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Java Algebra System (JAS)

● object oriented design of a computer algebra 
system

= software collection for symbolic (non-numeric) 
computations

● type safe through Java generic types
● thread safe, ready for multi-core CPUs
● use dynamic memory system with GC
● jython (Java Python) interactive scripting front 

end



  

Implementation overview

● 230+ classes and interfaces

● plus 100+ JUnit test cases

● uses JDK 1.6 with generic types
– Javadoc API documentation

– logging with Apache Log4j

– build tool is Apache Ant

– revision control with Subversion

● jython (Java Python) scripts 
– support for Sage like polynomial expressions

● open source, license is GPL or LGPL



  

Polynomial functionality



  

Polynomials over regular rings

rr = ResidueRing[ BigRational( x0, x1, x2 ) IGRLEX 
     ( ( x0^2 + 295/336  ), 
     ( x2 - 350/1593 x1 - 1100/2301 ) ) ]
L = [ 
     {0=x1 - 280/93 , 2=x0 * x1 - 33/23 } a^2 * b^3 
   + {0=122500/2537649 x1^3 + 770000/3665493 x1^2 
       + 14460385/47651409 x1 + 14630/89739 , 
      3=350/1593 x1 + 23/6 x0 + 1100/2301 } , 
    ... ]

example:
List<GenPolynomial<Product<Residue<BigRational>>>> 

R=ℚ[x1 ,, xn]

S '=∏℘∈spec R
R /℘[ y1 ,, yr ]

L⊂S=ℚ[x0 , x1 , x2]/ ideal F 4 [a ,b ]

a von Neuman regular ring



  

Regular ring construction

 1 List<GenPolynomial<Product<Residue<BigRational>>>> L
    = new ArrayList<GenPolynomial<Product<Residue<BigRational>>>>();

 2 BigRational bf = new BigRational(1);
 3 GenPolynomialRing<BigRational> pfac
    = new GenPolynomialRing<BigRational>(bf,3);
 4 List<GenPolynomial<BigRational>> F
    = new ArrayList<GenPolynomial<BigRational>>();
 5 GenPolynomial<BigRational> pp = null;
 6 for ( int i = 0; i < 2; i++) {
 7     pp = pfac.random(5,4,3,0.4f);
 8     F.add(pp);
 9 }
10 Ideal<BigRational> id = new Ideal<BigRational>(pfac,F);
11 id.doGB();
12 ResidueRing<BigRational> rr = new ResidueRing<BigRational>(id);
13 System.out.println("rr = " + rr);
14 ProductRing<Residue<BigRational>> pr
    = new ProductRing<Residue<BigRational>>(rr,4);
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Polynomial construction and GB

 1 List<GenPolynomial<Product<Residue<BigRational>>>> L = ...

15 String[] vars = new String[] { "a", "b" };
16 GenPolynomialRing<Product<Residue<BigRational>>> fac
    = new GenPolynomialRing<Product<Residue<BigRational>>>(pr,2,vars);
17 GenPolynomial<Product<Residue<BigRational>>> p;
18 for ( int i = 0; i < 3; i++) {
19     p = fac.random(2,4,4,0.4f);
20     L.add(p);
21 }
22 System.out.println("L = " + L);

23 GroebnerBase<Product<Residue<BigRational>>> bb
    = new RGroebnerBasePseudoSeq<Product<Residue<BigRational>>>(pr);

24 List<GenPolynomial<Product<Residue<BigRational>>>> G = bb.GB(L);
25 System.out.println("G = " + G);

compute Gröbner base
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CGB definitions

R=K [U 1 , ,U m]=K [U ]
S=R [ X 1 , , X n ]=R [X ]

● parametric polynomial ring

● specialization

● comprehensive GB

● Gröbner System

● Condition

● colorings

● determined polynomials

sigma : R K ' ,SK ' [X 1 , , X n]

F⊂S , ideal F  ,G⊂S , given 

sigma G  is GB for ideal  sigma F 

GS={gamma ,Ggamma ∣Ggamma⊂S }

gamma={z i U =0}∪{n j U ≠0}

col a =g r e e n , if a ∈ {z i U =0}
col a =r e d , if a ∈ {n j U ≠0}
col a =w hi t e ,else

p ∈ S , p = p g r e e n pr e d pwh i t e
with pg r e e n pr e d pwhi t e



  

Classes overview



  

Classes overview (cont.)

