Comprehensive Gröbner Bases in a Java Computer Algebra System

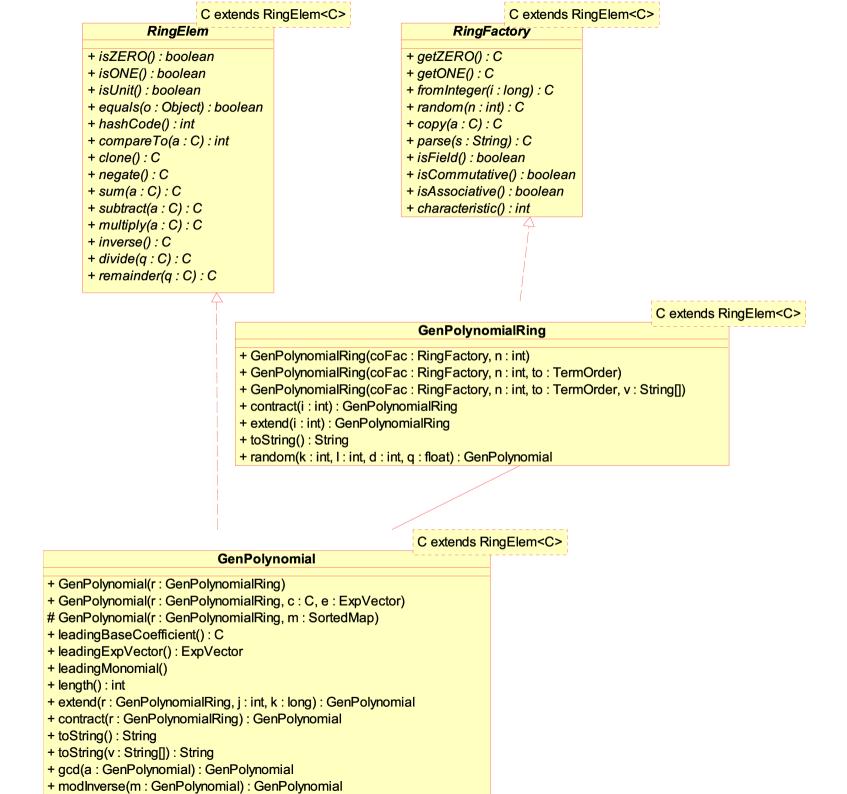
Heinz Kredel University of Mannheim

ASCM 2009, Fukuoka

Overview

- Introduction to JAS
 - example with regular ring coefficients
- Comprehensive Gröbner Bases (CGB)
 - class layout
 - colored polynomials and conditions
 - parametric reductions and colored systems
 - Gröbner systems and CGB
- Examples

Conclusions


Java Algebra System (JAS)

- object oriented design of a computer algebra system
 - = software collection for symbolic (non-numeric) computations
- type safe through Java generic types
- thread safe, ready for multi-core CPUs
- use dynamic memory system with GC
- jython (Java Python) interactive scripting front end

Implementation overview

- 230+ classes and interfaces
- plus 100+ JUnit test cases
- uses JDK 1.6 with generic types
 - Javadoc API documentation
 - logging with Apache Log4j
 - build tool is Apache Ant
 - revision control with Subversion
- jython (Java Python) scripts
 - support for Sage like polynomial expressions
- open source, license is GPL or LGPL

Polynomials over regular rings

example:

List<GenPolynomial<Product<Residue<BigRational>>>>

 $R = \mathbb{Q}[x_1, \dots, x_n]$ $S' = (\prod_{\omega \in \text{spec}(R)} R/\wp)[y_1, \dots, y_r]$ a von Neuman regular ring $L \subset S = \left(\mathbb{Q}[x_0, x_1, x_2]/ideal(F)\right)^4 [a, b]$ rr = ResidueRing[BigRational(x0, x1, x2) IGRLEX $((x0^2 + 295/336),$ (x2 - 350/1593 x1 - 1100/2301))] L = Γ $\{0=x1 - 280/93, 2=x0 * x1 - 33/23\}$ a^2 * b^3 + { $0=122500/2537649 \times 1^3 + 770000/3665493 \times 1^2$ $+ 14460385/47651409 \times 1 + 14630/89739$, 3=350/1593 x1 + 23/6 x0 + 1100/2301 } , ... 1

