
EOOPS

Distributed Gröbner bases
computation with MPJ

Heinz Kredel, University of Mannheim

EOOPS at AINA 2013, Barcelona

EOOPS

Overview

● Introduction to JAS
● Communication middle-ware: sockets and MPJ

– execution middle-ware

– data structure middle-ware

– comparison

● Gröbner bases: sockets and MPJ
– sequential and parallel algorithm

– distributed algorithm

– hybrid multi-threaded distributed algorithm

● Conclusions and future work

EOOPS

Java Algebra System (JAS)

● object oriented design of a computer algebra
system

= software collection for symbolic (non-numeric)
computations

● type safe through Java generic types
● thread safe, ready for multi-core CPUs
● use dynamic memory system with GC
● 64-bit ready
● jython (Java Python) and jruby (Java Ruby)

interactive scripting front ends

EOOPS

Overview

● Introduction to JAS
● Communication middle-ware: sockets and MPJ

– execution middle-ware

– data structure middle-ware

– comparison

● Gröbner bases: sockets and MPJ
– sequential and parallel algorithm

– distributed algorithm

– hybrid multi-threaded distributed algorithm

● Conclusions and future work

EOOPS

Socket middle-ware overview

master node a client node

clientPart()

Reducer
Client

DHT
Client

GBMaster()

DHT
Client

Reducer
Server

DHT Server

InfiniBand

ExecutableServer, ExecutableChannel, EC

DistributedThreadPool

GB()

EOOPS

EC execution middle-ware (1)

● on compute nodes do basic bootstrapping
– daemon class ExecutableServer

– runs thread with Executor for each connection

– receives objects and execute the run() method

– multiple processes as threads in one JVM
● on master start DistThreadPool

– start threads for each compute node

– starts connections to all nodes with
ExecutableChannel, gives the name EC

– can start multiple tasks on nodes: multiple cores

EOOPS

 EC execution middle-ware (2)

● client-server programming model

● list of compute nodes taken from PBS

● method addJob() on master

● send a job to a remote node and wait until termination

● method GB() executed on master

– schedules clientPart() method/class as
distributed threads to nodes

– runs GBMaster()
● starts DHT client
● initialize communication channels
● start further threads

EOOPS

MPJ middle-ware overview

master node a client node

clientPart()

Reducer
Client

DHT

GBmaster()

DHT

Reducer
Server

InfiniBand

MPJ middleware

2 MPJ adapter classes

EOOPS

MPJ execution middle-ware

● single-program multiple-data (SPMD)
programming model

● execution within MPJ runtime environment
● GB() method executed on all nodes

– rank 0: execute GBmaster()

– rank > 0: execute clientPart()

● adapters between JAS and MPJ
– MPJEngine

– MPJChannel

● ibvdev not thread-safe in FastMPJ V1.0b

EOOPS

JAS to MPJ adapters

● MPJEngine
– getCommunicator() delegates to mpi.MPI.Init()

– terminate() delegates to mpi.MPI.Finalize()

– waitRequest() within a global lock

– get*Lock(.) to obtain global locks

● MPJChannel
– send() delegates to mpi.Comm.Send()

– receive() delegates to mpi.Comm.Recv()

– also be used for Isend, Irecv together with
Request.Wait()

EOOPS

Data structure middle-ware

● sending of polynomials to nodes involves
– serialization and de-serialization time

– and communication time

● minimize communication by replicating list on
each node in a distributed data structure

● avoid explicit sending in GB to simplify protocol
● distributed list implemented as distributed hash

table (DHT)
● key is list index
● implemented with generic types

EOOPS

DHT overview

● class DistHashTable extends
java.util.AbstractMap

– same for EC and MPJ versions

● methods clear(), get() and put() as in HashMap
● method getWait(key) waits until a value for a

key has arrived
● method putWait(key,value) waits until value is

received back
● no guaranty that value is received on all nodes

EOOPS

DHT-EC implementation

● client part on node use shared memory TreeMap
● implemented as central control DHT

– put() sends key-value pair to a master

– master broadcasts key-value pair to all nodes

– get() method takes value from local TreeMap

– clients to master use marshaled objects

– no de-serialization in master

– increases the CPU load on the master

– doubles memory requirements on master

EOOPS

DHT-MPJ implementation

● class DistHashTableMPJ

● no central control, using MPI broadcast infra-
structure

– put() uses mpi.Comm.Send() to broadcast

– separate threads use mpi.Comm.Recv() to
retrieve message and store key-value pair

