
Multivariate
Greatest Common Divisors

in the
Java Computer Algebra System

Heinz Kredel

ADG 2008, Shanghai

2

Automated Deduction in Geometry

● often leads to algebraic subproblems
● in polynomial rings over some coefficient ring
● resultants, greatest common divisors
● Gröbner Bases

– ideal sum – intersection of geometric varieties

– ideal intersection – union of geometric varieties

– Comprehensive Gröbner Bases for parametric
problems

● implementations by object-oriented software

Overview

● Introduction to JAS

– polynomial rings and polynomials

– example with regular ring coefficients
● Greatest Common Divisors (GCD)

– class layout

– implementations

– performance
● Evaluation
● Conclusions

4

Java Algebra System (JAS)

● object oriented design of a computer algebra system

= software collection for symbolic (non-numeric)
computations

● type safe through Java generic types
● thread safe, ready for multi-core CPUs
● use dynamic memory system with GC
● 64-bit ready
● jython (Java Python) interactive scripting front end

Implementation overview

● 170+ classes and interfaces
● plus 80+ JUnit test cases
● uses JDK 1.6 with generic types

● Javadoc API documentation
● logging with Apache Log4j
● build tool is Apache Ant
● revision control with Subversion

● jython (Java Python) scripts
● support for Sage like polynomial expressions

● open source, license is GPL or LGPL

Polynomial functionality

Polynomials over regular rings

rr = ResidueRing[BigRational(x0, x1, x2) IGRLEX
 ((x0^2 + 295/336),
 (x2 - 350/1593 x1 - 1100/2301))]
L = [
 {0=x1 - 280/93 , 2=x0 * x1 - 33/23 } a^2 * b^3
 + {0=122500/2537649 x1^3 + 770000/3665493 x1^2
 + 14460385/47651409 x1 + 14630/89739 ,
 3=350/1593 x1 + 23/6 x0 + 1100/2301 } ,
 ...]

example:
List<GenPolynomial<Product<Residue<BigRational>>>>

R=ℚ[x1 , , x n]

S '=∏℘∈spec R
R /℘[y1 , , yr]

L⊂S=ℚ[x0 , x 1 , x 2]/ideal F 4 [a , b]

a von Neuman regular ring

Regular ring construction
 1 List<GenPolynomial<Product<Residue<BigRational>>>> L
 = new ArrayList<GenPolynomial<Product<Residue<BigRational>>>>();

 2 BigRational bf = new BigRational(1);
 3 GenPolynomialRing<BigRational> pfac
 = new GenPolynomialRing<BigRational>(bf,3);
 4 List<GenPolynomial<BigRational>> F
 = new ArrayList<GenPolynomial<BigRational>>();
 5 GenPolynomial<BigRational> pp = null;
 6 for (int i = 0; i < 2; i++) {
 7 pp = pfac.random(5,4,3,0.4f);
 8 F.add(pp);
 9 }
10 Ideal<BigRational> id = new Ideal<BigRational>(pfac,F);
11 id.doGB();
12 ResidueRing<BigRational> rr = new ResidueRing<BigRational>(id);
13 System.out.println("rr = " + rr);
14 ProductRing<Residue<BigRational>> pr
 = new ProductRing<Residue<BigRational>>(rr,4);

9

Polynomial construction and GB
 1 List<GenPolynomial<Product<Residue<BigRational>>>> L = ...

15 String[] vars = new String[] { "a", "b" };
16 GenPolynomialRing<Product<Residue<BigRational>>> fac
 = new GenPolynomialRing<Product<Residue<BigRational>>>(pr,2,vars);
17 GenPolynomial<Product<Residue<BigRational>>> p;
18 for (int i = 0; i < 3; i++) {
19 p = fac.random(2,4,4,0.4f);
20 L.add(p);
21 }
22 System.out.println("L = " + L);

23 GroebnerBase<Product<Residue<BigRational>>> bb
 = new RGroebnerBasePseudoSeq<Product<Residue<BigRational>>>(pr);

24 List<GenPolynomial<Product<Residue<BigRational>>>> G = bb.GB(L);
25 System.out.println("G = " + G);

take primitive parts --> gcd

Overview

● Introduction to JAS

– polynomial rings and polynomials

– example with regular ring coefficients
● Greatest Common Divisors (GCD)

– class layout

– implementations

– performance
● Evaluation
● Conclusions

Greatest common divisors
UFD euclidsGCD(UFD a, UFD b) {
 while (b != 0) {
 // let a = q b + r; // remainder
 // let ldcf(b)^e a = q b + r; // pseudo remainder
 a = b;
 b = r; // simplify remainder
 }
 return a;
}

mPol gcd(mPol a, mPol b) {
 a1 = content(a); // gcd of coefficients
 b1 = content(b); // or recursion
 c1 = gcd(a1, b1); // recursion
 a2 = a / a1; // primitive part
 b2 = b / b1;
 c2 = euclidsGCD(a2, b2);
 return c1 * c2;
}

GCD class layout

1.where to place the algorithms in the library ?

