
A Systems Perspective on A3L

Heinz Kredel

University of Mannheim, IT-Center, 68131 Mannheim, Germany

Abstract

In this paper we summarize some aspects of the development of computer algebra systems from
the last 25 years. We focus on Aldes/SAC-2, MAS and some new developments in Java. It will
turn out that computer algebra can more and more use standard software developed in computer
science to reach its goals. In this systems theories of Volker Weispfenning have been implemented
to varying degrees.

1 Introduction

It was around 1986 when I came to work with Volker Weispfenning. At that time (with some
experience in Gröbner Bases) I was pretty much sure that the dimension of a polynomial
ideal could be determined by inspection of the head terms of the polynomials in the Gröbner
base but was not able to give a rigorous proof. Together we succeeded to find such a proof
[KW88].

In the following however, I will not focus on the mathematical work with Volker, but on
the perspective of constructing software for the representation and computation of Algebraic
Algorithms and Logic. First I will consider the time when I entered Computer Algebra using
Aldes/SAC-2, my time in Passau using Modula-2 and the last years using Java. Finally we
will draw some conclusions. We will not consider software development style in the days of
ubiquitous Internet and Open Source related topics.

2 Aldes/SAC-2

Besides the implementation of the algorithm to compute the dimension of a polynomial ideal
via the head terms in its Göbner Base, a major task in the end of these days was the imple-
mentation of Volkers theory of Comprehensive Gröbner Bases in DIP by Elke Schönfeld.

The Distributive Polynomial System (DIP) [BGK86] was implemented in Aldes/SAC-
2 [CL82], which consisted of an translator for the Algebraic Description Language (Aldes)
[Loo76] to standard FORTRAN together with a run time system for list processing with auto-
matic garbage collection. The origin of this system was SAC-1, a pure FORTRAN implemen-
tation with a reference count garbage collecting list processing system. Both systems aimed
at an implementation of G. Collins cylindrical algebraic decomposition theory (a somewhat



2 H. Kredel

practical method for the real quantifier elimination problem) and provided its users with a
comprehensive library of fast and reliable algebraic algorithms. On top of these we had im-
plemented one of the first Buchberger algorithms which were not restricted by shortcomings
of the used implementation language or static bounds. The system was also used for the
implementation of zero-dimensional ideal decompositions and real root computations.

With the advent of the Pascal programming language and the first personal computers it
became apparent that one could imagine to implement such a system in a modern interac-
tive development environment like Turbo-Pascal was at this time. We tried on several Pascal
compilers but were not able to implement a suitable list processing system. Surprisingly when
trying with Modula-2 all obstacles could step by step be overcome.

3 Modula-2

With Modula-2 it was possible to implement run time support for a list processing system with
automatic garbage collection as needed. (At the same time Boehm implemented a garbage
collector in an uncooperative environment in C.) By reworking the Aldes to FORTRAN
translator we implemented a bootstrapping translator to Modula-2 within the Aldes/SAC-2
system. In the following years all of the existing Aldes algorithms (with the exception of
one spaghetti code program) were transformed to Modula-2 and built up the Modula Algebra
System (MAS) [KP03]. Using Modula-2s procedure parameters an interpreter for the alge-
braic libraries was developed and an interpreted language similar to Modula-2 was designed.
(This concept was also in the origin of the still successful Python programming language.)
This interpreter was further used to experiment with language extensions seen in algebraic
specification languages (ASL), term rewriting systems, Prolog like resolution calculus and
interfacing to numerical (Modula-2) libraries.

During his time many students implemented Volkers theories on real root counting, real
quantifier elimination, comprehensive and universal Gröbner bases and solvable polynomial
rings as part of their Diploma Thesis. You will hear of all of those theories and implementa-
tions in this conference.

With the advent of modern micro-processors, introducing dramatic speed differences be-
tween cache and main memory, it became apparent that the MAS list processing is no more
suitable for fast performing implementations. During long running computations, the list ele-
ments of algebraic data structures (including integers) tend to be scattered randomly through-
out main memory, thus leading to cache misses and CPU stalls at every tiny step. Other CA
systems facing this problem have been able to replace the implementation of (arbitrary pre-
cision) integers with better memory hierarchy aware libraries like Gnu-MP. However there is
no transparent way of replacing integer arithmetic in MAS with other libraries due to the in-
genious and elegant way G. Collins represented integers in the Aldes/SAC-2 libraries: small
integers (< 229 = beta) are represented as 32-bit integers of the hosting programming lan-
guage and when integers grow larger they are transformed to lists. Thus all code dealing
with arithmetic is full of case distinctions of the form ’IF i < beta THEN’ which would
break if a new data structure for integers would be introduced. Another problem which makes



Systems Perspective 3

replacement of modules hard is the representation of the zero element of nearly all algebraic
data structures by the programming language integer ’0’. On the bottom line there seemed to
be no automizable way of replacing basic implementation modules and we were stuck.

After leaving Passau I had the opportunity of working with parallel computers (KSR
systems with up to 128 processors on virtual shared memory and others) at Mannheim Uni-
versity. In this time MAS was ported and implemented on this parallel computer starting with
a parallel garbage collector for the list processing subsystem. Based on POSIX threads we
designed a parallel version of Buchberger’s algorithm along with a pipelined version of the
polynomial reduction algorithm. However by the very dynamic computational load occurring
in Gröbner base calculations it was not possible to obtain reliable speedup on many proces-
sors. Due to the tight integration with the KSR system this version of MAS was not portable
and was therefore not released. So we ended with a bunch of interesting new problems: re-
specting the memory hierarchy, load balancing and task granularity of algebraic algorithms
and the requirement of some portable way of parallel software development.

