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Introduction

● object oriented design of a computer algebra 
system

= software collection for symbolic (non-numeric) 
computations

● type safe through Java generic types
● thread safe, ready for multicore CPUs
● dynamic memory system with GC
● 64-bit ready
● jython (Java Python) front end
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Overview

● Introduction
● Example
● Types introduction
● Evaluation
● Conclusions



Chebychev polynomials

first 10 polynomials:

T[0] = 1 
T[1] = x
T[2] = 2 x^2 - 1 
T[3] = 4 x^3 - 3 x
T[4] = 8 x^4 - 8 x^2 + 1 
T[5] = 16 x^5 - 20 x^3 + 5 x
T[6] = 32 x^6 - 48 x^4 + 18 x^2 - 1 
T[7] = 64 x^7 - 112 x^5 + 56 x^3 - 7 x
T[8] = 128 x^8 - 256 x^6 + 160 x^4 - 32 x^2 + 1 
T[9] = 256 x^9 - 576 x^7 + 432 x^5 - 120 x^3 + 9 x

defined by recursion:

T[0] = 1 
T[1] = x
T[n] = 2 x T[n-1] - T[n-2]



Chebychev polynomial 
computation

 1.  int m = 10;
 2.  BigInteger fac = new BigInteger();
 3.  String[] var   = new String[]{ "x" };
 4.  GenPolynomialRing<BigInteger> ring
 5.                 = new GenPolynomialRing<BigInteger>(fac,1,var);
 6.  List<GenPolynomial<BigInteger>> T 
 7.                 = new ArrayList<GenPolynomial<BigInteger>>(m);
 8.  GenPolynomial<BigInteger> t, one, x, x2;
 9.  one = ring.getONE();
10.  x   = ring.univariate(0); // polynomial in variable 0
11.  x2  = ring.parse("2 x");
12.  T.add( one );    // T[0]
13.  T.add( x );      // T[1] 
14.  for ( int n = 2; n < m; n++ ) {
15.      t = x2.multiply( T.get(n-1) ).subtract( T.get(n-2) );
16.      T.add( t );   // T[n]
17.  }
18.  for ( int n = 0; n < m; n++ ) {
19.      System.out.println("T["+n+"] = " + T.get(n) );
20.  }
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Type structure
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Polynomial types



Polynomial functionality



Implementation

● 140 classes and interfaces
● plus 70 JUnit test cases
● JDK 1.5 with generic types
● javadoc API documentation
● logging with Apache Log4j
● build tool is Apache Ant
● revision control with subversion
● some jython (Java Python) scripts
● open source, license is GPL or LGPL
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Interfaces as types
● CAS in C++ not possible since no interfaces, (multiple) 

inheritance is not sufficient [28,29]
● need separate abstract type structure for interfaces and 

implementations
● have interfaces and classes in Java
● Axiom/Aldor: categories and domains [6,7]
● SmallTalk: views and classes with free renaming [30]
● Java: facade pattern to map names at runtime
● “Problem”: GenSolvablePolynomial<C> extends 
GenPolynomial<C> implements 
RingElem<GenSolvablePolynomial<C>>



Generics and inheritance

● generics in Java since JDK 1.5
● generics can be simulated by a well-designed type 

hierarchy [32]

● before [31]: Coefficient and Polynomial

● but generics bring more type safety

● now cannot multiply polynomials with BigInteger and 
BigRational coefficients

● clear type denotation:  List<GenPolynomial< 
AlgebraicNumber<ModInteger>>>



Dependent types

● polynomials in different number of variables have 
same type

● finite rings and fields have same type
● also term order is not denoted in the type
● SmallTalk types are first class objects: 

– class Mod7 = ModIntegerRing(7); 

– Mod7 x = new Mod7(1);

● GenPolynomialRing<BigInteger,Var5>

● other systems use coercion [19]
● carves hole in our type system



Method semantics

● methods with undefined semantics in some rings
● what is signum() in unordered rings?
● divide(), remainder() only for non-zero divisor, of 

limited value for multivariate polynomials
● inverse() may fail if element is not invertible in ring

● Axiom/Aldor returned “failed” type
● we allow any meaningful reaction: 

● return predefined value
● throw checked exception or unchecked run-time exception

● test methods isZERO(), isUnit(), isField()



Recursive types

● needed in greatest common divisor algorithms
● RingElem<C extends RingElem<C>>

● GenPolynomial<GenPolynomial<ModInteger>>

● raw type is GenPolynomial

● so can't overload and need to duplicate code
● baseGcd( GenPolynomial<C> a, b )

● recursiveGcd( GenPolynomial<GenPolynomial<C>> a, b)

● implemented abstract GCD class and specific
● polynomial remainder sequences (PRS) 
● and modular methods with chinese remaindering



Factory pattern

● how to create 0, 1, polynomial in x or random elements in 
polynomial rings?