2.which interfaces to implement ?

3.which recursive polynomial methods to use ?

● place gcd in GenPolynomial

● like Axiom
✔ place gcd in separate package edu.jas.ufd

● like other libraries
● gcd 3200 loc, polynomial 1200 loc

Interface GcdRingElem

● extend RingElem by defining gcd() and egcd()

● let GenGcdPolynomial extend GenPolynomial

– not possible by type system
● let GenPolynomial implement GcdRingElem

– must change nearly all classes (100+ restrictions)
✔ final solution

– RingElem defines gcd() and egcd()

– GcdRingElem (empty) marker interface

– only 10 classes to change

Recursive methods

● recursive type RingElem<C extends RingElem<C>>

● so polynomials can have polynomials as coefficients
– GenPolynomial<GenPolynomial<BigRational>>

● leads to code duplication due to type erasure
– GenPolynomial<C> gcd(GenPolynomial<C> P, S)

– GenPolynomial<C> baseGcd(GenPolynomial<C> P,S)

– GenPolynomial<GenPolynomial<C>>
recursiveUnivariateGcd(GenPolynomial<GenPolyn
omial<C>> P, S)

– and also required recursiveGcd(.,.)

Conversion of representation

● static conversion methods in class PolyUtil

● convert to recursive representation
– GenPolynomial<GenPolynomial<C>> recursive(
GenPolynomialRing<GenPolynomial<C>> rf,
GenPolynomial<C> A)

● convert to distributive representation
– GenPolynomial<C>
distribute(GenPolynomialRing<C> dfac,
 GenPolynomial<GenPolynomial<C>> B)

● must provide (and construct) result polynomial ring
● performance of many conversions ?

GCD implementations

● Polynomial remainder sequences (PRS)

– primitive PRS

– simple / monic PRS

– sub-resultant PRS
● modular methods

– modular coefficients, Chinese remaindering (CR)

– recursion by modular evaluation and CR

– modular coefficients, Hensel lifting wrt.

– recursion by modular evaluation and Hensel lifting

pe

GCD UML diagram (1)

GCD UML diagram (2)

Polynomial remainder sequences

● Euclids algorithm applied to polynomials lead to

– intermediate expression swell / explosion

– result can be small nevertheless, e.g. one
● avoid this by simplifying the successive remainders

– take primitive part: primitive PRS

– divide by computed factor: sub-resultant PRS

– make monic if field: monic PRS
● implementations work for all rings with a gcd

– for example Product<Residue<BigRational>>

Modular CR method overview

1.Map the coefficients of the polynomials modulo
some prime number p. If the mapping is not ‘good’,
choose a new prime and continue with step 1.

2.Compute the gcd over the modulo p coefficient ring.
If the gcd is 1, also the ‘real’ gcd is one, so return 1.

3.From gcds modulo different primes reconstruct an
approximation of the gcd using Chinese
remaindering. If the approximation is ‘correct’, then
return it, otherwise, choose a new prime and
continue with step 1.

Modular methods

● algorithm variants

– modular on base coefficients with Chinese
remainder reconstruction
● monic PRS on multivariate polynomials
● modulo prime polynomials to remove variables until

univariate, polynomial version of Chinese remainder
reconstruction

– modular on base coefficients with Hensel lifting
with respect to
● monic PRS on multivariate polynomials
● modulo prime polynomials to remove variables until

univariate, polynomial version of Hensel lifting

pe future work

22

Performance: PRS - modular

a,b,c random
polynomials

d=gcd(ac,bc)
c|d ?

GCD factory

● all gcd variants have pros and cons

– computing time differ in a wide range

– coefficient rings require specific treatment
● solve by object-oriented factory design pattern: a

factory class creates and provides a suitable
implementation via different methods
– GreatestCommonDivisor<C>
GCDFactory.<C>getImplementation(cfac);

– type C triggers selection at compile time

– coefficient factory cfac triggers selection at runtime

GCD factory (cont.)

