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Automated Deduction in Geometry

● often leads to algebraic subproblems
● in polynomial rings over some coefficient ring
● resultants, greatest common divisors
● Gröbner Bases

– ideal sum – intersection of geometric varieties

– ideal intersection – union of geometric varieties

– Comprehensive Gröbner Bases for parametric 
problems

● implementations by object-oriented software



Overview

● Introduction to JAS

– polynomial rings and polynomials

– example with regular ring coefficients
● Greatest Common Divisors (GCD)

– class layout

– implementations 

– performance
● Evaluation
● Conclusions
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Java Algebra System (JAS)

● object oriented design of a computer algebra system

= software collection for symbolic (non-numeric) 
computations

● type safe through Java generic types
● thread safe, ready for multi-core CPUs
● use dynamic memory system with GC
● 64-bit ready
● jython (Java Python) interactive scripting front end



Implementation overview

● 170+ classes and interfaces
● plus 80+ JUnit test cases
● uses JDK 1.6 with generic types

● Javadoc API documentation
● logging with Apache Log4j
● build tool is Apache Ant
● revision control with Subversion

● jython (Java Python) scripts 
● support for Sage like polynomial expressions

● open source, license is GPL or LGPL



Polynomial functionality



Polynomials over regular rings

rr = ResidueRing[ BigRational( x0, x1, x2 ) IGRLEX 
     ( ( x0^2 + 295/336  ), 
     ( x2 - 350/1593 x1 - 1100/2301 ) ) ]
L = [ 
     {0=x1 - 280/93 , 2=x0 * x1 - 33/23 } a^2 * b^3 
   + {0=122500/2537649 x1^3 + 770000/3665493 x1^2 
       + 14460385/47651409 x1 + 14630/89739 , 
      3=350/1593 x1 + 23/6 x0 + 1100/2301 } , 
    ... ]

example:
List<GenPolynomial<Product<Residue<BigRational>>>> 

R=ℚ[ x1 , , x n]

S '=∏℘∈spec R
R /℘[ y1 , , yr ]

L⊂S=ℚ[ x0 , x 1 , x 2]/ideal F 4 [a , b ]

a von Neuman regular ring



Regular ring construction
 1 List<GenPolynomial<Product<Residue<BigRational>>>> L
    = new ArrayList<GenPolynomial<Product<Residue<BigRational>>>>();

 2 BigRational bf = new BigRational(1);
 3 GenPolynomialRing<BigRational> pfac
    = new GenPolynomialRing<BigRational>(bf,3);
 4 List<GenPolynomial<BigRational>> F
    = new ArrayList<GenPolynomial<BigRational>>();
 5 GenPolynomial<BigRational> pp = null;
 6 for ( int i = 0; i < 2; i++) {
 7     pp = pfac.random(5,4,3,0.4f);
 8     F.add(pp);
 9 }
10 Ideal<BigRational> id = new Ideal<BigRational>(pfac,F);
11 id.doGB();
12 ResidueRing<BigRational> rr = new ResidueRing<BigRational>(id);
13 System.out.println("rr = " + rr);
14 ProductRing<Residue<BigRational>> pr
    = new ProductRing<Residue<BigRational>>(rr,4);
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Polynomial construction and GB
 1 List<GenPolynomial<Product<Residue<BigRational>>>> L = ...

15 String[] vars = new String[] { "a", "b" };
16 GenPolynomialRing<Product<Residue<BigRational>>> fac
    = new GenPolynomialRing<Product<Residue<BigRational>>>(pr,2,vars);
17 GenPolynomial<Product<Residue<BigRational>>> p;
18 for ( int i = 0; i < 3; i++) {
19     p = fac.random(2,4,4,0.4f);
20     L.add(p);
21 }
22 System.out.println("L = " + L);

23 GroebnerBase<Product<Residue<BigRational>>> bb
    = new RGroebnerBasePseudoSeq<Product<Residue<BigRational>>>(pr);

24 List<GenPolynomial<Product<Residue<BigRational>>>> G = bb.GB(L);
25 System.out.println("G = " + G);

take primitive parts --> gcd
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Greatest common divisors
UFD euclidsGCD( UFD a, UFD b ) { 
    while ( b != 0 ) { 
          // let a = q b + r;           // remainder
          // let ldcf(b)^e a = q b + r; // pseudo remainder
          a = b;
          b = r; // simplify remainder
    }
    return a; 
}

mPol gcd( mPol a, mPol b ) { 
     a1 = content(a);    // gcd of coefficients
     b1 = content(b);    // or recursion
     c1 = gcd( a1, b1 ); // recursion
     a2 = a / a1;        // primitive part
     b2 = b / b1; 
     c2 = euclidsGCD( a2, b2 );
     return c1 * c2; 
}



GCD class layout

1.where to place the algorithms in the library ?

