
Comprehensive Gröbner Bases
in a

Java Computer Algebra System

Heinz Kredel
University of Mannheim

ASCM 2009, Fukuoka

Overview

● Introduction to JAS
● example with regular ring coefficients

● Comprehensive Gröbner Bases (CGB)
● class layout
● colored polynomials and conditions
● parametric reductions and colored systems
● Gröbner systems and CGB

● Examples
● Conclusions

3

Java Algebra System (JAS)

● object oriented design of a computer algebra
system

= software collection for symbolic (non-numeric)
computations

● type safe through Java generic types
● thread safe, ready for multi-core CPUs
● use dynamic memory system with GC
● jython (Java Python) interactive scripting front

end

Implementation overview

● 230+ classes and interfaces

● plus 100+ JUnit test cases

● uses JDK 1.6 with generic types
– Javadoc API documentation

– logging with Apache Log4j

– build tool is Apache Ant

– revision control with Subversion

● jython (Java Python) scripts
– support for Sage like polynomial expressions

● open source, license is GPL or LGPL

Polynomial functionality

Polynomials over regular rings

rr = ResidueRing[BigRational(x0, x1, x2) IGRLEX
 ((x0^2 + 295/336),
 (x2 - 350/1593 x1 - 1100/2301))]
L = [
 {0=x1 - 280/93 , 2=x0 * x1 - 33/23 } a^2 * b^3
 + {0=122500/2537649 x1^3 + 770000/3665493 x1^2
 + 14460385/47651409 x1 + 14630/89739 ,
 3=350/1593 x1 + 23/6 x0 + 1100/2301 } ,
 ...]

example:
List<GenPolynomial<Product<Residue<BigRational>>>>

R=ℚ[x1 ,, xn]

S '=∏℘∈spec R
R /℘[y1 ,, yr]

L⊂S=ℚ[x0 , x1 , x2]/ ideal F 4 [a ,b]

a von Neuman regular ring

Regular ring construction

 1 List<GenPolynomial<Product<Residue<BigRational>>>> L
 = new ArrayList<GenPolynomial<Product<Residue<BigRational>>>>();

 2 BigRational bf = new BigRational(1);
 3 GenPolynomialRing<BigRational> pfac
 = new GenPolynomialRing<BigRational>(bf,3);
 4 List<GenPolynomial<BigRational>> F
 = new ArrayList<GenPolynomial<BigRational>>();
 5 GenPolynomial<BigRational> pp = null;
 6 for (int i = 0; i < 2; i++) {
 7 pp = pfac.random(5,4,3,0.4f);
 8 F.add(pp);
 9 }
10 Ideal<BigRational> id = new Ideal<BigRational>(pfac,F);
11 id.doGB();
12 ResidueRing<BigRational> rr = new ResidueRing<BigRational>(id);
13 System.out.println("rr = " + rr);
14 ProductRing<Residue<BigRational>> pr
 = new ProductRing<Residue<BigRational>>(rr,4);

8

Polynomial construction and GB

 1 List<GenPolynomial<Product<Residue<BigRational>>>> L = ...

15 String[] vars = new String[] { "a", "b" };
16 GenPolynomialRing<Product<Residue<BigRational>>> fac
 = new GenPolynomialRing<Product<Residue<BigRational>>>(pr,2,vars);
17 GenPolynomial<Product<Residue<BigRational>>> p;
18 for (int i = 0; i < 3; i++) {
19 p = fac.random(2,4,4,0.4f);
20 L.add(p);
21 }
22 System.out.println("L = " + L);

23 GroebnerBase<Product<Residue<BigRational>>> bb
 = new RGroebnerBasePseudoSeq<Product<Residue<BigRational>>>(pr);

24 List<GenPolynomial<Product<Residue<BigRational>>>> G = bb.GB(L);
25 System.out.println("G = " + G);

compute Gröbner base

Overview

● Introduction to JAS
● example with regular ring coefficients

● Comprehensive Gröbner Bases (CGB)
● class layout
● colored polynomials and conditions
● parametric reductions and colored systems
● Gröbner systems and CGB

● Examples
● Conclusions

CGB definitions

R=K [U 1 , ,U m]=K [U]
S=R [X 1 , , X n]=R [X]