Regular ring construction

1 List<GenPolynomial<Product<Residue<BigRational>>>> L

2009

= new ArrayList<GenPolynomial<Product<Residue<BigRational>>>>();

```
2 BigRational bf = new BigRational(1);
 3 GenPolynomialRing<BigRational> pfac
    = new GenPolynomialRing<BigRational>(bf,3);
 4 List<GenPolynomial<BigRational>> F
    = new ArrayList<GenPolynomial<BigRational>>();
 5 GenPolynomial<BigRational> pp = null;
 6 for ( int i = 0; i < 2; i++) {
 7
       pp = pfac.random(5, 4, 3, 0.4f);
 8
       F.add(pp);
 9
   }
   Ideal<BigRational> id = new Ideal<BigRational>(pfac,F);
10
11 id.doGB();
12 ResidueRing<BigRational> rr = new ResidueRing<BigRational>(id);
13 System.out.println("rr = " + rr);
14 ProductRing<Residue<BigRational>> pr
    = new ProductRing<Residue<BigRational>>(rr,4);
```

Polynomial construction and GB

1 List<GenPolynomial<Product<Residue<BigRational>>>> L = ...

23 GroebnerBase<Product<Residue<BigRational>>> bb

= new RGroebnerBasePseudoSeq<Product<Residue<BigRational>>>(pr);

```
24 List<GenPolynomial<Product<Residue<BigRational>>>> G = bb.GB(L);
25 System.out.println("G = " + G);
```


Overview

- Introduction to JAS
 - example with regular ring coefficients
- Comprehensive Gröbner Bases (CGB)
 - class layout
 - colored polynomials and conditions
 - parametric reductions and colored systems
 - Gröbner systems and CGB
- Examples