2.which interfaces to implement ?

3.which recursive polynomial methods to use ?

● place gcd in GenPolynomial

● like Axiom
✔ place gcd in separate package edu.jas.ufd

● like other libraries
● gcd 3200 loc, polynomial 1200 loc



Interface GcdRingElem

● extend RingElem by defining gcd() and egcd()

● let GenGcdPolynomial extend GenPolynomial

– not possible by type system
● let GenPolynomial implement GcdRingElem

– must change nearly all classes (100+ restrictions)
✔ final solution

– RingElem defines gcd() and egcd()

– GcdRingElem (empty) marker interface

– only 10 classes to change



Recursive methods

● recursive type RingElem<C extends RingElem<C>>

● so polynomials can have polynomials as coefficients
– GenPolynomial<GenPolynomial<BigRational>>

● leads to code duplication due to type erasure
– GenPolynomial<C> gcd(GenPolynomial<C> P, S)

– GenPolynomial<C> baseGcd(GenPolynomial<C> P,S)

– GenPolynomial<GenPolynomial<C>> 
recursiveUnivariateGcd( GenPolynomial<GenPolyn
omial<C>> P, S )

– and also required recursiveGcd(.,.)



Conversion of representation

● static conversion methods in class PolyUtil

● convert to recursive representation
– GenPolynomial<GenPolynomial<C>> recursive( 
GenPolynomialRing<GenPolynomial<C>> rf, 
GenPolynomial<C> A )

● convert to distributive representation
– GenPolynomial<C> 
distribute( GenPolynomialRing<C> dfac,     
      GenPolynomial<GenPolynomial<C>> B)

● must provide (and construct) result polynomial ring
● performance of many conversions ?



GCD implementations

● Polynomial remainder sequences (PRS)

– primitive PRS

– simple / monic PRS

– sub-resultant PRS
● modular methods

– modular coefficients, Chinese remaindering (CR)

– recursion by modular evaluation and CR

– modular coefficients, Hensel lifting wrt. 

– recursion by modular evaluation and Hensel lifting

pe



GCD UML diagram (1)



GCD UML diagram (2)



Polynomial remainder sequences

● Euclids algorithm applied to polynomials lead to 

– intermediate expression swell / explosion

– result can be small nevertheless, e.g. one
● avoid this by simplifying the successive remainders

– take primitive part: primitive PRS

– divide by computed factor: sub-resultant PRS

– make monic if field: monic PRS
● implementations work for all rings with a gcd

– for example Product<Residue<BigRational>>



Modular CR method overview

1.Map the coefficients of the polynomials modulo 
some prime number p. If the mapping is not ‘good’, 
choose a new prime and continue with step 1.

2.Compute the gcd over the modulo p coefficient ring. 
If the gcd is 1, also the ‘real’ gcd is one, so return 1.

3.From gcds modulo different primes reconstruct an 
approximation of the gcd using Chinese 
remaindering. If the approximation is ‘correct’, then 
return it, otherwise, choose a new prime and 
continue with step 1.



Modular methods

● algorithm variants

– modular on base coefficients with Chinese 
remainder reconstruction
● monic PRS on multivariate polynomials
● modulo prime polynomials to remove variables until 

univariate, polynomial version of Chinese remainder 
reconstruction

– modular on base coefficients with Hensel lifting 
with respect to
● monic PRS on multivariate polynomials
● modulo prime polynomials to remove variables until 

univariate, polynomial version of Hensel lifting

pe future work
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Performance: PRS - modular

a,b,c random
polynomials

d=gcd(ac,bc)
c|d ?



GCD factory

● all gcd variants have pros and cons

– computing time differ in a wide range

– coefficient rings require specific treatment
● solve by object-oriented factory design pattern: a 

factory class creates and provides a suitable 
implementation via different methods
– GreatestCommonDivisor<C>  
GCDFactory.<C>getImplementation( cfac );

– type C triggers selection at compile time

– coefficient factory cfac triggers selection at runtime



GCD factory (cont.)

