
Distributed hybrid
Gröbner bases computation

Heinz Kredel
University of Mannheim

ECDS at CISIS 2010, Krakow

2

Overview

● Introduction to JAS
● Gröbner bases

● sequential and parallel algorithm
● problems with parallel computation

● Distributed and distributed hybrid algorithm
● execution middle-ware
● data structure middle-ware

● Evaluation
● termination, selection strategies, hardware

● Conclusions and future work

3

Java Algebra System (JAS)

● object oriented design of a computer algebra system

= software collection for symbolic (non-numeric)
computations

● type safe through Java generic types
● thread safe, ready for multi-core CPUs
● use dynamic memory system with GC
● 64-bit ready
● jython (Java Python) interactive scripting front end

4

Implementation overview

● 250+ classes and interfaces
● plus ~120 JUnit test classes,3800+ assertion tests
● uses JDK 1.6 with generic types

– Javadoc API documentation
– logging with Apache Log4j
– build tool is Apache Ant
– revision control with Subversion
– public git repository

● jython (Java Python) scripts
– support for Sage like polynomial expressions

● open source, license is GPL or LGPL

5

Polynomial functionality

6

Example: Legendre polynomials
P[0] = 1; P[1] = x;
P[i] = 1/i ((2i-1) * x * P[i-1] - (i-1) * P[i-2])

BigRational fac = new BigRational();
String[] var = new String[]{ "x" };
GenPolynomialRing<BigRational> ring
 = new GenPolynomialRing<BigRational>(fac,1,var);
List<GenPolynomial<BigRational>> P
 = new ArrayList<GenPolynomial<BigRational>>(n);
GenPolynomial<BigRational> t, one, x, xc, xn; BigRational n21, nn;

one = ring.getONE(); x = ring.univariate(0);
P.add(one); P.add(x);
for (int i = 2; i < n; i++) {
 n21 = new BigRational(2*i-1); xc = x.multiply(n21);
 t = xc.multiply(P.get(i-1));
 nn = new BigRational(i-1); xc = P.get(i-2).multiply(nn);
 t = t.subtract(xc); nn = new BigRational(1,i);
 t = t.multiply(nn); P.add(t);
}
int i = 0;
for (GenPolynomial<BigRational> p : P) {
 System.out.println("P["+(i++)+"] = " + P);
}

7

Overview

● Introduction to JAS
● Gröbner bases

● sequential and parallel algorithm
● problems with parallel computation

● Distributed and distributed hybrid algorithm
● execution middle-ware
● data structure middle-ware

● Evaluation
● termination, selection strategies, hardware

● Conclusions and future work

8

Gröbner bases

● canonical bases in polynomial rings
● like Gauss elimination in linear algebra
● like Euclidean algorithm for univariate polynomials
● with a Gröbner base many problems can be solved

● solution of non-linear systems of equations
● existence of solutions
● solution of parametric equations

● slower than multivariate Newton iteration in numerics
● but in computer algebra no round-off errors
● so guarantied correct results

R = C [x1 , , xn]

9

Buchberger algorithm
algorithm: G = GB(F)
input: F a list of polynomials in R[x1,...,xn]
output: G a Gröbner Base of ideal(F)

G = F;
B = { (f,g) | f, g in G, f != g };
while (B != {}) {
 select and remove (f,g) from B;
 s = S-polynomial(f,g);
 h = normalform(G,s); // expensive operation
 if (h != 0) {
 for (f in G) { add (f,h) to B }
 add h to G;
 }
} // termination ? Size of B changes
return G

10

Problems with the GB algorithm

● requires exponential space (in the number of variables)

● even for arbitrary many processors no polynomial time
algorithm will exist

● highly data depended
● number of pairs unknown (size of B)

● size of polynomials s and h unknown
● size of coefficients
● degrees, number of terms

● management of B is sequential
● strategy for the selection of pairs from B

● depends moreover on speed of reducers

11

Gröbner base classes

12

Overview

● Introduction to JAS
● Gröbner bases

● sequential and parallel algorithm
● problems with parallel computation

● Distributed and distributed hybrid algorithm
● execution middle-ware
● data structure middle-ware