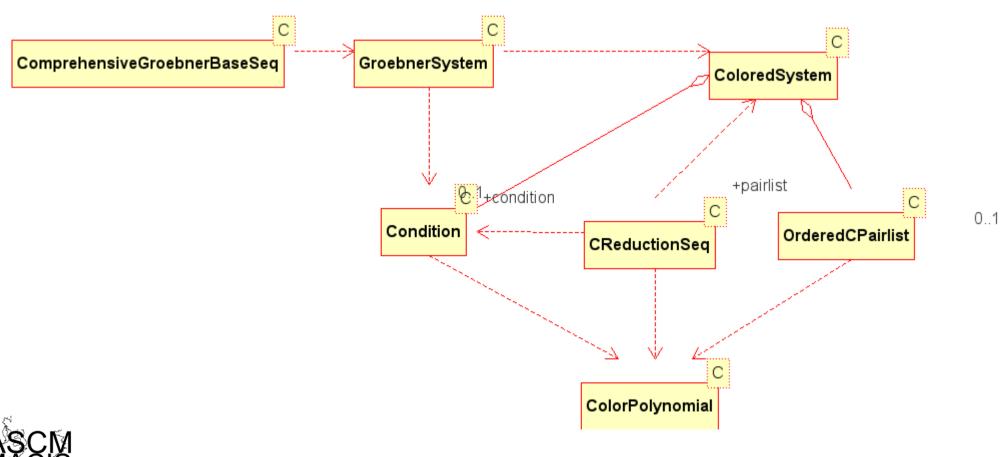
Conclusions

CGB definitions

- parametric polynomial ring
- specialization
- comprehensive GB

• Gröbner System

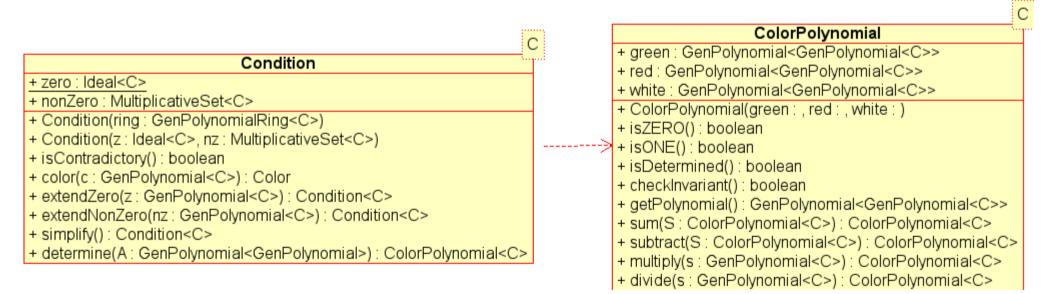
- Condition
- colorings
- determined polynomials


$$\begin{split} &R = K[U_1, \dots, U_m] = K[U] \\ &S = R[X_1, \dots, X_n] = R[X] \\ &sigma : R \to K', S \to K'[X_1, \dots, X_n] \\ &F \subset S, ideal(F), G \subset S, given \leqslant \\ &sigma(G) \text{ is } GB \text{ for } ideal(sigma(F)) \end{split}$$

$$\begin{split} GS = \{(gamma, G_{gamma}) \mid G_{gamma} \subset S \} \\ gamma = \{z_i(U) = 0\} \cup \{n_j(U) \neq 0\} \\ col(a) = green, if a \in \{z_i(U) = 0\} \\ col(a) = red, if a \in \{n_j(U) \neq 0\} \\ col(a) = white, else \end{split}$$

 $p \in S$, $p = p_{green} + p_{red} + p_{white}$ with $p_{green} > p_{red} > p_{white}$

Classes overview


Classes overview (cont.)

- Gröbner systems as lists of colored systems
- a colored system consists of a condition, a list of colored polynomials and a critical pair list
- colored polynomial is a tuple (green, red, white) of polynomials with coefficients colored with respect to a condition
- parametric reduction relative to a condition
- implementation for parametric polynomials GenPolynomial<GenPolynomial<C>>

• classes have type parameters C extends RingElem<C>

Condition and colored polynomial

Condition

- condition $gamma = \{z_i(U) = 0\} \cup \{n_j(U) \neq 0\}$
- two finite sets of
 - polynomial equations z(U) = 0
 - polynomial inequalities $n(U) \neq 0$
- method color(c) returns green, red or white if c is contained in the respective set
- method determine(A) returns a colored polynomial
- methods to extend the condition
 - extendZero(z): Condition

• extendNonZero(n): Condition

Colored Polynomial

- consists of a green, red and white part
- with green > red > white for non-zero parts with respect to the given term order >
- test if the restriction holds: checkInvariant()
- test if the red part is non-zero or the white part is also zero: isDetermined()
 - arithmetic as far as is required by parametric reduction
 - tests if the polynomial is zero or one by ignoring the green part

• methods to extract parametric polynomials

Condition implementation (1)

- replace 'zero set' by 'ideal' to have more efficient containment test
 - set containment then ideal membership test
 - by lazy Gröbner base computation
 - moreover square-free polynomials give radical membership test
- replace 'non-zero set' by 'multiplicative set'
 - set containment then product of factors test
 - elements are kept co-prime, or square-fee and coprime, or irreducible

Condition implementation (2)

- the extension methods try to add only 'small' polynomials to the respective set
 - take residues with respect to the zero ideal
 - remove factors from multiplicative set
- recursively simplify the resulting condition $\mathtt{simplify}()$
 - make zero ideal polynomials square-free
 - reduce multiplicative set modulo zero ideal
 - take co-prime (etc) factors for multiplicative set
 - remove factors from zero set which are contained in nonzero set