● four versions of getImplementation()

– BigInteger, ModInteger and BigRational

– and a version for undetermined type parameter
● last version tries to determine concrete coefficient

at run-time

– try to be as specific as possible for coefficients
● ModInteger:

– if modulus is prime then optimize for field

– otherwise use general version

GCD proxy (1)

GCD proxy (2)

● different performance of algorithms
● mostly modular methods are faster
● but some times (sub-resultant) PRS faster

● hard to predict run-time of algorithm for given inputs

– (worst case) complexity measured in:
● the size of the coefficients,
● the degrees of the polynomials, and
● the number of variables,
● the density or sparsity of polynomials,
● and the density of the exponents

GCD proxy (3)

● improvement by speculative parallelism
● execute two (or more) algorithms in parallel
● most computers now have two or more CPUs
● use java.uitl.concurrent.ExecutorService

● provides method invokeAny()

– executes several methods in parallel

– when one finishes the others are interrupted
● interrupt checked in polynomial creation (only)
● PreemptingException exception aborts execution

GCD proxy (4)
final GreatestCommonDivisorAbstract<C> e1,e2;
protected ExecutorService pool;
 // set in constructor
List<Callable<GenPolynomial<C>>> cs = ...init..;
cs.add(
 new Callable<GenPolynomial<C>>() {
 public GenPolynomial<C> call() {
 return e1.gcd(P,S);
 }
 }
);
cs.add(... e2.gcd(P,S); ...);
GenPolynomial<C> g = pool.invokeAny(cs);

 if (Thread.currentThread().isInterrupted()) {
 throw new PreemptingException();
 }

in polynomial
constructor:

Parallelization

● thread safety from the beginning

– explicit synchronization where required

– immutable algebraic objects to avoid
synchronization

● utility classes now from java.util.concurrent

Performance: proxy

single CPU, 32-bit, 1.6 GHz

Application performance

● polynomial arithmetic performance
● gcd performance
● application performance: Gröbner bases
● computing time in milliseconds on

● AMD 1.6 GHz 32-bit single CPU, Java 6 (JDK 1.6)
● AMD Opteron 2.6 GHz 64-bit 16 CPUs, JDK 1.5

● differences for
● client VM: fast to result
● server VM: faster for long runs, just-in-time compiler

● different times after warm-up

Polynomial performance

● performance of coefficient arithmetic
● java.math.BigInteger in pure Java

● sorted map implementation
● from Java collection classes

● exponent vector implementation
● using long[], also int[], short[] or byte[]
● want ExpVector<C> but not with elementary types
● can be selected at compile time

● JAS comparable to general purpose CA systems
but slower than specialized systems

Performance: Gröbner base (1)

counts for winning
algorithm

single CPU, 32-bit, 1.6 GHz

Performance: Gröbner base (2)

16 CPUs, 64-bit, 2.6 GHz

Recursive polynomials

● new type RecPolynomial

– univariate polynomials with polynomial coefficients

– must allow RingElem as (base) coefficients

– must itself implement the RingElem interface
● mapping between terms and coefficients

– no ExpVector class required

– as Java array, dense representation
✔ as SortedMap, TreeMap from java.util

– can store polynomials and coefficients as RingElem

future work

Recursive polynomials (cont.)

● How to handle recursion base or recursion?

● case distinction on the number of variables nvar

● nvar == 0: obtain the polynomial as coefficient ?

– better exclude this case
● nvar == 1: use collection of base coefficients

– Collection<C> A = val.getValues();

● nvar > 1: use collection of polynomial coefficients
– Collection<C> A = val.getValues();

– RecPolynomial<C> a = (RecPolynomial<C>) A.get(0);

future work

Overview

● Introduction to JAS

– polynomial rings and polynomials

– example with regular ring coefficients
● Greatest Common Divisors (GCD)

– class layout

– implementations

– performance
● Evaluation
● Conclusions

38

Evaluation (1)

● Distributed representation with conversions to
recursive representation on demand.

– How expensive are the many conversions
between distributed and recursive
representation?

– Manipulations of ring factories to setup the
correct polynomial ring for recursions.

– Compared to MAS (based on Aldes/SAC-2 with
elaborated recursive polynomial representation)
the conversions seem not to be too expensive.