– get() takes value from internal TreeMap

● MPJ must be thread-safe or a global lock must
be maintained

EOOPS

Middle-ware comparison (1)

● MPJ simpler to use in PBS environment
– set of well organized scripts from MPI run-time

● EC more flexible in dynamic task management
– use of Threads and java.util.concurrent

● TCP/IP Sockets versus mpi.Comm

– point-to-point with EC, explicit Channel
management required, using object streams

– n-to-n with MPI, all communication
connections available via send/recv to MPI
rank

EOOPS

Middle-ware comparison (2)

● distributed HT data structure in EC and MPJ
● DHT semantics are different

– DHT-EC maintains consistent key-value
mappings after settling

– DHT-MPJ can have inconsistent key-value
mappings depending on timings

● can be handled in distributed GB by master

● DHT uses threads and shared memory HT
– problem with thread safety in MPJ with ibvdev

EOOPS

Overview

● Introduction to JAS
● Communication middle-ware: sockets and MPJ

– execution middle-ware

– data structure middle-ware

– comparison

● Gröbner bases: sockets and MPJ
– sequential and parallel algorithm

– distributed algorithm

– hybrid multi-threaded distributed algorithm

● Conclusions and future work

EOOPS

Gröbner bases

● canonical bases in polynomial rings
– like Gauss elimination in linear algebra

– like Euclidean algorithm for univariate
polynomial greatest common divisors

● with a Gröbner base many problems can be
solved

– solution of non-linear systems of equations

– existence of solutions

– solution of parametric equations

● slower than multivariate Newton iteration in
numerics

● but in computer algebra no round-off errors
● so guaranteed correct results

R = C [x1 , , xn]

EOOPS

Buchberger algorithm
algorithm: G = GB(F)
input: F a list of polynomials in C[x1,...,xn]
output: G a Gröbner Base of ideal(F)

G = F; // needed on all compute nodes
B = { (f,g) | f, g in G, f != g };
while (B != {}) {
 select and remove (f,g) from B;
 s = S-polynomial(f,g);
 h = normalform(G,s); // expensive operation
 if (h != 0) {
 for (f in G) { add (f,h) to B }
 add h to G;
 }
} // termination ? Size of B changes
return G

EOOPS

 Problems with the GB algorithm

● requires exponential space (in the number of variables)

● even for arbitrary many processors no
polynomial time algorithm will exist

● highly data depended
– number of pairs unknown (size of B)

– size of polynomials s and h unknown

– size of coefficients
– degrees, number of terms

● management of B is sequential

● strategy for the selection of pairs from B

– depends moreover on speed of reducers

EOOPS

Gröbner base classes

EOOPS

Sequential and parallel GB

● critical pair list B implemented as thread-safe
working queues

● implementations for different selection strategies
– OrderedPairlist, optimized Buchberger

– CriticalPairlist, stay similar to sequential

– OrderedSyzPairlist, Gebauer-Möller version

● selection and removal with getNext()

● addition with put()
● polynomial list is in shared memory on master

EOOPS

Distributed GB

● master maintains critical pair list and
communicates with the distributed workers

● simple version with one JVM process per node
– can also have multiple JVM processes on a

node

● hybrid version with multiple threads per node
– one channel from master to nodes

– one DHT per node shared by all threads

● top level GB algorithms same for sockets EC
and MPJ

– only use different middle-wares

EOOPS

Thread to node mapping (EC)

EOOPS

 Thread to node mapping (MPJ)

EOOPS

GB comparison

● middle-ware design allows the easy replacement
of underlying communication system

● get maximal overlap between communication
and computation with DHT data structure

● MPJ less flexible than EC but more easy to use
● FastMPJ uses java.nio and own low-level code

– niodev is thread-safe, works well with IP over IB

– ibvdev is not thread safe at the moment

● EC uses Socket from java.io, java.net
– use IP over IB, plain Ethernet too slow

EOOPS

Performance

● all tests on same hardware, network IP over IB
● same Java version 1.6, different JVM releases
● same example “Katsura 8 modulo 2^127-1”
● improvements over the last two years in JVMs

and JAS
– sequential GB: 20%

– parallel GB: 40 – 60%

– distributed hybrid GB: 50%

● EC vs MPJ depends on threads per node
● GB speed-up achieved, EC: 8.9, MPJ: 12.8