● parametric polynomial ring

● specialization

● comprehensive GB

● Gröbner System

● Condition

● colorings

● determined polynomials

sigma : R K ' ,SK ' [X 1 , , X n]

F⊂S , ideal F  ,G⊂S , given 

sigma G  is GB for ideal  sigma F 

GS={gamma ,Ggamma ∣Ggamma⊂S }

gamma={z i U =0}∪{n j U ≠0}

col a =g r e e n , if a ∈ {z i U =0}
col a =r e d , if a ∈ {n j U ≠0}
col a =w hi t e ,else

p ∈ S , p = p g r e e n pr e d pwh i t e
with pg r e e n pr e d pwhi t e

Classes overview

Classes overview (cont.)

● Gröbner systems as lists of colored systems
● a colored system consists of a condition, a list

of colored polynomials and a critical pair list
● colored polynomial is a tuple (green, red, white)

of polynomials with coefficients colored with
respect to a condition

● parametric reduction relative to a condition
● implementation for parametric polynomials
GenPolynomial<GenPolynomial<C>>

● classes have type parameters C extends
RingElem<C>

Condition and colored polynomial

Condition

● condition

● two finite sets of
● polynomial equations
● polynomial inequalities

● method color(c) returns green, red or white if c is
contained in the respective set

● method determine(A) returns a colored polynomial

● methods to extend the condition
● extendZero(z): Condition

● extendNonZero(n): Condition

z U  = 0

n U  ≠ 0

gamma = {z i U  = 0} ∪ {n j U  ≠ 0}

Colored Polynomial

● consists of a green, red and white part
● with green > red > white for non-zero parts with

respect to the given term order >
● test if the restriction holds: checkInvariant()

● test if the red part is non-zero or the white part is
also zero: isDetermined()
● arithmetic as far as is required by parametric reduction
● tests if the polynomial is zero or one by ignoring the

green part
● methods to extract parametric polynomials

Condition implementation (1)

● replace 'zero set' by 'ideal' to have more
efficient containment test
● set containment then ideal membership test
● by lazy Gröbner base computation
● moreover square-free polynomials give radical

membership test

● replace 'non-zero set' by 'multiplicative set'
● set containment then product of factors test
● elements are kept co-prime, or square-fee and co-

prime, or irreducible
● default is square-free and co-prime

Condition implementation (2)

● the extension methods try to add only 'small'
polynomials to the respective set
● take residues with respect to the zero ideal
● remove factors from multiplicative set

● recursively simplify the resulting condition simplify()
● make zero ideal polynomials square-free
● reduce multiplicative set modulo zero ideal
● take co-prime (etc) factors for multiplicative set
● remove factors from zero set which are contained in non-

zero set
● do recursion if simplifications where possible

Parametric reduction

Reduction implementation

● works on colored polynomials
● parametric reduction ignores green terms
● but green terms are updated during computation:

gives faith-full Gröbner system
● in normal-form green terms are copied to the

result polynomial
● red or white terms are reduced with respect to a

suitable (colored) polynomial in the reduction list
● top-reduction stops if a non-reducible term is

encountered
● colored S-polynomials computed as usual

Construction of conditions (1)

● method determine(L) constructs a list of colored
systems for a list of polynomials L, by
● computing a list of conditions with method
caseDistinction(L)

● for each condition a colored system is computed with
determine(C,L)

● a colored system consists of a condition together
with a list of colored polynomials wrt. this condition

● the case distinction is constructed such that each
colored polynomial has non-zero red term (or the
white term is zero)

Construction of conditions (2)

● the algorithm checks the color each coefficient
of each polynomial (in term order sequence)
with respect to each existing condition
● green coefficients are skipped
● if a red coefficient appears, the polynomial is done
● for a white coefficient the current condition is

extended by adding the coefficient to the set of
zero conditions and to the set of non-zero
conditions

● initially the list of conditions is made from one
empty condition

Colored system

Gröbner systems

● method GB() of ComprehensiveGroebnerBaseSeq
computes a Gröbner system with GBsys(), then
extracts a comprehensive Gröbner base

● GroebnerSystem is a container for a list of colored
systems

● method getCGB() extracts comprehensive
Gröbner base as union of parametric polynomials
from all contained colored polynomials

● has methods to check invariants or if each system
is determined

Gröbner system and CGB

CGB construction (1)