● four versions of getImplementation()

– BigInteger, ModInteger and BigRational

– and a version for undetermined type parameter
● last version tries to determine concrete coefficient 

at run-time

– try to be as specific as possible for coefficients
● ModInteger: 

– if modulus is prime then optimize for field

– otherwise use general version



GCD proxy (1)



GCD proxy (2)

● different performance of algorithms
● mostly modular methods are faster
● but some times (sub-resultant) PRS faster

● hard to predict run-time of algorithm for given inputs

– (worst case) complexity measured in: 
● the size of the coefficients,
● the degrees of the polynomials, and
● the number of variables,
● the density or sparsity of polynomials,
● and the density of the exponents



GCD proxy (3)

● improvement by speculative parallelism
● execute two (or more) algorithms in parallel
● most computers now have two or more CPUs
● use java.uitl.concurrent.ExecutorService 

● provides method invokeAny()

– executes several methods in parallel

– when one finishes the others are interrupted
● interrupt checked in polynomial creation (only)
● PreemptingException exception aborts execution 



GCD proxy (4)
final GreatestCommonDivisorAbstract<C> e1,e2;
protected ExecutorService pool; 
          // set in constructor
List<Callable<GenPolynomial<C>>> cs = ...init..;
cs.add(
   new Callable<GenPolynomial<C>>() {
        public GenPolynomial<C> call() {
               return e1.gcd(P,S);
        }
   }
);
cs.add( ... e2.gcd(P,S); ... );
GenPolynomial<C> g = pool.invokeAny( cs );

 if ( Thread.currentThread().isInterrupted() ) {
        throw new PreemptingException();
 }

in polynomial
constructor:



Parallelization

● thread safety from the beginning

– explicit synchronization where required

– immutable algebraic objects to avoid 
synchronization

● utility classes now from java.util.concurrent



Performance: proxy

single CPU, 32-bit, 1.6 GHz



Application performance

● polynomial arithmetic performance
● gcd performance
● application performance: Gröbner bases
● computing time in milliseconds on 

● AMD 1.6 GHz 32-bit single CPU, Java 6 (JDK 1.6) 
● AMD Opteron 2.6 GHz 64-bit 16 CPUs, JDK 1.5

● differences for 
● client VM: fast to result
● server VM: faster for long runs, just-in-time compiler

● different times after warm-up



Polynomial performance

● performance of coefficient arithmetic
● java.math.BigInteger in pure Java

● sorted map implementation
● from Java collection classes 

● exponent vector implementation
● using long[], also int[], short[] or byte[]
● want ExpVector<C> but not with elementary types
● can be selected at compile time

● JAS comparable to general purpose CA systems 
but slower than specialized systems



Performance: Gröbner base (1)

counts for winning 
algorithm

single CPU, 32-bit, 1.6 GHz



Performance: Gröbner base (2)

16 CPUs, 64-bit, 2.6 GHz



Recursive polynomials

● new type RecPolynomial 

– univariate polynomials with polynomial coefficients

– must allow RingElem as (base) coefficients

– must itself implement the RingElem interface
● mapping between terms and coefficients

– no ExpVector class required

– as Java array, dense representation
✔ as SortedMap, TreeMap from java.util

– can store polynomials and coefficients as RingElem

future work



Recursive polynomials (cont.)

● How to handle recursion base or recursion?

● case distinction on the number of variables nvar 

● nvar == 0: obtain the polynomial as coefficient ?

– better exclude this case
● nvar == 1: use collection of base coefficients

– Collection<C> A = val.getValues();

● nvar > 1: use collection of polynomial coefficients
– Collection<C> A = val.getValues(); 

– RecPolynomial<C> a = (RecPolynomial<C>) A.get(0);

future work
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Evaluation (1)

● Distributed representation with conversions to 
recursive representation on demand.

– How expensive are the many conversions 
between distributed and recursive 
representation? 

– Manipulations of ring factories to setup the 
correct polynomial ring for recursions. 

– Compared to MAS (based on Aldes/SAC-2 with 
elaborated recursive polynomial representation) 
the conversions seem not to be too expensive.
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Evaluation (2)
● ModInteger for polynomial coefficients is implemented 

using BigInteger. 

– Systems like Singular, MAS and Aldes/SAC-2, use 
ints for modular integer coefficients. 

