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Java Algebra System (JAS)

● object oriented design of a computer algebra 
system

= software collection for symbolic (non-numeric) 
computations

● type safe through Java generic types
● thread safe, ready for multi-core CPUs
● use dynamic memory system with GC
● 64-bit ready
● jython (Java Python) and jruby (Java Ruby) 

interactive scripting front ends
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Socket middle-ware overview
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EC execution middle-ware (1)

● on compute nodes do basic bootstrapping
– daemon class ExecutableServer 

– runs thread with Executor for each connection

– receives objects and execute the run() method

– multiple processes as threads in one JVM
● on master start DistThreadPool 

– start threads for each compute node

– starts connections to all nodes with 
ExecutableChannel, gives the name EC

– can start multiple tasks on nodes: multiple cores



EOOPS

 EC execution middle-ware (2)

● client-server programming model

● list of compute nodes taken from PBS

● method addJob() on master 

● send a job to a remote node and wait until termination

● method GB() executed on master

– schedules clientPart() method/class as 
distributed threads to nodes 

– runs GBMaster()
● starts DHT client
● initialize communication channels
● start further threads
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MPJ middle-ware overview
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MPJ execution middle-ware

● single-program multiple-data (SPMD) 
programming model

● execution within MPJ runtime environment
● GB() method executed on all nodes

– rank 0: execute GBmaster()

– rank > 0: execute clientPart()

● adapters between JAS and MPJ
– MPJEngine

– MPJChannel

● ibvdev not thread-safe in FastMPJ V1.0b
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JAS to MPJ adapters

● MPJEngine
– getCommunicator() delegates to mpi.MPI.Init()

– terminate() delegates to mpi.MPI.Finalize()

– waitRequest() within a global lock

– get*Lock(.) to obtain global locks

● MPJChannel
– send() delegates to mpi.Comm.Send()

– receive() delegates to mpi.Comm.Recv()

– also be used for Isend, Irecv together with 
Request.Wait()
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Data structure middle-ware

● sending of polynomials to nodes involves
– serialization and de-serialization time

– and communication time

● minimize communication by replicating list on 
each node in a distributed data structure

● avoid explicit sending in GB to simplify protocol
● distributed list implemented as distributed hash 

table (DHT)
● key is list index
● implemented with generic types
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DHT overview

● class DistHashTable extends 
java.util.AbstractMap

– same for EC and MPJ versions

● methods clear(), get() and put() as in HashMap
● method getWait(key) waits until a value for a 

key has arrived 
● method putWait(key,value) waits until value is 

received back
● no guaranty that value is received on all nodes
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DHT-EC implementation

● client part on node use shared memory TreeMap 
● implemented as central control DHT

– put() sends key-value pair to a master

– master broadcasts key-value pair to all nodes

– get() method takes value from local TreeMap

– clients to master use marshaled objects

– no de-serialization in master

– increases the CPU load on the master 

– doubles memory requirements on master 
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DHT-MPJ implementation

● class DistHashTableMPJ

● no central control, using MPI broadcast infra-
structure

– put() uses mpi.Comm.Send() to broadcast

– separate threads use mpi.Comm.Recv() to 
retrieve message and store key-value pair

– get() takes value from internal TreeMap 

● MPJ must be thread-safe or a global lock must 
be maintained
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Middle-ware comparison (1) 

● MPJ simpler to use in PBS environment
– set of well organized scripts from MPI run-time

● EC more flexible in dynamic task management
– use of Threads and java.util.concurrent

● TCP/IP Sockets versus mpi.Comm

– point-to-point with EC, explicit Channel 
management required, using object streams

– n-to-n with MPI, all communication 
connections available via send/recv to MPI 
rank
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Middle-ware comparison (2) 

● distributed HT data structure in EC and MPJ
● DHT semantics are different

– DHT-EC maintains consistent key-value 
mappings after settling

– DHT-MPJ can have inconsistent key-value 
mappings depending on timings

● can be handled in distributed GB by master

● DHT uses threads and shared memory HT
– problem with thread safety in MPJ with ibvdev
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Gröbner bases

● canonical bases in polynomial rings
– like Gauss elimination in linear algebra

– like Euclidean algorithm for univariate 
polynomial greatest common divisors

● with a Gröbner base many problems can be 
solved

– solution of non-linear systems of equations

– existence of solutions

– solution of parametric equations

● slower than multivariate Newton iteration in 
numerics

● but in computer algebra no round-off errors
● so guaranteed correct results 

R = C [ x1 , , xn ]
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Buchberger algorithm
algorithm: G = GB( F )
input: F a list of polynomials in C[x1,...,xn]
output: G a Gröbner Base of ideal(F)

G = F; // needed on all compute nodes
B = { (f,g) | f, g in G, f != g };
while ( B != {} ) {
  select and remove (f,g) from B;
  s = S-polynomial(f,g);
  h = normalform(G,s); // expensive operation
  if ( h != 0 ) {
     for ( f in G ) { add (f,h) to B }
     add h to G;
  }
} // termination ? Size of B changes
return G



EOOPS

  Problems with the GB algorithm

● requires exponential space (in the number of variables)

● even for arbitrary many processors no 
polynomial time algorithm will exist

● highly data depended 
– number of pairs unknown (size of B)