39

Evaluation (2)
● ModInteger for polynomial coefficients is implemented

using BigInteger.

– Systems like Singular, MAS and Aldes/SAC-2, use
ints for modular integer coefficients.

– This can have great influence on the computing time.

– However, JAS is with this choice able to perform
computations with arbitrary long modular integers.

– The right choice of prime size for modular integers is
not yet determined.

– We experimented with primes of size less than
Long.maxValue and less than Integer.maxValue.

40

Evaluation (3)

● The bounds used to stop iteration over primes, are
not yet state of the art.

– We currently use the bounds found in [Aldes
SAC-2]. The bounds derived in [Cohen] and
[Geddes] are not yet incorporated.

– However, we try to detect factors by exact division,
early.

● The univariate polynomials and methods are not
separate implementations tuned for this case.

– We simply use the multivariate polynomials and
methods with only one variable.

Evaluation (4)

● There are no methods for extended gcds and half
extended gcds for multivariate polynomials yet.

– Better algorithms for the gcd computation of lists
of polynomials are not yet implemented.

● For generic parametric polynomials, such as
GenPolynomial<GenPolynomial<C>> the gcd()
method can not be used.

– Since the coefficients are itself polynomials and
do not implement a multivariate polynomial gcd.

– In this case the method recursiveGcd() must
be called explicitly.

Evaluation (5)

● Design of a interface GreatestCommonDivisor
with only the most useful methods.

– gcd(), lcm(), primitivePart(),
content(), squarefreePart(),
squarefreeFactors(), resultant().

● The generic algorithms work for all implemented
coefficients from (commutative) fields.

● The implementations can be used in very general
settings, as exemplified in the regular ring example.

Evaluation (6)

● The class GreatestCommonDivisorAbstract
implements the full set of methods, as specified by
the interface.

– Only two methods baseGcd and
recursiveUnivariateGcd must be implemented
for the different PRS algorithms.

– The modular algorithms overwrite the gcd method
● The abstract class should eventually be refactored to

provide an abstract class for PRS algorithms and an
abstract class for the modular algorithms.

Evaluation (7)

● The gcd factory allows non-experts of computer
algebra to choose the right algorithm for their problem.

– First selection by coefficient type at compile time
and more precisely by the field property at run-time.

– In case of BigInteger and ModInteger coefficients
the modular algorithms are selected.

● Different approach taken in [Musser] and [Schupp] to
provide programming language constructs to specify
the requirements for the implementations.

– Constructs direct the selection of algorithms, some
at compile time and some at run-time.

Evaluation (8)

● Proxy class with gcd interface provides effective
selection of the fastest algorithms at run-time.

– Achieved at the cost of a parallel execution of
two different gcd algorithms.

– This could waste maximally the time for the
computation of the fastest algorithm.

– If two CPUs are working on the problem, the
work of one of them is discarded.

– In case there is only one CPU, the computing
time is two times that of the fastest algorithm.

Conclusions (1)

● Design and implementation of a first part of
‘multiplicative ideal theory’: the computation of
multivariate polynomial greatest common divisors.

● Not yet covered is the complete factorization,

● GCDFactory for the selection of one of the several
implementations for non experts.

● Selection is based on the coefficient type and if the
coefficient ring is a field.

● A parallel GCDProxy runs different implementations
in parallel and takes the result from the first
finishing method.

Conclusions (2)

● The new package is also type-safe designed with
Java’s generic types.

● We exploited the gcd package in the Quotient,
Residue and Product classes.

● Provides a new coefficient ring of rational functions for
the polynomials and also new coefficient rings of
residue class rings and product rings.

– With an efficient gcd implementation we are now
able to compute Gröbner bases over those
coefficient rings.

Conclusions (3)

● For small Gröbner base computations the
performance is equal to MAS and for bigger
examples the computing time with JAS is better by
a factor of two or three.

● Java improvements leverage the performance and
capabilities of JAS.

● Future topics to explore, include the complete
factorization of polynomials and the investigation of
a new recursive polynomial representation.

49

Thank you

● Questions or Comments?
● http://krum.rz.uni-mannheim.de/jas
● Thanks to

– Raphael Jolly

– Thomas Becker, Samuel Kredel

– Markus Aleksy, Hans-Günther Kruse

– Adrian Schneider

– the referees

– and other colleagues

http://krum.rz.uni-mannheim.de/jas