● Evaluation
● termination, selection strategies, hardware

● Conclusions and future work

13

bwGRiD cluster architecture

● 8-core CPU nodes @ 2.83 GHz, 16GB, 140 nodes
● shared Lustre home directories
● 10Gbit InfiniBand and 1Gbit Ethernet interconnects
● managed by PBS batch system with Maui scheduler
● running Java 64bit server VM 1.6 with 4+GB memory
● start Java VMs with daemons on allocated nodes
● communication via TCP/IP interface over InfiniBand
● no Java high performance interface to InfiniBand
● alternative Java via MPI not studied
● other middle-ware ProActive or GridGain not studied

14

Distributed hybrid GB algorithm

● main method GB()

● distribute list G via distributed hash table (DHT)

● start HybridReducerServer threads for each node

● together with a HybridReducerReceiver thread

● clientPart() starts multiple HybridReducerClients threads

● establish one control network connection per node

● select pair and send to distributed client

– send index of polynomial in G

● clients perform S-polynomial and normalform computation send
result back to master

● master eventually inserts new pairs to B and adds polynomial to G
in DHT

15

DHT

reducer
client

Thread to node mapping

DHT
DHT

server

critical
pairs reducer

server

reducer
receiver

reducer
server

reducer
receiver

...

idle
count

...

DHT

reducer
client

multi-CPU nodesmaster node

one connection per node

16

Middleware overview

ExecutableServer

master node a client node

Distributed
Thread

clientPart()

Reducer
Client

DHT
Client

GBDist

Distributed
ThreadPool

GB()
DHT
Client

Reducer
Server

DHT Server

InfiniBand

17

Execution middle-ware (nodes)

● on compute nodes do basic bootstrapping
● start daemon class ExecutableServer
● listens on connections (no security constrains)
● start thread with Executor for each connection
● receives (serialized) objects with RemoteExecutable

interface
● execute the run() method
● communication and further logic is implemented in

the run() method
● multiple processes as threads in one JVM

same as for distributed algorithm

18

Execution middle-ware (master)

● start DistThreadPool similar to ThreadPool
● starts threads for each compute node
● list of compute nodes taken from PBS
● starts connections to all nodes with
ExecutableChannel

● can start multiple tasks on nodes to use multiple CPU
cores via open(n) method

● method addJob() on master
● send a job to a remote node and wait until termination

(RMI like)

same as for distributed algorithm

19

Execution middle-ware usage

● Gröbner base master GBDistHybrid

● initialize DistThreadPool with PBS node list

● initialize GroebnerBaseDistributedHybrid
● execute() method of GBDistHybrid

● add remote computation classes as jobs
● execute clientPart() method in jobs

– is HybridReducerClient above

● calls main GB() method

– start HybridReducerServer above

– which then starts HybridReducerReceiver

mostly same as for distributed algorithm

20

Communication middle-ware

● one (TCP/IP) connection per compute node
● request and result messages can overlap
● solved with tagged message channel

● message is tagged with a label, so receive() can select
messages with specific tags

● implemented in class TaggedSocketChannel

● methods with tag parameter
– send(tag,object) and receive(tag)

● implemented with blocking queues for each tag and a
separate receiving thread

● alternative: java.nio.channels.Selector

21

Data structure middle-ware

● sending of polynomials involves
● serialization and de-serialization time
● and communication time

● avoid sending via a distributed data structure
● implemented as distributed list
● runs independently of main GB master
● setup in GroebnerBaseDistributedHybrid constructor

and clientPart() method
● then only indexes of polynomials need to be

communicated

improved version

22

Distributed polynomial list

● distributed list implemented as distributed hash table
(DHT)

● key is list index
● implemented with generic types
● class DistHashTable extends java.util.AbstractMap

● methods clear(), get() and put() as in HashMap

● method getWait(key) waits until a value for a key has
arrived

● method putWait(key,value) waits until value has
arrived at the master and is received back

● no guaranty that value is received on all nodes

improved version

23

DHT implementation (1)

● implemented as central control DHT
● client part on node uses TreeMap as store

● client DistributedHashTable connects to master

● master class DistributedHashTableServer
● put() methods send key-value pair to a master
● master then broadcasts key-value pair to all nodes
● get() method takes value from local TreeMap
● in future implement DHT with decentralized control

improved version

24

DHT implementation (2)

● in master process de-serialization of polynomials is
now avoided

● broadcast to clients in master now use serialized
polynomials in marshaled objects

● master is co-located to master of GB computation on
same compute node

● this doubles memory requirements on master node
● this increases the CPU load on the master

● limits scaling of master for more nodes

improved version

25

Marshalled objects

● reduce serialization overhead in DHT for polynomials
● use class MarshalledObject from java.rmi