EOOPS

time EC GB run in 2010

EOOPS

time same EC GB run in 2012

EOOPS

time MPJ GB run in 2012

EOOPS

time EC GB run: different ppn

ppn = process / threads per node

EOOPS

 time MPJ GB run: different ppn

ppn = process / threads per node

EOOPS

speed-up EC GB: nodes

EOOPS

speed-up MPJ GB: nodes

EOOPS

Conclusions (1)

● distributed hybrid GB algorithm
– communication based on EC sockets or MPJ

– FastMPJ has support for direkt InfiniBand

● improvements within 2 years of 40-60%
– JVM more optimized, JAS better optimized

● achieved speed-up with IP over IB on 8 nodes
– 12.8 for FastMPJ and 5-7 threads per node

– 8.9 for sockets EC and 4-6 threads per node

● EC for small number of threads per node faster
● FastMPJ is 50% faster for 5-7 threads per node

EOOPS

Conclusions (2)

● both run on a HPC cluster in PBS environment
● reduced communication overhead between

nodes, main objects in shared memory
● less memory required on nodes compared to

pure distributed version
● both packages are type-safe with generic types
● developed classes fit in Gröbner base class

hierarchy

EOOPS

Future work

● fix or work around thread safety issues in
FastMPJ

● investigate InfiniBand ibvdev device
performance

● profile and study run-time behaviour in detail
● investigate further optimizations of the GB

algorithms: F4, F5, GGV, ARRI, ...

EOOPS

Thank you for your attention

Questions ?

Comments ?

http://krum.rz.uni-mannheim.de/jas/

Acknowledgements

thanks to: Thomas Becker, Raphael Jolly, Werner K.
Seiler, Axel Kramer, Dongming Wang, Thomas
Sturm, Hans-Günther Kruse, Markus Aleksy

thanks to the referees

http://krum.rz.uni-mannheim.de/jas/

EOOPS

more slides

EOOPS

bwGRiD cluster architecture

● 8-core CPU nodes @ 2.83 GHz, 16GB, 140 nodes
● shared Lustre home directories
● 20Gbit InfiniBand and 1Gbit Ethernet interconnect
● managed by PBS batch system, Moab scheduler
● running Java 64bit server VM 1.6 with 4+GB mem
● start Java VMs with daemons on allocated nodes
● communication via TCP/IP over InfiniBand
● other middle-ware ProActive or GridGain not

studied

EOOPS

JAS Implementation overview

● 340+ classes and interfaces
● plus ~150 JUnit test classes,5000+ assertions
● uses JDK 1.6 with generic types

● Javadoc API documentation
● logging with Apache Log4j
● build tool is Apache Ant
● revision control with Subversion
● public git repository

● jython (Java Python), jruby (Java Ruby) scripts
● support for Sage compatible polynomial expressions

● Android version based on Ruboto using jruby
● open source, license is GPL or LGPL

EOOPS

Polynomials

EOOPS

 Example: Legendre polynomials
P[0] = 1; P[1] = x;
P[i] = 1/i ((2i-1) * x * P[i-1] - (i-1) * P[i-2])

BigRational fac = new BigRational();
String[] var = new String[]{ "x" };
GenPolynomialRing<BigRational> ring
 = new GenPolynomialRing<BigRational>(fac,1,var);
List<GenPolynomial<BigRational>> P
 = new ArrayList<GenPolynomial<BigRational>>(n);
GenPolynomial<BigRational> t, one, x, xc, xn; BigRational n21, nn;

one = ring.getONE(); x = ring.univariate(0);
P.add(one); P.add(x);
for (int i = 2; i < n; i++) {
 n21 = new BigRational(2*i-1); xc = x.multiply(n21);
 t = xc.multiply(P.get(i-1));
 nn = new BigRational(i-1); xc = P.get(i-2).multiply(nn);
 t = t.subtract(xc); nn = new BigRational(1,i);
 t = t.multiply(nn); P.add(t);
}
int i = 0;
for (GenPolynomial<BigRational> p : P) {
 System.out.println("P["+(i++)+"] = " + P);
}

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27
	Folie 28
	Folie 29
	Folie 30
	Folie 31
	Folie 32
	Folie 33
	Folie 34
	Folie 35
	Folie 36
	Folie 37
	Folie 38
	Folie 39
	Folie 40
	Folie 41
	Folie 42
	Folie 43

