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Java Algebra System (JAS)

● object oriented design of a computer algebra system

= software collection for symbolic (non-numeric) 
computations

● type safe through Java generic types
● thread safe, ready for multi-core CPUs
● use dynamic memory system with GC
● 64-bit ready
● jython (Java Python) interactive scripting front end
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Implementation overview

● 250+ classes and interfaces
● plus ~120 JUnit test classes,3800+ assertion tests
● uses JDK 1.6 with generic types

– Javadoc API documentation
– logging with Apache Log4j
– build tool is Apache Ant
– revision control with Subversion
– public git repository

● jython (Java Python) scripts 
– support for Sage like polynomial expressions

● open source, license is GPL or LGPL
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Polynomial functionality
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Example: Legendre polynomials
P[0] = 1;    P[1] = x;
P[i] = 1/i ( (2i-1) * x * P[i-1] - (i-1) * P[i-2] )

BigRational fac = new BigRational();  
String[] var = new String[]{ "x" };
GenPolynomialRing<BigRational> ring 
 = new GenPolynomialRing<BigRational>(fac,1,var);
List<GenPolynomial<BigRational>> P 
 = new ArrayList<GenPolynomial<BigRational>>(n);
GenPolynomial<BigRational> t, one, x, xc, xn; BigRational n21, nn;

one = ring.getONE(); x = ring.univariate(0);
P.add( one ); P.add( x );
for ( int i = 2; i < n; i++ ) {
        n21 = new BigRational( 2*i-1 );  xc = x.multiply( n21 );
        t = xc.multiply( P.get(i-1) ); 
        nn = new BigRational( i-1 ); xc = P.get(i-2).multiply( nn );
        t = t.subtract( xc );  nn = new BigRational(1,i);
        t = t.multiply( nn ); P.add( t );
}
int i = 0;              
for ( GenPolynomial<BigRational> p : P ) {
     System.out.println("P["+(i++)+"] = " + P);
}
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Gröbner bases

● canonical bases in polynomial rings
● like Gauss elimination in linear algebra
● like Euclidean algorithm for univariate polynomials
● with a Gröbner base many problems can be solved

● solution of non-linear systems of equations
● existence of solutions
● solution of parametric equations

● slower than multivariate Newton iteration in numerics
● but in computer algebra no round-off errors
● so guarantied correct results 

R = C [ x1 , , xn ]
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Buchberger algorithm
algorithm: G = GB( F )
input: F a list of polynomials in R[x1,...,xn]
output: G a Gröbner Base of ideal(F)

G = F;
B = { (f,g) | f, g in G, f != g };
while ( B != {} ) {
  select and remove (f,g) from B;
  s = S-polynomial(f,g);
  h = normalform(G,s); // expensive operation
  if ( h != 0 ) {
     for ( f in G ) { add (f,h) to B }
     add h to G;
  }
} // termination ? Size of B changes
return G
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Problems with the GB algorithm

● requires exponential space (in the number of variables)

● even for arbitrary many processors no polynomial time 
algorithm will exist

● highly data depended 
● number of pairs unknown (size of B)

● size of polynomials s and h unknown
● size of coefficients
● degrees, number of terms

● management of B is sequential
● strategy for the selection of pairs from B

● depends moreover on speed of reducers
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Gröbner base classes
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bwGRiD cluster architecture

● 8-core CPU nodes @ 2.83 GHz, 16GB, 140 nodes 
● shared Lustre home directories
● 10Gbit InfiniBand and 1Gbit Ethernet interconnects
● managed by PBS batch system with Maui scheduler
● running Java 64bit server VM 1.6 with 4+GB memory
● start Java VMs with daemons on allocated nodes
● communication via TCP/IP interface over InfiniBand
● no Java high performance interface to InfiniBand
● alternative Java via MPI not studied
● other middle-ware ProActive or GridGain not studied
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Distributed hybrid GB algorithm

● main method GB()

● distribute list G via distributed hash table (DHT)

● start HybridReducerServer threads for each node

● together with a HybridReducerReceiver thread

● clientPart() starts multiple HybridReducerClients threads

● establish one control network connection per node

● select pair and send to distributed client

– send index of polynomial in G 

● clients perform S-polynomial and normalform computation send 
result back to master

● master eventually inserts new pairs to B and adds polynomial to G 
in DHT
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Middleware overview
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Execution middle-ware (nodes)

● on compute nodes do basic bootstrapping
● start daemon class ExecutableServer 
● listens on connections (no security constrains)
● start thread with Executor for each connection
● receives (serialized) objects with RemoteExecutable 

interface
● execute the run() method
● communication and further logic is implemented in 

the run() method
● multiple processes as threads in one JVM

same as for distributed algorithm
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Execution middle-ware (master)

● start DistThreadPool similar to ThreadPool
● starts threads for each compute node
● list of compute nodes taken from PBS
● starts connections to all nodes with 
ExecutableChannel 

● can start multiple tasks on nodes to use multiple CPU 
cores via open(n) method

● method addJob() on master 
● send a job to a remote node and wait until termination 

(RMI like)

same as for distributed algorithm
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Execution middle-ware usage

● Gröbner base master GBDistHybrid

● initialize DistThreadPool with PBS node list

● initialize GroebnerBaseDistributedHybrid 
● execute() method of GBDistHybrid

● add remote computation classes as jobs
● execute clientPart() method in jobs

– is HybridReducerClient above

● calls main GB() method 

– start HybridReducerServer above

– which then starts HybridReducerReceiver

mostly same as for distributed algorithm
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Communication middle-ware

● one (TCP/IP) connection per compute node
● request and result messages can overlap
● solved with tagged message channel