• do recursion if simplifications where possible

Parametric reduction

CReductionSeq	· · · · · · · · · · · · · · · · · · ·				
# engine : GreatestCommonDivisor <c></c>					
+ CReductionSeq(rf : RingFactory <c>)</c>					
+ SPolynomial(Ap : ColorPolynomial <c>, Bp : ColorPolynomial<c< td=""><th></th></c<></c>					
+ isTopReducible(P : List <colorpolynomial<c>>, A : ColorPolynor</colorpolynomial<c>					
+ isReducible(Pp : List <colorpolynomial<c>>, Ap : ColorPolynom</colorpolynomial<c>					
+ isNormalform(Pp : List <colorpolynomial<c>>, Ap : ColorPolyno</colorpolynomial<c>	mial <c>) : boolean</c>				
+ isNormalform(Pp : List <colorpolynomial<c>>) : boolean</colorpolynomial<c>					
+ normalform(c : Condition <c>, P : List<colorpolynomial<c>>, A : ColorPolynomial<c>) : ColorPolynomial<c></c></c></colorpolynomial<c></c>					
	+ caseDistinction(L:List <genpolynomial<genpolynomial<c>>>):List<condition<c>></condition<c></genpolynomial<genpolynomial<c>				
+ caseDistinction(cd:List <condition<c>>,A:GenPolynomial<genpolynomial<c>>):List<condition<c>></condition<c></genpolynomial<c></condition<c>					
+ caseDistinction(cond : Condition <c>, A : GenPolynomial<genpolynomial<genpolynomial< td=""></genpolynomial<genpolynomial<></c>					
+ determine(H: List <genpolynomial<genpolynomial<c>>>): List</genpolynomial<genpolynomial<c>					
+ determine(c : List <condition<c>>, H : List<genpolynomial<gen< td=""><th></th></genpolynomial<gen<></condition<c>					
	$\sim 10^{-1}$				
	$\sim 10^{-10}$				
	N N				
ColoredSystem	No. And Anna Anna Anna Anna Anna Anna Anna				
V.	and the second se				
C ¹⁺ condition	C				
	<u> </u>				
	ColorPolynomial				

2009

Reduction implementation

- works on colored polynomials
- parametric reduction ignores green terms
- but green terms are updated during computation: gives faith-full Gröbner system
- in normal-form green terms are copied to the result polynomial
- red or white terms are reduced with respect to a suitable (colored) polynomial in the reduction list
 - top-reduction stops if a non-reducible term is encountered

colored S-polynomials computed as usual

Construction of conditions (1)

- method determine(L) constructs a list of colored systems for a list of polynomials L, by
 - computing a list of conditions with method caseDistinction(L)
 - for each condition a colored system is computed with determine(C,L)
- a colored system consists of a condition together with a list of colored polynomials wrt. this condition
- the case distinction is constructed such that each colored polynomial has non-zero red term (or the white term is zero)

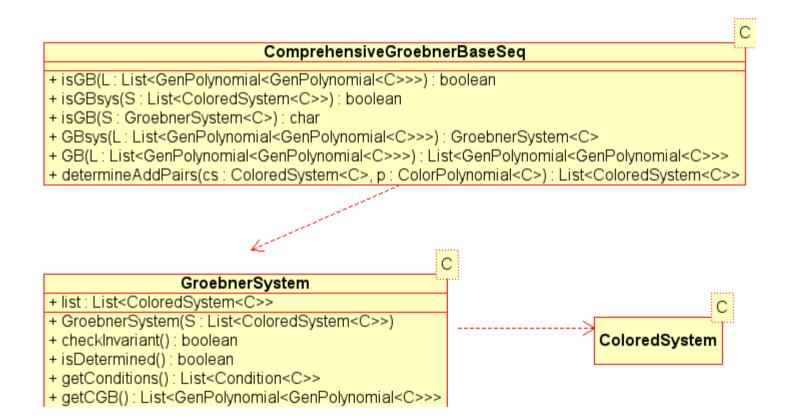
Construction of conditions (2)