● polynomials on DHT master are no more de-serialized
and re-serialized

● serialization and de-serialization takes place only upon
entry and exit in client side DHT

● timing samples from distributed and hybrid GB
● sum of encoding and decoding
● plus sum of marshalled object encoding and decoding

example 1 2 3 4

plain 2461 2364 1289 1100

marshall 487 765 394 594

26

Overview

● Introduction to JAS
● Gröbner bases

● sequential and parallel algorithm
● problems with parallel computation

● Distributed and distributed hybrid algorithm
● execution middle-ware
● data structure middle-ware

● Evaluation
● termination, selection strategies, hardware

● Conclusions and future work

27

Termination (1)

● single thread can check if B is empty
● tests in case of multiple threads

● B is empty
● and all threads are idle

● distributed hybrid termination
● idle client requests critical pair
● thread on master waits for such requests, then

– if B is empty and all threads are idle then terminate
– if B is not empty then take pair and send to reducer client
– if B is empty and threads are working, then sleep and

recheck on wake-up
● thread on master responsible for multiple node threads

28

Termination (2)

 : critical-pairs : idle-count

3:

5:

6:

 : receiver : client

send result

decrement

 : server

increment

request pair

request next pair

retrieve pair

4:

1:
2:

7:

record result

29

Termination (3)

● multiple requests over the same connection
● uses TaggedSocketChannel

● send critical pair: receiving thread may not be the
same as requesting thread

● pair handling thread may be blocked for requests
● so helper thread HybridReducerReceiver for

result polynomials is required
● record the result in the pair-list data structure
● update idle threads count
● send back acknowledgment
● need to identify exact receiving thread: message tag

30

Termination (4)

● processing sequence in a master thread
● receive reduction request
● update idle threads count
● retrieve a critical pair and update the pair-list
● send pair-index to client

● acknowledgment ensures that the reduction request
does not overlap with the other steps

● acknowledgment reduces parallelism, but required for
book-keeping

31

Termination (5)

● processing sequence of client reducer thread
● send pair request to master
● receive pair index
● process pair

– retrieve polynomials from DTH via index
– compute S-polynomial and a normal form

● send result polynomial to master receiver
● wait for acknowledgment from master

32

Different lcm sequences

33

H-polynomial sequences

34

Selection strategies (1)

● best to use the same order of polynomials and pairs
as in sequential algorithm

● selection algorithm is sequential
● so optimizations reduce parallelism

● Attardi & Traverso: 'strategy-accurate' algorithm
● rest reduction sequential
● only top-reduction in parallel

35

Selection strategies (2)

● Amrhein & Gloor & Küchlin:
● work parallel: n reductions in parallel
● search parallel: select best from k results

● Kredel:
● n reductions in parallel, select first finished
● select result in same sequence as reduction is started,

not the first finished

36

Hardware

● InfiniBand 10Gbit node to node
● 1 Gbit Ethernet shared between 14 nodes
● use TCP/IP stack on InfiniBand
● bypass TCP/IP stack eventually in JDK 1.7

● JAS doesn't compile on JDK 1.7 due to compiler bug

37

Conclusions

● first version of a distributed hybrid GB algorithm
● runs on a HPC cluster in PBS environment
● shared memory parallel version scales up to 8 CPUs
● runtime of distributed version is comparable to parallel

version, speed-up of ~4
● runtime of distributed hybrid is comparable to distributed

version, speed-up of ~4
● reduced communication between nodes, shared channels
● serialization overhead reduced with marshaled objects
● less memory required on nodes comp. dist. version
● new package is now type-safe with generic types
● developed classes fit in Gröbner base class hierarchy

38

Future work

● profile and study run-time behavior in detail
● investigate other grid middle-ware
● improve integration into the grid environment
● study other result selection strategies
● compute sequential Gröbner bases with respect to

different term orders in parallel
● test with JDK 1.7
● test other examples

39

Thank you

● Questions or Comments?
● http://krum.rz.uni-mannheim.de/jas
● Thanks to

● Raphael Jolly
● Thomas Becker
● Hans-Günther Kruse
● bwGRiD for providing computing time
● the referees
● and other colleagues

http://krum.rz.uni-mannheim.de/jas

	title
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27
	Folie 28
	Folie 29
	Folie 30
	Folie 31
	Folie 32
	Folie 33
	Folie 34
	Folie 35
	Folie 36
	Folie 37
	Folie 38
	Schluss