– need a way to create respective coefficients
● idea: use factory pattern for all element creations

– polynomial factories have factories for coefficients
● also applied in GCDFactory to select appropriate PRS 

oder modular implementation
GreatestCommonDivisor<BigInteger> engine = 
GCDFactory.<BigInteger>getImplementation(coFac);

c = engine.gcd(a,b);

– others [24,25]: requirement oriented programming



Code reuse (1)

● SAC-2/Aldes [14] and MAS [12]

– three polynomial representations

– with three or more coefficient implementations

– e.g. IPPROD, DIRPPR, DMPPRD
● arbitrary domain system of MAS

● 13 implemented coefficients selectable at run-time
● with 20% performance penalty and limited type safety

● now in JAS

– only one representation (is questionable [16,17]) 

– but works for all 10+ coefficient implementations



Code reuse (2)

● using (object oriented) inheritance

– abstract Groebner base class with sequential or 
parallel implementations

– abstract greatest common divisor class with PRS 
and modular implementations

● maximum code reuse in e-Groebner base [26] 
implementation
public class EGroebnerBaseSeq<C extends RingElem<C>> 
extends DGroebnerBaseSeq<C> { 

  public EGroebnerBaseSeq(EReductionSeq<C> red){ . } 

/* nothing to implement */ }



Performance

● polynomial arithmetic performance:

– performance of coefficient arithmetic
● java.math.BigInteger in pure Java, faster than GMP 

style JNI C version

– sorted map implementation
● from Java collection classes with known efficient algorithms 

– exponent vector implementation
● using long[], have to consider also int[] or short[]
● want ExpVector<C> but generic types may not be 

elementary types

– JAS comparable to general purpose CA systems but 
slower than specialized systems



Performance

JAS: options, system JDK 1.5 JDK 1.6 
BigInteger, G 16.2 13.5 
BigInteger, L 12.9 10.8 
BigRational, L, s 9.9 9.0 
BigInteger, L, s 9.2 8.4 
BigInteger, L, big e, s 9.2 8.4 
BigInteger, L, big c 66.0 59.8 
BigInteger, L, big c, s 45.0 43.2 

options, system time @2.7GHz 
MAS 1.00a, L, GC = 3.9 33.2 
Singular 2-0-6, G 2.5 
Singular, L 2.2 
Singular, G, big c 12.9 
Singular, L, big exp out of memory
Maple 9.5 15.2 9.1 
Maple 9.5, big e 19.8 11.8 
Maple 9.5, big c 64.0 38.0 
Mathematica 5.2 22.8 13.6 
Mathematica 5.2, big e 30.9 18.4 
Mathematica 5.2, big c 30.6 18.2 
JAS, s 8.4 5.0 
JAS, big e, s 8.6 5.1 
JAS, big c, s 47.8 28.5 

Computing times in seconds on AMD 1.6 GHz or 2.7 GHz Intel XEON CPU.
Options are: coefficient type, term order: G = graded, L = lexicographic,
big c = using the big coefficients, big e = using the big exponents, s = server JVM.

[37 ]compute q= p× p1

p=1x yz 20

p=10000000001 1x y z 20

p=1x 2147483647 y2147483647 z214748364720
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Applications

● polynomial reduction 
● Buchbergers algorithm to compute Groebner bases 
● not much (mathematical) optimization yet, simple 

structure used also for parallel implementation
● sequential, parallel and distributed versions
● non-commutative left, right and two-sided versions
● modules over polynomial rings and syzygies
● greatest common divisors
● d- and e-Groebner bases



Parallelization (1)

● thread safety from the beginning

– explicit synchronization

– immutable algebraic objects
● utility classes now from java.util.concurrent

● parallel proxy for greatest common divisor
– GreatestCommonDivisor<BigInteger> engine = 
GCDFactory.<BigInteger>getProxy( coFac );

– run two implementations, select result from fastest

– Groebner base with rational function coefficients, e.g.
● 3610 subresultant PRS, 2189 modular algorithm was 

fastest
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Parallelization (2)

● Groebner base with work queue of polynomials 
CriticalPairList

– with synchronized methods get(), put(), 
removeNext() to modify data structure

– scales well for 8 CPUs on a well structured 
problem

● distributed version uses some kind of a distributed 
list to store polynomials of set (implemented by a 
DHT)

– use of object serialization for transport of 
polynomials over the network



Libraries

● advantage of scientific libraries: accumulate 
knowledge, improve algorithms and 
implementations

● others

– jscl-meditor: computer algebra library with GUI 
front-end [21]

– Orbital: mathematical logic, Groebner bases [22]

– JScience: not limited to computer algebra [23]

– Apache Commons Math: statistics and other 
utilities missing in Java [38]



Java environment

● earlier computer algebra systems had to develop parts 
of computer science 

● now we can use sophisticated implementations for 
many relevant data structures

● lists, trees, maps, arbitrary precision integers

● profit from Java improvements
● multi-threading, thread safety and inter-networking
● (parallel) garbage collection
● 64bit ready
● virtual machine improvements
● performance improvements of new JDKs [36]
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Conclusions (1)

● sound object oriented design and implementation of a 
library for algebraic computations

● type safe trough generic type parameters
● as expressive as categories and domains in Axiom due 

to Java interfaces
● reduced code size and facilitated code reuse
● dependent types limit type safety, but can't be avoided
● all algebraic semantics can be implemented

– can use checked and unchecked exceptions
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Conclusions (2)

● recursive multivariate polynomials allow greatest 
common divisor implementation

● employs various design patterns, e.g. creational 
patterns (factory), facade pattern

● object oriented programming looks strange to 
mathematicians

● used for a large portion of algebraic algorithms

– a collection of Groebner base algorithms

– first OO design and implementation of non-
commutative polynomials and Groebner bases
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Conclusions (3)

● performance comparable to general purpose CAS, but 
not to special CAS

● working horses are from the Java multi-precision 
integers and from the collection framework

● Java platform: 64-bit, multi-threading, parallel garbage 
collection, inter-networking

● Java improvements leverage the performance and 
capabilities of JAS

● Future

– more `multiplicative ideal theory', e.g. factorization
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Thank you

● Questions or Comments?
● http://krum.rz.uni-mannheim.de/jas
● Thanks to

– Raphael Jolly

– Thomas Becker, Samuel Kredel

– Markus Aleksy, Hans-Günther Kruse

– the referees

– and other colleagues

http://krum.rz.uni-mannheim.de/jas