- the algorithm checks the color each coefficient of each polynomial (in term order sequence) with respect to each existing condition
 - green coefficients are skipped
 - if a red coefficient appears, the polynomial is done
 - for a white coefficient the current condition is extended by adding the coefficient to the set of zero conditions and to the set of non-zero conditions

initially the list of conditions is made from one
 empty condition

Colored system

ColoredSystem + condition : Condition <c> + list : List<colorpolynomial<c>> + pairlist : OrderedCPairlist<c> + ColoredSystem(c : Condition<c>, S : List<colorpolynomial<c>>) + ColoredSystem(c : Condition<c>, S : List<colorpolynomial<c>>, pl : OrderedCPairlist + clone() : ColoredSystem<c> + equals(c : Object) : boolean + getConditionNonZero() : List<genpolynomial<c>> + getPolynomialList() : List<genpolynomial<c>> + getEssentialPolynomialList() : List<genpolynomial<c>>></genpolynomial<c></genpolynomial<c></genpolynomial<c></c></colorpolynomial<c></c></colorpolynomial<c></c></c></colorpolynomial<c></c>	irlist <c>)</c>
<pre>+ list : List<colorpolynomial<c>> + pairlist : OrderedCPairlist<c> + ColoredSystem(c : Condition<c>, S : List<colorpolynomial<c>>) + ColoredSystem(c : Condition<c>, S : List<colorpolynomial<c>>) + ColoredSystem(c : Condition<c>, S : List<colorpolynomial<c>>, pl : OrderedCPairl + clone() : ColoredSystem<c> + equals(c : Object) : boolean + getConditionZero() : List<genpolynomial<c>> + getConditionNonZero() : List<genpolynomial<c>> + getPolynomialList() : List<genpolynomial<c>>> + getEssentialPolynomialList() : List<genpolynomial<genpolynomial<c>>></genpolynomial<genpolynomial<c></genpolynomial<c></genpolynomial<c></genpolynomial<c></c></colorpolynomial<c></c></colorpolynomial<c></c></colorpolynomial<c></c></c></colorpolynomial<c></pre>	irlist <c>)</c>
<pre>+ pairlist : OrderedCPairlist<c> + ColoredSystem(c : Condition<c>, S : List<colorpolynomial<c>>) + ColoredSystem(c : Condition<c>, S : List<colorpolynomial<c>>, pl : OrderedCPair + clone() : ColoredSystem<c> + equals(c : Object) : boolean + getConditionZero() : List<genpolynomial<c>> + getConditionNonZero() : List<genpolynomial<c>> + getPolynomialList() : List<genpolynomial<c>> + getEssentialPolynomialList() : List<genpolynomial<genpolynomial<c>>></genpolynomial<genpolynomial<c></genpolynomial<c></genpolynomial<c></genpolynomial<c></c></colorpolynomial<c></c></colorpolynomial<c></c></c></pre>	irlist <c>)</c>
 ColoredSystem(c: Condition<c>, S: List<colorpolynomial<c>>)</colorpolynomial<c></c> + ColoredSystem(c: Condition<c>, S: List<colorpolynomial<c>>, pl: OrderedCPair</colorpolynomial<c></c> + clone(): ColoredSystem<c></c> + equals(c: Object): boolean + getConditionZero(): List<genpolynomial<c>></genpolynomial<c> + getConditionNonZero(): List<genpolynomial<c>></genpolynomial<c> + getPolynomialList(): List<genpolynomial<genpolynomial<c>>></genpolynomial<genpolynomial<c> + getEssentialPolynomialList(): List<genpolynomial<genpolynomial<c>>></genpolynomial<genpolynomial<c> 	irlist <c>)</c>