● the list of ColoredSystems is initially constructed

● then each ColoredSystem is augmented by a critical pair list
as in the standard Buchberger algorithm

● for each critical pair a parametric S-polynomial is constructed
and reduced with respect to the list of colored polynomials

● if all reductions lead to the zero polynomial a colored system
is done

● for a non-zero reduction polynomial the condition is
eventually refined

● for each condition the list of colored systems is updated

CGB construction (2)

● branching and critical pair generation is done in
method determineAddPairs()

● new generated colored systems are merged
with the existing list of colored systems in
method addToList() with test of equal
conditions and lists of polynomials

● upon termination each colored polynomial list in
each colored system is a Gröbner base for this
condition
● termination is guaranteed by König's tree lemma

together with Dickson's lemma

CGB tests (1)

● there are two tests to check if a given list of
parametric polynomials is a CGB

● one test determines the polynomials and
constructs a Gröbner system
● for each colored system all critical pairs are

constructed and the S-polynomials are
parametrically reduced

● if all these reductions lead to the zero polynomial
(ignoring green parts), it is concluded that it is a
Gröbner system

CGB tests (2)

● the other test also determines the polynomials
and constructs the list of colored systems
● for each condition a residue class ring modulo the

zero ideal is constructed
● the given polynomials are mapped to these

residue class coefficient rings
● over these rings a standard isGB() test is

performed
● additionally a test with random ideal is done
● if all these tests succeed, it is concluded that the

given list of polynomials is a CGB

Overview

● Introduction to JAS
● example with regular ring coefficients

● Comprehensive Gröbner Bases (CGB)
● class layout
● colored polynomials and conditions
● parametric reductions and colored systems
● Gröbner systems and CGB

● Examples
● Conclusions

Raksanyi and Hawes examples

time in milliseconds, timings in slashes are for subsequent runs,
Term order: G = graded, L = lexicographical, S = Gr = reverse graded,

Lr = reverse lexicographical

Nabeshima examples

time in milliseconds, timings in slashes are for subsequent runs,
Term order: G = graded, L = lexicographical,

cond = number of conditions.

Montes examples

time in milliseconds, timings in slashes are for subsequent runs.
DISPGB times from [14],

Term order: G = graded, L = lexicographical.

r = PolyRing(PolyRing(QQ(),"a1,a2,a3,a4",PolyRing.grad),
 "x1,x2,x3,x4",PolyRing.lex);
[one,a1,a2,a3,a4,x1,x2,x3,x4] = r.gens();

pl = [(x4 - (a4 - a2)),
 (x1 + x2 + x3 + x4 - (a1 + a3 + a4)),
 (x1 * x3 + x1 * x4 + x2 * x3 + x3 * x4 - (a1 * a4 + a1 *
a3 + a3 * a4)),
 (x1 * x3 * x4 - (a1 * a3 * a4))
];
f = ParamIdeal(r,list=pl);
gs = f.CGBsystem();
bg = gs.isCGBsystem(); # true→

rs.regularRepresentationBC();
print "boolean closed regular representation: "+str(rs);
bg = rs.isRegularGB(); # true→

Regular ring example (jython)

Conclusions

● design and implementation of (faith-full)
comprehensive Gröbner bases in Java

● generic object oriented design provides all
required mathematical objects and structures

● conditions implemented as
● “zero eq set” as ideal with membership test
● “non zero set” as multiplicative set

● computing times in same magnitude as others
● use residue class coefficient rings

Future work

● when multivariate polynomial factorization
becomes ready, use it for multiplicative sets in
conditions

● comprehensive Gröbner bases for solvable
polynomial rings

● parallel versions of comprehensive Gröbner
base computation

36

Thank you

● Questions or Comments?
● http://krum.rz.uni-mannheim.de/jas
● git http://krum.rz.uni­mannheim.de/jas.git

● Thanks to
● Raphael Jolly, Thomas Becker
● Markus Aleksy, Hans-Günther Kruse
● W. K. Seiler, Dongming Wang, Th. Sturm
● the referees
● and other colleagues

http://krum.rz.uni-mannheim.de/jas

	title
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27
	Folie 28
	Folie 29
	Folie 30
	Folie 31
	Folie 32
	Folie 33
	Folie 34
	Folie 35
	Schluss