– size of polynomials s and h unknown

– size of coefficients
– degrees, number of terms

● management of B is sequential

● strategy for the selection of pairs from B

– depends moreover on speed of reducers
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Gröbner base classes
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Sequential and parallel GB

● critical pair list B implemented as thread-safe 
working queues

● implementations for different selection strategies
– OrderedPairlist, optimized Buchberger

– CriticalPairlist, stay similar to sequential

– OrderedSyzPairlist, Gebauer-Möller version

● selection and removal with getNext()

● addition with put()
● polynomial list is in shared memory on master
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Distributed GB

● master maintains critical pair list and 
communicates with the distributed workers 

● simple version with one JVM process per node
– can also have multiple JVM processes on a 

node

● hybrid version with multiple threads per node
– one channel from master to nodes

– one DHT per node shared by all threads

● top level GB algorithms same for sockets EC 
and MPJ

– only use different middle-wares
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Thread to node mapping (EC)
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  Thread to node mapping (MPJ)
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GB comparison

● middle-ware design allows the easy replacement 
of underlying communication system

● get maximal overlap between communication 
and computation with DHT data structure

● MPJ less flexible than EC but more easy to use
● FastMPJ uses java.nio and own low-level code

– niodev is thread-safe, works well with IP over IB

– ibvdev is not thread safe at the moment

● EC uses Socket from java.io, java.net
– use IP over IB, plain Ethernet too slow
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Performance

● all tests on same hardware, network IP over IB
● same Java version 1.6, different JVM releases
● same example “Katsura 8 modulo 2^127-1”
● improvements over the last two years in JVMs 

and JAS
– sequential GB: 20%

– parallel GB: 40 – 60%

– distributed hybrid GB: 50%

● EC vs MPJ depends on threads per node
● GB speed-up achieved, EC: 8.9, MPJ: 12.8  
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time EC GB run in 2010
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time same EC GB run in 2012
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time MPJ GB run in 2012
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time EC GB run: different ppn

ppn = process / threads per node
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 time MPJ GB run: different ppn

ppn = process / threads per node
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speed-up EC GB: nodes
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speed-up MPJ GB: nodes
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Conclusions (1)

● distributed hybrid GB algorithm 
– communication based on EC sockets or MPJ

– FastMPJ has support for direkt InfiniBand

● improvements within 2 years of 40-60%
– JVM more optimized, JAS better optimized

● achieved speed-up with IP over IB on 8 nodes
– 12.8 for FastMPJ and 5-7 threads per node

– 8.9 for sockets EC and 4-6 threads per node

● EC for small number of threads per node faster
● FastMPJ is 50% faster for 5-7 threads per node
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Conclusions (2)

● both run on a HPC cluster in PBS environment
● reduced communication overhead between 

nodes, main objects in shared memory
● less memory required on nodes compared to 

pure distributed version
● both packages are type-safe with generic types
● developed classes fit in Gröbner base class 

hierarchy
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Future work

● fix or work around thread safety issues in 
FastMPJ

● investigate InfiniBand ibvdev device 
performance

● profile and study run-time behaviour in detail
● investigate further optimizations of the GB 

algorithms: F4, F5, GGV, ARRI, ...
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Thank you for your attention

Questions ?

Comments ?

http://krum.rz.uni-mannheim.de/jas/
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more slides
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bwGRiD cluster architecture

● 8-core CPU nodes @ 2.83 GHz, 16GB, 140 nodes 
● shared Lustre home directories
● 20Gbit InfiniBand and 1Gbit Ethernet interconnect
● managed by PBS batch system, Moab scheduler
● running Java 64bit server VM 1.6 with 4+GB mem
● start Java VMs with daemons on allocated nodes
● communication via TCP/IP over InfiniBand
● other middle-ware ProActive or GridGain not 

studied
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JAS Implementation overview

● 340+ classes and interfaces
● plus ~150 JUnit test classes,5000+ assertions
● uses JDK 1.6 with generic types

● Javadoc API documentation
● logging with Apache Log4j
● build tool is Apache Ant
● revision control with Subversion
● public git repository

● jython (Java Python), jruby (Java Ruby) scripts 
● support for Sage compatible polynomial expressions

● Android version based on Ruboto using jruby
● open source, license is GPL or LGPL
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Polynomials
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  Example: Legendre polynomials
P[0] = 1;    P[1] = x;
P[i] = 1/i ( (2i-1) * x * P[i-1] - (i-1) * P[i-2] )

BigRational fac = new BigRational();  
String[] var = new String[]{ "x" };
GenPolynomialRing<BigRational> ring 
 = new GenPolynomialRing<BigRational>(fac,1,var);
List<GenPolynomial<BigRational>> P 
 = new ArrayList<GenPolynomial<BigRational>>(n);
GenPolynomial<BigRational> t, one, x, xc, xn; BigRational n21, nn;

one = ring.getONE(); x = ring.univariate(0);
P.add( one ); P.add( x );
for ( int i = 2; i < n; i++ ) {
        n21 = new BigRational( 2*i-1 );  xc = x.multiply( n21 );
        t = xc.multiply( P.get(i-1) ); 
        nn = new BigRational( i-1 ); xc = P.get(i-2).multiply( nn );
        t = t.subtract( xc );  nn = new BigRational(1,i);
        t = t.multiply( nn ); P.add( t );
}
int i = 0;              
for ( GenPolynomial<BigRational> p : P ) {
     System.out.println("P["+(i++)+"] = " + P);
}
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