
Evaluation of a
Java Computer Algebra System

Heinz Kredel

ASCM 2007, Singapore

2

Introduction

● object oriented design of a computer algebra
system

= software collection for symbolic (non-numeric)
computations

● type safe through Java generic types
● thread safe, ready for multicore CPUs
● dynamic memory system with GC
● 64-bit ready
● jython (Java Python) front end

3

Overview

● Introduction
● Example
● Types introduction
● Evaluation
● Conclusions

Chebychev polynomials

first 10 polynomials:

T[0] = 1
T[1] = x
T[2] = 2 x^2 - 1
T[3] = 4 x^3 - 3 x
T[4] = 8 x^4 - 8 x^2 + 1
T[5] = 16 x^5 - 20 x^3 + 5 x
T[6] = 32 x^6 - 48 x^4 + 18 x^2 - 1
T[7] = 64 x^7 - 112 x^5 + 56 x^3 - 7 x
T[8] = 128 x^8 - 256 x^6 + 160 x^4 - 32 x^2 + 1
T[9] = 256 x^9 - 576 x^7 + 432 x^5 - 120 x^3 + 9 x

defined by recursion:

T[0] = 1
T[1] = x
T[n] = 2 x T[n-1] - T[n-2]

Chebychev polynomial
computation

 1. int m = 10;
 2. BigInteger fac = new BigInteger();
 3. String[] var = new String[]{ "x" };
 4. GenPolynomialRing<BigInteger> ring
 5. = new GenPolynomialRing<BigInteger>(fac,1,var);
 6. List<GenPolynomial<BigInteger>> T
 7. = new ArrayList<GenPolynomial<BigInteger>>(m);
 8. GenPolynomial<BigInteger> t, one, x, x2;
 9. one = ring.getONE();
10. x = ring.univariate(0); // polynomial in variable 0
11. x2 = ring.parse("2 x");
12. T.add(one); // T[0]
13. T.add(x); // T[1]
14. for (int n = 2; n < m; n++) {
15. t = x2.multiply(T.get(n-1)).subtract(T.get(n-2));
16. T.add(t); // T[n]
17. }
18. for (int n = 0; n < m; n++) {
19. System.out.println("T["+n+"] = " + T.get(n));
20. }

6

Overview

● Introduction
● Example
● Types introduction
● Evaluation
● Conclusions

7

Type structure

8

Polynomial types

Polynomial functionality

Implementation

● 140 classes and interfaces
● plus 70 JUnit test cases
● JDK 1.5 with generic types
● javadoc API documentation
● logging with Apache Log4j
● build tool is Apache Ant
● revision control with subversion
● some jython (Java Python) scripts
● open source, license is GPL or LGPL

11

Overview

● Introduction
● Example
● Types introduction
● Evaluation
● Conclusions

Interfaces as types
● CAS in C++ not possible since no interfaces, (multiple)

inheritance is not sufficient [28,29]
● need separate abstract type structure for interfaces and

implementations
● have interfaces and classes in Java
● Axiom/Aldor: categories and domains [6,7]
● SmallTalk: views and classes with free renaming [30]
● Java: facade pattern to map names at runtime
● “Problem”: GenSolvablePolynomial<C> extends
GenPolynomial<C> implements
RingElem<GenSolvablePolynomial<C>>

Generics and inheritance

● generics in Java since JDK 1.5
● generics can be simulated by a well-designed type

hierarchy [32]

● before [31]: Coefficient and Polynomial

● but generics bring more type safety

● now cannot multiply polynomials with BigInteger and
BigRational coefficients

● clear type denotation: List<GenPolynomial<
AlgebraicNumber<ModInteger>>>

Dependent types

● polynomials in different number of variables have
same type

● finite rings and fields have same type
● also term order is not denoted in the type
● SmallTalk types are first class objects:

– class Mod7 = ModIntegerRing(7);

– Mod7 x = new Mod7(1);

● GenPolynomialRing<BigInteger,Var5>

● other systems use coercion [19]
● carves hole in our type system

Method semantics

● methods with undefined semantics in some rings
● what is signum() in unordered rings?
● divide(), remainder() only for non-zero divisor, of

limited value for multivariate polynomials
● inverse() may fail if element is not invertible in ring

● Axiom/Aldor returned “failed” type
● we allow any meaningful reaction:

● return predefined value
● throw checked exception or unchecked run-time exception

● test methods isZERO(), isUnit(), isField()

Recursive types

● needed in greatest common divisor algorithms
● RingElem<C extends RingElem<C>>

● GenPolynomial<GenPolynomial<ModInteger>>

● raw type is GenPolynomial

● so can't overload and need to duplicate code
● baseGcd(GenPolynomial<C> a, b)

● recursiveGcd(GenPolynomial<GenPolynomial<C>> a, b)

● implemented abstract GCD class and specific
● polynomial remainder sequences (PRS)
● and modular methods with chinese remaindering

Factory pattern

● how to create 0, 1, polynomial in x or random elements in
polynomial rings?