● Gröbner systems as lists of colored systems
● a colored system consists of a condition, a list 

of colored polynomials and a critical pair list
● colored polynomial is a tuple (green, red, white) 

of polynomials with coefficients colored with 
respect to a condition

● parametric reduction relative to a condition
● implementation for parametric polynomials 
GenPolynomial<GenPolynomial<C>>

● classes have type parameters C extends 
RingElem<C> 



  

Condition and colored polynomial



  

Condition

● condition 

● two finite sets of 
● polynomial equations 
● polynomial inequalities

● method color(c) returns green, red or white if c is 
contained in the respective set

● method determine(A) returns a colored polynomial

● methods to extend the condition
● extendZero(z): Condition

● extendNonZero(n): Condition 

z U  = 0

n U  ≠ 0

gamma = {z i U  = 0} ∪ {n j U  ≠ 0}



  

Colored Polynomial

● consists of a green, red and white part
● with green > red > white for non-zero parts with 

respect to the given term order >
● test if the restriction holds: checkInvariant()

● test if the red part is non-zero or the white part is 
also zero: isDetermined()
● arithmetic as far as is required by parametric reduction
● tests if the polynomial is zero or one by ignoring the 

green part
● methods to extract parametric polynomials



  

Condition implementation (1)

● replace 'zero set' by 'ideal' to have more 
efficient containment test
● set containment then ideal membership test
● by lazy Gröbner base computation
● moreover square-free polynomials give radical 

membership test

● replace 'non-zero set' by 'multiplicative set'
● set containment then product of factors test
● elements are kept co-prime, or square-fee and co-

prime, or irreducible
● default is square-free and co-prime



  

Condition implementation (2)

● the extension methods try to add only 'small' 
polynomials to the respective set
● take residues with respect to the zero ideal
● remove factors from multiplicative set

● recursively simplify the resulting condition simplify()
● make zero ideal polynomials square-free
● reduce multiplicative set modulo zero ideal
● take co-prime (etc) factors for multiplicative set  
● remove factors from zero set which are contained in non-

zero set
● do recursion if simplifications where possible



  

Parametric reduction



  

Reduction implementation

● works on colored polynomials
● parametric reduction ignores green terms
● but green terms are updated during computation: 

gives faith-full Gröbner system
● in normal-form green terms are copied to the 

result polynomial
● red or white terms are reduced with respect to a 

suitable (colored) polynomial in the reduction list
● top-reduction stops if a non-reducible term is 

encountered  
● colored S-polynomials computed as usual



  

Construction of conditions (1)

● method determine(L) constructs a list of colored 
systems for a list of polynomials L, by
● computing a list of conditions with method 
caseDistinction(L)

● for each condition a colored system is computed with 
determine(C,L)

● a colored system consists of a condition together 
with a list of colored polynomials wrt. this condition

● the case distinction is constructed such that each 
colored polynomial has non-zero red term (or the 
white term is zero)



  

Construction of conditions (2)

● the algorithm checks the color each coefficient 
of each polynomial (in term order sequence) 
with respect to each existing condition
● green coefficients are skipped
● if a red coefficient appears, the polynomial is done
● for a white coefficient the current condition is 

extended by adding the coefficient to the set of 
zero conditions and to the set of non-zero 
conditions

● initially the list of conditions is made from one 
empty condition



  

Colored system



  

Gröbner systems 

● method GB() of ComprehensiveGroebnerBaseSeq 
computes a Gröbner system with GBsys(), then 
extracts a comprehensive Gröbner base

● GroebnerSystem is a container for a list of colored 
systems

● method getCGB() extracts comprehensive 
Gröbner base as union of parametric polynomials 
from all contained colored polynomials

● has methods to check invariants or if each system 
is determined



  

Gröbner system and CGB



  