4 Java

Since the development the languages of N. Wirth, Modula-2 and Oberon was not as expected,
it was clear that MAS had no future in this respect. Other colleagues favored C style languages
for the implementation of algebraic software like H. Hong with SACLIB [HNSS93] and
W. Küchlin with PARSAC [Küc90]. But they seem to suffer also from the list processing
problems mentioned above. Systems using C++, like LiDIA from T. Papanikolaou, or like
Singular of H. Schönemann, have incorporated Gnu-MP, but seem to have other problems
with the C++ language or the memory management. Some of the colleagues also turned to
commercial systems like Maple, Mathematica and Reduce and reimplemented portions of
their code in them.

In my search for portable ways of parallel software development I became exposed to
the Java programming language. Together with A. Yoshida we drove so far into this subject,
that we could publish a book on parallel programming with Java [KY02]. By the time we
got confident in the performance of Java implementations and object oriented software de-
velopment also seemed to be a must for any new projects. So in 2000 a Modula-2 to Java
translator came in handy and a port of MAS to Java was started. The first version, still using
SAC-2 style list processing directly ported to Java, was about 5-8 times slower on Trinks6
Gröbner base computation than the MAS implementation. But comparing the used integer
arithmetic with Java’s BigInteger class showed an improvement by a factor of 10-15
for Java. This proved that all list processing code has to be abandoned and native Java data
structures should be used where ever possible. Polynomials were now reimplemented using
java.util.TreeMap thus bringing the implementation closer to the theory of polynomi-
als, being a map from a monoid to a coefficient ring. The resulting version is now a factor of
8-9 better on Trinks6 Gröbner base than the MAS implementation on the same machine.

Besides several refactorings to make use of more and more object oriented principles, a
shared memory and a distributed memory parallel version for the computation of Gröbner



4 H. Kredel

bases have been implemented. The parallel GB algorithm (doing polynomial reductions in
parallel) uses a critical pair scheduler as work-queue and the scalability is perfect up to 8
CPUs on shared memory, provided the JVM uses the parallel Garbage Collector and aggres-
sive memory management. The distributed GB algorithm uses the same (central) critical pair
scheduler and a distributed hash table for the polynomials in the ideal base with central index
managing. Communication of polynomials is easily done using Java’s object serialization
capabilities. The software will be available at krum.rz.uni-mannheim.de/jas. Un-
derway is an implementation of solvable polynomial rings and the use of generics coming in
with JDK 1.5.

5 Conclusions

Not all mathematically ingenious solutions like the small integer case can persist in software
development. A growing part of software need no more be developed specially for CA sys-
tems but can be taken from libraries developed elsewhere by computer science (e.g. STL
for C++ or java.util). Required programming language features like dynamic memory
management with garbage collection, object orientation (including modularization) together
with generic data types as well as concurrent and distributed programming are now included
in languages like Java or C#. In the beginning of CA systems development only a small part
was taken from computer science (namely FORTRAN). Then a bigger part (Modula-2, C++)
was employed and today about the half part (Java) can be used from the work of software en-
gineers. The conclusion is to go and use the improvements of computer science and systems
engineering for implementation of A3L algorithms. But don’t forget to observe and adapt to
hardware developments: memory hierarchy, multi-core CPUs and distributed systems.

Acknowledgments

First I heartily thank Volker for the opportunity to work with him and in his group at Passau.
Second I thank all colleagues from Passau, especially Th. Becker and M. Pesch, and the
computer algebra community for fruitful discussions and their support. I apologize for not
mentioning all people and missing references to related work due to the limited space (most
references can be found in the Computer Algebra Handbook [GKW03]).

References

[BGK86] W. Böge, R. Gebauer, and H. Kredel. Some examples for solving systems of
algebraic equations by calculating gröbner bases. J. Symb. Comp., 2/1:83–98,
1986.

[CL82] G. E. Collins and R. G. Loos. ALDES and SAC-2 now available. ACM SIGSAM
Bull., 12(2):19, 1982.



Systems Perspective 5

[GKW03] J. Grabmaier, E. Kaltofen, and V. Weispfenning, editors. Computer Algebra
Handbook. Springer, 2003.

[HNSS93] H. Hong, A. Neubacher, W. Schreiner, and V. Stahl. The design of the SACLIB /
PACLIB kernels. In DISCO’93, LNCS 722. Springer, 1993.

[KP03] H. Kredel and M. Pesch. MAS: The Modula-2 Algebra System, pages 421–428.
in Computer Algebra Handbook, Springer, 2003.

[Küc90] W. Küchlin. PARSAC-2: a parallel SAC-2 based on threads. In AAECC’90,
LNCS 508. Springer, 1990.

[KW88] H. Kredel and V. Weispfenning. Computing dimension and independend set for
polynomial ideals. J. Symb. Comp., 6/2,3:231–247, 1988.

[KY02] H. Kredel and A. Yoshida. Thread- und Netzwerk-Programmierung mit Java.
dpunkt, 2nd edition, 2002.

[Loo76] R. Loos. The algorithm description language ALDES (Report). ACM SIGSAM
Bull., 10(1):15–39, 1976.

Heinz Kredel got his diploma in Mathematics from University of Heidelberg and re-
ceived his doctorate in Mathematics and Computer Science from the University of Passau.
At present he is leading the working group ’Zentrale Systeme’ together with W. Aufsat-
tler at the IT Center of the University of Mannheim. He is working for more than twenty
years in the areas of computer system administration and computer algebra with special
interests in parallel computation and software development.

kredel@rz.uni-mannheim.de krum.rz.uni-mannheim.de/kredel


