynomials were reimplemented using
java.util. TreeMap

* now polynomials are, as in theory, a map from a
monoid to a coefficient ring

e factor of 8-9 better on Trinks6é Grobner base



»
OO and Polynomial complexity

e Unordered versus ordered polynomials
e LinkedHashMap versus TreeMap (10 x faster)

 sum of a and b, 1(a) = length(a):
e Hash: 2*(1(a)+1(b))
e Tree: 2*1(a)+1(b)+1(b)*log2(1(a+b))
e product of a and b: coefficients: lab = 1(a)*1(b) :
e Hash: plus 2*I(a*b)*1(b)
e Tree: plus 1(a)*1(b)*log2(1(a*b))
e sparse pol: TreeMap better, dense: HashMap better
* sparse 1(a*b) ~ lab, dense 1(a*b) ~ 1(a)[+1(b)]



»

Developments

use of more and more object oriented principles

shared memory and a distributed memory parallel
version for the computation of Grobner bases

solvable polynomial rings

modules over polynomial rings and syzygies
Unit-Tests for most Classes with Junit
Logging with Apache log4;

Python / Jython interpreter frontend

L



»

Parallel Grobner bases

shared memory implementation with Threads
reductions of S-polynomials in parallel
uses a critical pair scheduler as work-queue

scalability is perfect up to 8 CPUs on shared
memory

provided the JVM uses the parallel Garbage
Collector and aggressive memory management

correct JVM parameters essential



»

Distributed Grobner bases

distributed memory implementation using
TCP/IP Sockets and Object serialization

reduction of S-polynomials on distributed
computing nodes

uses the same (central) critical pair scheduler as
in parallel case

distributed hash table for the polynomials in the
ideal base with central index managing

communication of polynomials is easily done
using Java's object serialization capabilities



rL
Solvable polynomial rings

e new relation table implementation

e extend commutative polynomials



Jython

e Python interpreter in Java
e full access to all Java classes and libraries

* some syntactic sugar in jas.py



ToDo

e generics coming in with JDK 1.5
e Cilk algorithms in java.util.concurent

 three (orthogonal) axis:

— parallel and distributed algorithms
— commutative polynomial rings

— solvable polynomial rings



rL
Conclusions (1)

e Not all mathematically ingenious solutions like
the small integer case can persist in software
development.

e A growing part of software need no more be
developed specially for CA systems but can be
taken from libraries developed elsewhere by
computer science

e ¢.g. STL for C++ or java.util



rL
Conclusions (2)

e programming language features needed in CAS

- dynamic memory management with garbage
collection,

— object orientation (including modularization)
— generic data types

— concurrent and distributed programming

e are now included in languages like Java (or c#)



Conclusions (3)

 In the beginning of CA systems development
only a small part was taken from computer

science (namely FORTRAN).

- 10% computer science in CAS

e Then a bigger part in Modula-2 or C++ based
systems was employed.

- 30% computer science in CAS

e Today more than the half part (Java) can be used
from the work of software engineers

- 60% computer science in CAS




rL
Conclusions (4)

e g0 and use the improvements of computer science
and systems engineering for implementation of
A3L algorithms

* But don't forget to observe and adapt to hardware
developments:

— memory hierarchy
— multi-core CPUs

— distributed systems



Thank you

e Questions?
 Comments?
e http://krum.rz.uni-mannheim.de/jas

 Thanks to

- Volker Weispfenning
— Thomas Becker, Michael Pesch
— Andreas Dolzmann, Thomas Sturm, Manfred Gobel

— all others


http://krum.rz.uni-mannheim.de/jas