● message is tagged with a label, so receive() can select 
messages with specific tags 

● implemented in class TaggedSocketChannel

● methods with tag parameter
– send(tag,object) and receive(tag) 

● implemented with blocking queues for each tag and a 
separate receiving thread

● alternative: java.nio.channels.Selector
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Data structure middle-ware

● sending of polynomials involves
● serialization and de-serialization time
● and communication time

● avoid sending via a distributed data structure
● implemented as distributed list
● runs independently of main GB master
● setup in GroebnerBaseDistributedHybrid constructor 

and clientPart() method
● then only indexes of polynomials need to be 

communicated

improved version
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Distributed polynomial list

● distributed list implemented as distributed hash table 
(DHT)

● key is list index
● implemented with generic types
● class DistHashTable extends java.util.AbstractMap

● methods clear(), get() and put() as in HashMap

● method getWait(key) waits until a value for a key has 
arrived 

● method putWait(key,value) waits until value has 
arrived at the master and is received back

● no guaranty that value is received on all nodes

improved version
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DHT implementation (1)

● implemented as central control DHT
● client part on node uses TreeMap as store

● client DistributedHashTable connects to master

● master class DistributedHashTableServer
● put() methods send key-value pair to a master
● master then broadcasts key-value pair to all nodes
● get() method takes value from local TreeMap
● in future implement DHT with decentralized control

improved version
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DHT implementation (2)

● in master process de-serialization of polynomials is 
now avoided

● broadcast to clients in master now use serialized 
polynomials in marshaled objects

● master is co-located to master of GB computation on 
same compute node

● this doubles memory requirements on master node
● this increases the CPU load on the master 

● limits scaling of master for more nodes

improved version
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Marshalled objects

● reduce serialization overhead in DHT for polynomials
● use class MarshalledObject from java.rmi 

● polynomials on DHT master are no more de-serialized 
and re-serialized

● serialization and de-serialization takes place only upon 
entry and exit in client side DHT

● timing samples from distributed and hybrid GB
● sum of encoding and decoding 
● plus sum of marshalled object encoding and decoding

example 1 2 3 4

plain 2461 2364 1289 1100

marshall 487 765 394 594
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Termination (1)

● single thread can check if B is empty
● tests in case of multiple threads

● B is empty
● and all threads are idle

● distributed hybrid termination
● idle client requests critical pair
● thread on master waits for such requests, then

– if B is empty and all threads are idle then terminate
– if B is not empty then take pair and send to reducer client
– if B is empty and threads are working, then sleep and 

recheck on wake-up
● thread on master responsible for multiple node threads 
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Termination (2)

 : critical-pairs  : idle-count

3: 

5: 

6: 

 : receiver  : client

send result

decrement

 : server

increment

request pair

request next pair

retrieve pair

4: 

1: 
2: 

7: 

record result
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Termination (3)

● multiple requests over the same connection
● uses TaggedSocketChannel

● send critical pair: receiving thread may not be the 
same as requesting thread

● pair handling thread may be blocked for requests
● so helper thread HybridReducerReceiver for 

result polynomials is required
● record the result in the pair-list data structure
● update idle threads count
● send back acknowledgment
● need to identify exact receiving thread: message tag
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Termination (4)

● processing sequence in a master thread
● receive reduction request
● update idle threads count
● retrieve a critical pair and update the pair-list
● send pair-index to client

● acknowledgment ensures that the reduction request 
does not overlap with the other steps

● acknowledgment reduces parallelism, but required for 
book-keeping
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Termination (5)

● processing sequence of client reducer thread
● send pair request to master
● receive pair index
● process pair

– retrieve polynomials from DTH via index
– compute S-polynomial and a normal form

● send result polynomial to master receiver
● wait for acknowledgment from master
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Different lcm sequences
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H-polynomial sequences
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Selection strategies (1)

● best to use the same order of polynomials and pairs 
as in sequential algorithm

● selection algorithm is sequential
● so optimizations reduce parallelism

● Attardi & Traverso: 'strategy-accurate' algorithm
● rest reduction sequential
● only top-reduction in parallel
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Selection strategies (2)

● Amrhein & Gloor & Küchlin:
● work parallel: n reductions in parallel
● search parallel: select best from k results

● Kredel:
● n reductions in parallel, select first finished
● select result in same sequence as reduction is started, 

not the first finished
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Hardware

● InfiniBand 10Gbit node to node
● 1 Gbit Ethernet shared between 14 nodes
● use TCP/IP stack on InfiniBand
● bypass TCP/IP stack eventually in JDK 1.7

● JAS doesn't compile on JDK 1.7 due to compiler bug 
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Conclusions

● first version of a distributed hybrid GB algorithm
● runs on a HPC cluster in PBS environment
● shared memory parallel version scales up to 8 CPUs
● runtime of distributed version is comparable to parallel 

version, speed-up of ~4
● runtime of distributed hybrid is comparable to distributed 

version, speed-up of ~4
● reduced communication between nodes, shared channels
● serialization overhead reduced with marshaled objects
● less memory required on nodes comp. dist. version
● new package is now type-safe with generic types
● developed classes fit in Gröbner base class hierarchy
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Future work

● profile and study run-time behavior in detail
● investigate other grid middle-ware
● improve integration into the grid environment
● study other result selection strategies
● compute sequential Gröbner bases with respect to 

different term orders in parallel
● test with JDK 1.7
● test other examples
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Thank you

● Questions or Comments?
● http://krum.rz.uni-mannheim.de/jas
● Thanks to

● Raphael Jolly
● Thomas Becker 
● Hans-Günther Kruse
● bwGRiD for providing computing time
● the referees
● and other colleagues

http://krum.rz.uni-mannheim.de/jas
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