– This can have great influence on the computing time. 

– However, JAS is with this choice able to perform 
computations with arbitrary long modular integers. 

– The right choice of prime size for modular integers is 
not yet determined. 

– We experimented with primes of size less than 
Long.maxValue and less than Integer.maxValue.
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Evaluation (3)

● The bounds used to stop iteration over primes, are 
not yet state of the art.

– We currently use the bounds found in [Aldes 
SAC-2]. The bounds derived in [Cohen] and 
[Geddes] are not yet incorporated. 

– However, we try to detect factors by exact division, 
early.

● The univariate polynomials and methods are not 
separate implementations tuned for this case. 

– We simply use the multivariate polynomials and 
methods with only one variable.



Evaluation (4)

● There are no methods for extended gcds and half 
extended gcds for multivariate polynomials yet. 

– Better algorithms for the gcd computation of lists 
of polynomials are not yet implemented.

● For generic parametric polynomials, such as 
GenPolynomial<GenPolynomial<C>> the gcd() 
method can not be used. 

– Since the coefficients are itself polynomials and 
do not implement a multivariate polynomial gcd. 

– In this case the method recursiveGcd() must 
be called explicitly.



Evaluation (5)

● Design of a interface GreatestCommonDivisor 
with only the most useful methods. 

– gcd(), lcm(), primitivePart(), 
content(), squarefreePart(), 
squarefreeFactors(), resultant().

● The generic algorithms work for all implemented 
coefficients from (commutative) fields. 

● The implementations can be used in very general 
settings, as exemplified in the regular ring example.



Evaluation (6)

● The class GreatestCommonDivisorAbstract 
implements the full set of methods, as specified by 
the interface. 

– Only two methods baseGcd and 
recursiveUnivariateGcd must be implemented 
for the different PRS algorithms.

– The modular algorithms overwrite the gcd method
● The abstract class should eventually be refactored to 

provide an abstract class for PRS algorithms and an 
abstract class for the modular algorithms.



Evaluation (7)

● The gcd factory allows non-experts of computer 
algebra to choose the right algorithm for their problem. 

– First selection by coefficient type at compile time 
and more precisely by the field property at run-time.

– In case of BigInteger and ModInteger coefficients 
the modular algorithms are selected. 

● Different approach taken in [Musser] and [Schupp] to 
provide programming language constructs to specify 
the requirements for the implementations.

– Constructs direct the selection of algorithms, some 
at compile time and some at run-time.



Evaluation (8)

● Proxy class with gcd interface provides effective 
selection of the fastest algorithms at run-time. 

– Achieved at the cost of a parallel execution of 
two different gcd algorithms. 

– This could waste maximally the time for the 
computation of the fastest algorithm. 

– If two CPUs are working on the problem, the 
work of one of them is discarded. 

– In case there is only one CPU, the computing 
time is two times that of the fastest algorithm.



Conclusions (1)

● Design and implementation of a first part of 
‘multiplicative ideal theory’: the computation of 
multivariate polynomial greatest common divisors.

● Not yet covered is the complete factorization,

● GCDFactory for the selection of one of the several 
implementations for non experts. 

● Selection is based on the coefficient type and if the 
coefficient ring is a field. 

● A parallel GCDProxy runs different implementations 
in parallel and takes the result from the first 
finishing method. 



Conclusions (2)

● The new package is also type-safe designed with 
Java’s generic types. 

● We exploited the gcd package in the Quotient, 
Residue and Product classes. 

● Provides a new coefficient ring of rational functions for 
the polynomials and also new coefficient rings of 
residue class rings and product rings. 

– With an efficient gcd implementation we are now 
able to compute Gröbner bases over those 
coefficient rings. 



Conclusions (3)

● For small Gröbner base computations the 
performance is equal to MAS and for bigger 
examples the computing time with JAS is better by 
a factor of two or three.

● Java improvements leverage the performance and 
capabilities of JAS.

● Future topics to explore, include the complete 
factorization of polynomials and the investigation of 
a new recursive polynomial representation.
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Thank you

● Questions or Comments?
● http://krum.rz.uni-mannheim.de/jas
● Thanks to

– Raphael Jolly

– Thomas Becker, Samuel Kredel

– Markus Aleksy, Hans-Günther Kruse

– Adrian Schneider

– the referees

– and other colleagues

http://krum.rz.uni-mannheim.de/jas

