
Generic and parallel
Gröbner bases in JAS

Heinz Kredel, University of Mannheim

4th International Congress on Mathematical Software

August 2014, Hanyang University, Seoul, Korea

Overview

● Introductory example
● Generic Gröbner bases

– interface and abstract class

– sequential algorithm

– parallel and distributed algorithms

● Implementation selection and composition
– selection for a coefficient ring

– composition of implementations

● Conclusions

Introductory example

● polynomial ring over a field tower

● corresponding coefficient type in Java
AlgebraicNumber<Quotient<AlgebraicNumber<BigRational>>>

● the construction of elements is provided via
factories called ...Ring

AlgebraicNumberRing<Quotient<
 AlgebraicNumber<BigRational>>> cfac = ...

Example (compute GB)

● obtain Gröbner base implementation for this
coefficient ring, setup polynomial lists and
compute Gröbner base

GroebnerBase<
 AlgebraicNumber<Quotient<AlgebraicNumber<BigRational>>>> bb;
bb = GBFactory.getImplementation(cfac);

List<
 GenPolynomial<AlgebraicNumber<Quotient<AlgebraicNumber<BigRational>>>>
> G, F = ...;

G = bb.GB(F);

System.out.println("isGB(G) = " + bb.isGB(G));

Example (simplified)

● algebraic constructions can be done also within
Gröbner base computation

Quotient<BigRational>
QuotientRing<BigRational> qfac = …;

GroebnerBaseAbstract<Quotient<BigRational>> bb;
bb = GBFactory.getImplementation(qfac);

List<GenPolynomial<Quotient<BigRational>>> G, F = …;
// add w2^2 - 2 and wx^2 - x to F

G = bb.GB(F);

add

Java Algebra System (JAS)

● generic multivariate polynomial rings
● generic implementations of various algorithms

– Gröbner bases, greatest common divisors

– factorization, non-commutative rings

● object oriented design of a computer algebra
system

– type safe through Java generic types

● leverage software and hardware improvements
– multi-threading, parallel Garbage collection

– multi-core CPUs, compute clusters

Overview

● Introductory example
● Generic Gröbner bases

– interface and abstract class

– sequential algorithm

– parallel and distributed algorithms

● Implementation selection and composition
– selection for a coefficient ring

– composition of implementations

● Conclusions

Generic Gröbner bases
● depending on coefficient rings of polynomial

rings
– fields

– rings with pseudo division

– regular rings

● sequential, parallel and distributed computing
environments

● cases using transformations
– change of coefficient ring

– change of term order

● new algorithms, e.g. signature based GBs

Generic Gröbner bases

GroebnerBase interface
● generic type parameter C:

– C extends RingElem<C>
● includes a inverse() method

– RingFactory provides isField()

● method parameters: List<GenPolynomials<C>>

● test for Gröbner base: isGB(.)

● compute a Gröbner base: GB(.)

● compute a Gröbner base together with back
and forward transformations: extGB(.)

● compute a minimal reduced Gröbner base from
a Gröbner base: minimalGB(.)

GroebnerBaseAbstract
● implements all methods from interface
● abstract method: GB(modv: int; F: List<.>)

– modv: number of module variables, for the
computation of module Gröbner bases

● constructor injects implementations for desired
polynomial reduction and book-keeping for pair-list

– Reduction parameter
● methods normalform(.,.) and SPolynomial(.,.)

– PairList parameter
● put(poly)
● removeNext(): Pair
● hasNext(): boolean

GroebnerBaseSeq

● implements GB(modv: int, F: List<.>)

● inherits other methods
● critical pair list implemented as thread-safe

working queues (in shared memory for parallel and
distributed versions)

● implementations of PairList for different
selection strategies

– OrderedPairlist, optimized Buchberger

– OrderedSyzPairlist, Gebauer-Möller
version

– CriticalPairlist, stay similar to sequential

GroebnerBaseParallel

● implements GB(modv: int, F: List<.>)

● uses Java threads for expensive normalform()
– number of threads via constructor parameter

● polynomial list is kept in shared memory and
concurrently used by all threads

● ReductionPar implements Reduction, tolerates
asynchronous updates of polynomial list

● correct termination detection subtle
● new polynomials appear in different sequence

order than in sequential algorithm
● inherits other methods

GroebnerBaseDistributedHybrid

● implements GB(modv: int, F: List<.>)