+ ColoredSystem(c : Condition <c>, S : List<colorpolynomial<c>>, pl : OrderedCPair + clone() : ColoredSystem<c> + equals(c : Object) : boolean + getConditionZero() : List<genpolynomial<c>> + getConditionNonZero() : List<genpolynomial<c>> + getPolynomialList() : List<genpolynomial<c>> + getEssentialPolynomialList() : List<genpolynomial<genpolynomial<c>>></genpolynomial<genpolynomial<c></genpolynomial<c></genpolynomial<c></genpolynomial<c></c></colorpolynomial<c></c>	irlist <c>)</c>
+ clone() : ColoredSystem <c> + equals(c : Object) : boolean + getConditionZero() : List<genpolynomial<c>> + getConditionNonZero() : List<genpolynomial<c>> + getPolynomialList() : List<genpolynomial<genpolynomial<c>>> + getEssentialPolynomialList() : List<genpolynomial<genpolynomial<c>>></genpolynomial<genpolynomial<c></genpolynomial<genpolynomial<c></genpolynomial<c></genpolynomial<c></c>	irlist <c>)</c>
+ equals(c : Object) : boolean + getConditionZero() : List <genpolynomial<c>> + getConditionNonZero() : List<genpolynomial<c>> + getPolynomialList() : List<genpolynomial<genpolynomial<c>>> + getEssentialPolynomialList() : List<genpolynomial<genpolynomial<c>>></genpolynomial<genpolynomial<c></genpolynomial<genpolynomial<c></genpolynomial<c></genpolynomial<c>	
+ getConditionZero(): List <genpolynomial<c>> + getConditionNonZero(): List<genpolynomial<c>> + getPolynomialList(): List<genpolynomial<genpolynomial<c>>> + getEssentialPolynomialList(): List<genpolynomial<genpolynomial<c>>></genpolynomial<genpolynomial<c></genpolynomial<genpolynomial<c></genpolynomial<c></genpolynomial<c>	
+ getConditionNonZero(): List <genpolynomial<c>> + getPolynomialList(): List<genpolynomial<genpolynomial<c>>> + getEssentialPolynomialList(): List<genpolynomial<genpolynomial<c>>></genpolynomial<genpolynomial<c></genpolynomial<genpolynomial<c></genpolynomial<c>	
+ getPolynomialList() : List <genpolynomial<genpolynomial<c>>> + getEssentialPolynomialList() : List<genpolynomial<genpolynomial<c>>></genpolynomial<genpolynomial<c></genpolynomial<genpolynomial<c>	
+ getEssentialPolynomialList() : List <genpolynomial<genpolynomial<c>>></genpolynomial<genpolynomial<c>	
+ checkInvariant() : boolean	
+ isDetermined() : boolean	
01 +pairlist +condition	01
0 i +paniist	×
C	С
OrderedCPairlist	dition
+ OrderedCPairlist(r : GenPolynomialRing <genpolynomial<c>>)</genpolynomial<c>	aluon
+ clone(): OrderedCPairlist <c></c>	
+ equals(ob : Object) : boolean	
+ put(p : ColorPolynomial <c>) : int</c>	
+ removeNext() : CPair <c></c>	
+ hasNext() : boolean	
+ getList() : List <colorpolynomial<c>></colorpolynomial<c>	С
+ putOne(one : ColorPolynomial <c>) : int</c>	
+ criterion3(i : int, j : int, eij : edu.jas.poly.ExpVector) : boolean	Pair