– need a way to create respective coefficients
● idea: use factory pattern for all element creations

– polynomial factories have factories for coefficients
● also applied in GCDFactory to select appropriate PRS

oder modular implementation
GreatestCommonDivisor<BigInteger> engine =
GCDFactory.<BigInteger>getImplementation(coFac);

c = engine.gcd(a,b);

– others [24,25]: requirement oriented programming

Code reuse (1)

● SAC-2/Aldes [14] and MAS [12]

– three polynomial representations

– with three or more coefficient implementations

– e.g. IPPROD, DIRPPR, DMPPRD
● arbitrary domain system of MAS

● 13 implemented coefficients selectable at run-time
● with 20% performance penalty and limited type safety

● now in JAS

– only one representation (is questionable [16,17])

– but works for all 10+ coefficient implementations

Code reuse (2)

● using (object oriented) inheritance

– abstract Groebner base class with sequential or
parallel implementations

– abstract greatest common divisor class with PRS
and modular implementations

● maximum code reuse in e-Groebner base [26]
implementation
public class EGroebnerBaseSeq<C extends RingElem<C>>
extends DGroebnerBaseSeq<C> {

 public EGroebnerBaseSeq(EReductionSeq<C> red){ . }

/* nothing to implement */ }

Performance

● polynomial arithmetic performance:

– performance of coefficient arithmetic
● java.math.BigInteger in pure Java, faster than GMP

style JNI C version

– sorted map implementation
● from Java collection classes with known efficient algorithms

– exponent vector implementation
● using long[], have to consider also int[] or short[]
● want ExpVector<C> but generic types may not be

elementary types

– JAS comparable to general purpose CA systems but
slower than specialized systems

Performance

JAS: options, system JDK 1.5 JDK 1.6
BigInteger, G 16.2 13.5
BigInteger, L 12.9 10.8
BigRational, L, s 9.9 9.0
BigInteger, L, s 9.2 8.4
BigInteger, L, big e, s 9.2 8.4
BigInteger, L, big c 66.0 59.8
BigInteger, L, big c, s 45.0 43.2

options, system time @2.7GHz
MAS 1.00a, L, GC = 3.9 33.2
Singular 2-0-6, G 2.5
Singular, L 2.2
Singular, G, big c 12.9
Singular, L, big exp out of memory
Maple 9.5 15.2 9.1
Maple 9.5, big e 19.8 11.8
Maple 9.5, big c 64.0 38.0
Mathematica 5.2 22.8 13.6
Mathematica 5.2, big e 30.9 18.4
Mathematica 5.2, big c 30.6 18.2
JAS, s 8.4 5.0
JAS, big e, s 8.6 5.1
JAS, big c, s 47.8 28.5

Computing times in seconds on AMD 1.6 GHz or 2.7 GHz Intel XEON CPU.
Options are: coefficient type, term order: G = graded, L = lexicographic,
big c = using the big coefficients, big e = using the big exponents, s = server JVM.

[37]compute q= p× p1

p=1x yz 20

p=10000000001 1x y z 20

p=1x 2147483647 y2147483647 z214748364720

22

Applications

● polynomial reduction
● Buchbergers algorithm to compute Groebner bases
● not much (mathematical) optimization yet, simple

structure used also for parallel implementation
● sequential, parallel and distributed versions
● non-commutative left, right and two-sided versions
● modules over polynomial rings and syzygies
● greatest common divisors
● d- and e-Groebner bases

Parallelization (1)

● thread safety from the beginning

– explicit synchronization

– immutable algebraic objects
● utility classes now from java.util.concurrent

● parallel proxy for greatest common divisor
– GreatestCommonDivisor<BigInteger> engine =
GCDFactory.<BigInteger>getProxy(coFac);

– run two implementations, select result from fastest

– Groebner base with rational function coefficients, e.g.
● 3610 subresultant PRS, 2189 modular algorithm was

fastest

24

Parallelization (2)

● Groebner base with work queue of polynomials
CriticalPairList

– with synchronized methods get(), put(),
removeNext() to modify data structure

– scales well for 8 CPUs on a well structured
problem

● distributed version uses some kind of a distributed
list to store polynomials of set (implemented by a
DHT)

– use of object serialization for transport of
polynomials over the network

Libraries

● advantage of scientific libraries: accumulate
knowledge, improve algorithms and
implementations

● others

– jscl-meditor: computer algebra library with GUI
front-end [21]

– Orbital: mathematical logic, Groebner bases [22]

– JScience: not limited to computer algebra [23]

– Apache Commons Math: statistics and other
utilities missing in Java [38]

Java environment

● earlier computer algebra systems had to develop parts
of computer science

● now we can use sophisticated implementations for
many relevant data structures

● lists, trees, maps, arbitrary precision integers

● profit from Java improvements
● multi-threading, thread safety and inter-networking
● (parallel) garbage collection
● 64bit ready
● virtual machine improvements
● performance improvements of new JDKs [36]

27

Conclusions (1)

● sound object oriented design and implementation of a
library for algebraic computations

● type safe trough generic type parameters
● as expressive as categories and domains in Axiom due

to Java interfaces
● reduced code size and facilitated code reuse
● dependent types limit type safety, but can't be avoided
● all algebraic semantics can be implemented

– can use checked and unchecked exceptions

28

Conclusions (2)

● recursive multivariate polynomials allow greatest
common divisor implementation

● employs various design patterns, e.g. creational
patterns (factory), facade pattern

● object oriented programming looks strange to
mathematicians

● used for a large portion of algebraic algorithms

– a collection of Groebner base algorithms

– first OO design and implementation of non-
commutative polynomials and Groebner bases

29

Conclusions (3)

● performance comparable to general purpose CAS, but
not to special CAS

● working horses are from the Java multi-precision
integers and from the collection framework

● Java platform: 64-bit, multi-threading, parallel garbage
collection, inter-networking

● Java improvements leverage the performance and
capabilities of JAS

● Future

– more `multiplicative ideal theory', e.g. factorization

30

Thank you

● Questions or Comments?
● http://krum.rz.uni-mannheim.de/jas
● Thanks to

– Raphael Jolly

– Thomas Becker, Samuel Kredel

– Markus Aleksy, Hans-Günther Kruse

– the referees

– and other colleagues

http://krum.rz.uni-mannheim.de/jas