● inherits other methods
● uses distributed memory computers with multi-

core compute nodes
● supported environments

– Java TCP/IP Sockets also with newio

– MPJ (FastMPJ, MPJ Express)
● pure Java and direct InfiniBand interconnect

– OpenMPI with Java bindings

● PBS job handling system

GroebnerBaseDistributedHybrid

● list of reduction polynomials
– replicated to all compute nodes

– in shared memory on each node

● threads on compute nodes
– receive critical pairs from master node

– send reduction polynomials to master

● pair list maintained on master node
● termination detection on master node
● polynomial transport using Java object

serialization

Overview

● Introductory example
● Generic Gröbner bases

– interface and abstract class

– sequential algorithm

– parallel and distributed algorithms

● Implementation selection and composition
– selection for a coefficient ring

– composition of implementations

● Conclusions

Selection of an implementation

● GBFactory: a way to select an implementaton of
an algorithm for Gröbner base computation

● provides static polymorphic methods
getImplementation(.)

● for different coefficient rings
– BigInteger, BigRational, ModInteger, ModLong,
– QuotientRing<C>, ProductRing<C>

– generic RingFactory<C>

● returns object of type GroebnerBaseAbstract<C>

● getProxy(.) provides parallel implementation

Gröbner base factory

GB Algo

● for BigRational and
QuotientRing<C>

– fraction/quotient coefficients
“qgb”

– fraction free coefficients “ffgb”

● for BigInteger and univariate
GenPolynomial<C> over field

– pseudo division “igb”

– d- or e-Gröbner base “dgb,
egb”

GBProxy
● GBProxy extends GroebnerBaseAbstract

● constructor accepts two GroebnerBaseAbstract
parameters

● the GB(modv, .) method executes both
corresponding GB(modv, .) methods in parallel

● based on java.util.concurrent.ExecutorService

● method invokeAny(.,.) returns result of first
finished computation and cancels the other one

● with a sequential and parallel Gröbner base
– for small problems sequential is often faster

– for larger problems and multi-cores parallel

Example

● example of a parallel computation

GroebnerBaseAbstract<Quotient<BigRational>> bb;

bb = GBFactory.getProxy(qfac);
 // get a parallel implementation

List<GenPolynomial<Quotient<BigRational>>> G, F
= ...;

G = bb.GB(F);

Composition of implementations

● further variants of Gröbner base algorithms
– transformation of coefficient rings, quotient or

fraction free

– transformation of term order, FGLM algorithm

– optimize term order

– select pair list strategy

● such variants can be combined
– start with definition of first coefficient ring

– compose variants as desired or possible

– finalize composition with build() method

● implemented in GBAlgorithmBuilder

GB Algorithm Builder

Example

● composition in case of FGLM algorithm
GroebnerBaseFGLM(GroebnerBaseAbstract .)

● FGLM: graded()

● term order optimization: optimize()

● example: compose fraction free and parallel GB

GenPolynomialRing<Quotient<BigRational>> pfac = ...

bb = GBAlgorithmBuilder.polynomialRing(pfac)
 .fractionFree().parallel(5).build();

List<GenPolynomial<BigRational>> G, F = ...;
G = bb.GB(F);

Conclusions

● JAS: basic software for polynomial rings with
generic coefficient rings

● generic implementations of Gröbner base
computation and others like factorization

● user friendly selection of suitable
implementations with GBFactory

● user friendly composition of variants of Gröbner
base implementation: parallel, FGLM,
optimization, pair list selection

● parallel algorithm on multi-core computers
● distributed algorithm for compute clusters

Thank you for your attention

Questions ?

Comments ?

http://krum.rz.uni-mannheim.de/jas/

Acknowledgements

thanks to: Thomas Becker, Raphael Jolly, Wolfgang
K. Seiler, Axel Kramer, Dongming Wang, Thomas
Sturm, Hans-Günther Kruse, Markus Aleksy

http://krum.rz.uni-mannheim.de/jas/

more slides

JAS Implementation overview

● 375+ classes and interfaces
● plus ~170 JUnit test classes,1000+ unit tests
● uses JDK 1.7 with generic types

● Javadoc API documentation
● logging with Apache Log4j
● build tool is Apache Ant
● revision control with Subversion
● public git repository

● jython (Java Python), jruby (Java Ruby) scripts
● support for Sage compatible polynomial expressions

● Android version based on Ruboto using jruby
● open source, license is GPL or LGPL

Polynomials

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27
	Folie 28
	Folie 29