CGB construction (1)

● the list of ColoredSystems is initially constructed

● then each ColoredSystem is augmented by a critical pair list 
as in the standard Buchberger algorithm

● for each critical pair a parametric S-polynomial is constructed 
and reduced with respect to the list of colored polynomials

● if all reductions lead to the zero polynomial a colored system 
is done

● for a non-zero reduction polynomial the condition is 
eventually refined 

● for each condition the list of colored systems is updated



  

CGB construction (2)

● branching and critical pair generation is done in 
method determineAddPairs()

● new generated colored systems are merged 
with the existing list of colored systems in 
method addToList() with test of equal 
conditions and lists of polynomials

● upon termination each colored polynomial list in 
each colored system is a Gröbner base for this 
condition
● termination is guaranteed by König's tree lemma 

together with Dickson's lemma



  

CGB tests (1)

● there are two tests to check if a given list of 
parametric polynomials is a CGB

● one test determines the polynomials and 
constructs a Gröbner system
● for each colored system all critical pairs are 

constructed and the S-polynomials are 
parametrically reduced

● if all these reductions lead to the zero polynomial 
(ignoring green parts), it is concluded that it is a 
Gröbner system



  

CGB tests (2)

● the other test also determines the polynomials 
and constructs the list of colored systems
● for each condition a residue class ring modulo the 

zero ideal is constructed
● the given polynomials are mapped to these 

residue class coefficient rings
● over these rings a standard isGB() test is 

performed
● additionally a test with random ideal is done
● if all these tests succeed, it is concluded that the 

given list of polynomials is a CGB
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Raksanyi and Hawes examples

time in milliseconds, timings in slashes are for subsequent runs,  
Term order: G = graded, L = lexicographical, S = Gr = reverse graded, 

Lr = reverse lexicographical



  

Nabeshima examples

time in milliseconds, timings in slashes are for subsequent runs,
Term order: G = graded, L = lexicographical, 

cond = number of conditions.



  

Montes examples

time in milliseconds, timings in slashes are for subsequent runs. 
DISPGB times from [14],

Term order: G = graded, L = lexicographical. 



  

r = PolyRing(PolyRing(QQ(),"a1,a2,a3,a4",PolyRing.grad),
             "x1,x2,x3,x4",PolyRing.lex);
[one,a1,a2,a3,a4,x1,x2,x3,x4] = r.gens();

pl = [ ( x4 - ( a4 - a2 ) ),
      ( x1 + x2 + x3 + x4 - ( a1 + a3 + a4 ) ),
      ( x1 * x3 + x1 * x4 + x2 * x3 + x3 * x4 - ( a1 * a4 + a1 * 
a3 + a3 * a4 ) ),
      ( x1 * x3 * x4 - ( a1 * a3 * a4 ) ) 
     ];
f = ParamIdeal(r,list=pl);
gs = f.CGBsystem();
bg = gs.isCGBsystem(); #  true→

rs.regularRepresentationBC();
print "boolean closed regular representation: "+str(rs);
bg = rs.isRegularGB(); #  true→

Regular ring example (jython)



  

Conclusions

● design and implementation of (faith-full) 
comprehensive Gröbner bases in Java

● generic object oriented design provides all 
required mathematical objects and structures

● conditions implemented as
● “zero eq set” as ideal with membership test
● “non zero set” as multiplicative set

● computing times in same magnitude as others
● use residue class coefficient rings



  

Future work

● when multivariate polynomial factorization 
becomes ready, use it for multiplicative sets in 
conditions

● comprehensive Gröbner bases for solvable 
polynomial rings

● parallel versions of comprehensive Gröbner 
base computation
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Thank you

● Questions or Comments?
● http://krum.rz.uni-mannheim.de/jas
● git http://krum.rz.uni­mannheim.de/jas.git

● Thanks to
● Raphael Jolly, Thomas Becker
● Markus Aleksy, Hans-Günther Kruse
● W. K. Seiler, Dongming Wang, Th. Sturm
● the referees
● and other colleagues

http://krum.rz.uni-mannheim.de/jas
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