Gröbner systems

- method GB() of ComprehensiveGroebnerBaseSeq computes a Gröbner system with GBsys(), then extracts a comprehensive Gröbner base
- GroebnerSystem is a container for a list of colored systems
- method getCGB() extracts comprehensive Gröbner base as union of parametric polynomials from all contained colored polynomials
- has methods to check invariants or if each system is determined

Gröbner system and CGB

CGB construction (1)

- the list of ColoredSystems is initially constructed
- then each ColoredSystem is augmented by a critical pair list as in the standard Buchberger algorithm
- for each critical pair a parametric S-polynomial is constructed and reduced with respect to the list of colored polynomials
- if all reductions lead to the zero polynomial a colored system is done
- for a non-zero reduction polynomial the condition is eventually refined
- for each condition the list of colored systems is updated

CGB construction (2)

- branching and critical pair generation is done in method determineAddPairs()
- new generated colored systems are merged with the existing list of colored systems in method addToList() with test of equal conditions and lists of polynomials
- upon termination each colored polynomial list in each colored system is a Gröbner base for this condition

 termination is guaranteed by König's tree lemma together with Dickson's lemma

CGB tests (1)

- there are two tests to check if a given list of parametric polynomials is a CGB
- one test determines the polynomials and constructs a Gröbner system
 - for each colored system all critical pairs are constructed and the S-polynomials are parametrically reduced
 - if all these reductions lead to the zero polynomial (ignoring green parts), it is concluded that it is a Gröbner system

CGB tests (2)

- the other test also determines the polynomials and constructs the list of colored systems
 - for each condition a residue class ring modulo the zero ideal is constructed
 - the given polynomials are mapped to these residue class coefficient rings
 - over these rings a standard isGB() test is performed
 - additionally a test with random ideal is done

• if all these tests succeed, it is concluded that the given list of polynomials is a CGB

Overview

- Introduction to JAS
 - example with regular ring coefficients
- Comprehensive Gröbner Bases (CGB)
 - class layout
 - colored polynomials and conditions
 - parametric reductions and colored systems
 - Gröbner systems and CGB
- Examples

Conclusions

Raksanyi and Hawes examples

example	MAS time	conditions	JAS time	conditions
Raksanyi, S, Gr	40	3	520 / 229 / 190	5
Raksanyi, Lr	not impl.		344 / 134 / 94	3
Raksanyi, L	5630	22	511 / 225 / 175	4
Raksanyi, G	30	3	337 / 147 / 99	3
Hawes2, G	$> 20 \min$	_	1119 / 603 / 578	5

time in milliseconds, timings in slashes are for subsequent runs, Term order: G = graded, L = lexicographical, S = Gr = reverse graded, Lr = reverse lexicographical

Nabeshima examples

example	from $[16]$	cond	JAS, AMD, L	cond	JAS, AMD, G	cond
F_1	31	4	285 / 151 / 97	7	270 / 142 / 99	7
F_2	93	6	$2299 \ / \ 1765 \ / \ 1664$	12	509 / 281 / 165	10
F_3	2203	22	1186 / 720 / 660	29	1199 / 967 / 681	29
F_4	234	15	$1231 \ / \ 722 \ / \ 674$	34	$1365 \ / \ 845 \ / \ 751$	34
F_5	109	6	359 / 184 / 126	11	367 / 187 / 125	8
F_6	359	17	95 / 43 / 34	4	90 / 42 / 34	4
F_7	375	7	392 / 194 / 117	6	424 / 242 / 128	6
F_8	133200	458	$2548 \ / \ 1856 \ / \ 1788$	32	4883 / 4043 / 3664	32

time in milliseconds, timings in slashes are for subsequent runs,

Term order: G = graded, L = lexicographical,

cond = number of conditions.

Montes examples

example	JAS time	conditions	DISPGB time	conditions
11.1, L	777 / 308 / 327	23	8800	6
11.2, L	490 / 246 / 143	10	5200	6
11.3, L	1013 / 600 / 516	9	115900	7
11.4, L	371939 / 359274 / 355794	7	33000	7
5.1 simpl., L	248 / 95 / 86	3	8400	4

time in milliseconds, timings in slashes are for subsequent runs. DISPGB times from [14], Term order: G = graded, L = lexicographical.

Regular ring example (jython)

```
rs.regularRepresentationBC();
    print "boolean closed regular representation: "+str(rs);
    bg = rs.isRegularGB(); # → true
    CN
```

2009

Conclusions

- design and implementation of (faith-full) comprehensive Gröbner bases in Java
- generic object oriented design provides all required mathematical objects and structures
- conditions implemented as
 - "zero eq set" as ideal with membership test
 - "non zero set" as multiplicative set
- computing times in same magnitude as others
 - use residue class coefficient rings

Future work

- when multivariate polynomial factorization becomes ready, use it for multiplicative sets in conditions
- comprehensive Gröbner bases for solvable polynomial rings
- parallel versions of comprehensive Gröbner base computation

Thank you

- Questions or Comments?
- http://krum.rz.uni-mannheim.de/jas
- git http://krum.rz.uni-mannheim.de/jas.git
- Thanks to
 - Raphael Jolly, Thomas Becker
 - Markus Aleksy, Hans-Günther Kruse
 - W. K. Seiler, Dongming Wang, Th. Sturm
 - the referees

and other colleagues