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Introductory example

● polynomial ring over a field tower

● corresponding coefficient type in Java
AlgebraicNumber<Quotient<AlgebraicNumber<BigRational>>>

● the construction of elements is provided via 
factories called ...Ring

AlgebraicNumberRing<Quotient<
               AlgebraicNumber<BigRational>>> cfac = ...



Example (compute GB)

● obtain Gröbner base implementation for this 
coefficient ring, setup polynomial lists and 
compute Gröbner base

GroebnerBase<
      AlgebraicNumber<Quotient<AlgebraicNumber<BigRational>>>> bb;
bb = GBFactory.getImplementation(cfac);

List<
 GenPolynomial<AlgebraicNumber<Quotient<AlgebraicNumber<BigRational>>>>
> G, F = ...;

G = bb.GB(F);

System.out.println("isGB(G) = " + bb.isGB(G));



Example (simplified)

● algebraic constructions can be done also within 
Gröbner base computation

Quotient<BigRational>
QuotientRing<BigRational> qfac = …;

GroebnerBaseAbstract<Quotient<BigRational>> bb;
bb = GBFactory.getImplementation(qfac);

List<GenPolynomial<Quotient<BigRational>>> G, F = …;
// add w2^2 - 2 and wx^2 - x to F

G = bb.GB(F);

add



Java Algebra System (JAS)

● generic multivariate polynomial rings
● generic implementations of various algorithms

– Gröbner bases, greatest common divisors

– factorization, non-commutative rings

● object oriented design of a computer algebra 
system

– type safe through Java generic types

● leverage software and hardware improvements
– multi-threading, parallel Garbage collection

– multi-core CPUs, compute clusters 
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Generic Gröbner bases
● depending on coefficient rings of polynomial 

rings
– fields

– rings with pseudo division

– regular rings

● sequential, parallel and distributed computing 
environments

● cases using transformations
– change of coefficient ring 

– change of term order

● new algorithms, e.g. signature based GBs



Generic Gröbner bases



GroebnerBase interface
● generic type parameter C: 

– C extends RingElem<C>
● includes a inverse() method

– RingFactory provides isField()

● method parameters: List<GenPolynomials<C>>

● test for Gröbner base: isGB(.)

● compute a Gröbner base: GB(.)

● compute a Gröbner base together with back 
and forward transformations: extGB(.)

● compute a minimal reduced Gröbner base from 
a Gröbner base: minimalGB(.)



GroebnerBaseAbstract
● implements all methods from interface
● abstract method: GB(modv: int; F: List<.>)

– modv: number of module variables, for the 
computation of module Gröbner bases

● constructor injects implementations for desired 
polynomial reduction and book-keeping for pair-list 

– Reduction parameter
● methods normalform(.,.) and SPolynomial(.,.)

– PairList parameter
● put(poly)
● removeNext(): Pair
● hasNext(): boolean



GroebnerBaseSeq

● implements GB(modv: int, F: List<.>)

● inherits other methods
● critical pair list implemented as thread-safe 

working queues (in shared memory for parallel and 
distributed versions)

● implementations of PairList for different 
selection strategies

– OrderedPairlist, optimized Buchberger

– OrderedSyzPairlist, Gebauer-Möller 
version

– CriticalPairlist, stay similar to sequential



GroebnerBaseParallel

● implements GB(modv: int, F: List<.>)

● uses Java threads for expensive normalform()
– number of threads via constructor parameter

● polynomial list is kept in shared memory and 
concurrently used by all threads

● ReductionPar implements Reduction, tolerates 
asynchronous updates of polynomial list

● correct termination detection subtle
● new polynomials appear in different sequence 

order than in sequential algorithm
● inherits other methods



GroebnerBaseDistributedHybrid

● implements GB(modv: int, F: List<.>)

● inherits other methods
● uses distributed memory computers with multi-

core compute nodes
● supported environments

– Java TCP/IP Sockets also with newio

– MPJ (FastMPJ, MPJ Express)
● pure Java and direct InfiniBand interconnect

– OpenMPI with Java bindings

● PBS job handling system



GroebnerBaseDistributedHybrid

● list of reduction polynomials 
– replicated to all compute nodes

– in shared memory on each node

● threads on compute nodes
– receive critical pairs from master node

– send reduction polynomials to master

● pair list maintained on master node
● termination detection on master node
● polynomial transport using Java object 

serialization
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Selection of an implementation

● GBFactory: a way to select an implementaton of 
an algorithm for Gröbner base computation

● provides static polymorphic methods 
getImplementation(.)

● for different coefficient rings
– BigInteger, BigRational, ModInteger, ModLong, 
– QuotientRing<C>, ProductRing<C>

– generic RingFactory<C>

● returns object of type GroebnerBaseAbstract<C>

● getProxy(.) provides parallel implementation 



Gröbner base factory



GB Algo

● for BigRational and 
QuotientRing<C> 

– fraction/quotient coefficients 
“qgb”

– fraction free coefficients “ffgb”

● for BigInteger and univariate 
GenPolynomial<C> over field

– pseudo division “igb”

– d- or e-Gröbner base “dgb, 
egb”



GBProxy
● GBProxy extends GroebnerBaseAbstract

● constructor accepts two GroebnerBaseAbstract 
parameters

● the GB(modv, .) method executes both 
corresponding GB(modv, .) methods in parallel

● based on java.util.concurrent.ExecutorService

● method invokeAny(.,.) returns result of first 
finished computation and cancels the other one

● with a sequential and parallel Gröbner base 
– for small problems sequential is often faster

– for larger problems and multi-cores parallel



Example

● example of a parallel computation

GroebnerBaseAbstract<Quotient<BigRational>> bb;

bb = GBFactory.getProxy(qfac); 
     // get a parallel implementation

List<GenPolynomial<Quotient<BigRational>>> G, F 
= ...;

G = bb.GB(F);



Composition of implementations

● further variants of Gröbner base algorithms
– transformation of coefficient rings, quotient or 

fraction free

– transformation of term order, FGLM algorithm

– optimize term order

– select pair list strategy

● such variants can be combined
– start with definition of first coefficient ring

– compose variants as desired or possible

– finalize composition with build() method

● implemented in GBAlgorithmBuilder



GB Algorithm Builder



Example

● composition in case of FGLM algorithm
GroebnerBaseFGLM(GroebnerBaseAbstract .)

● FGLM: graded()

● term order optimization: optimize()

● example: compose fraction free and parallel GB

GenPolynomialRing<Quotient<BigRational>> pfac = ...

bb = GBAlgorithmBuilder.polynomialRing(pfac)
     .fractionFree().parallel(5).build();

List<GenPolynomial<BigRational>> G, F = ...;
G = bb.GB(F);



Conclusions

● JAS: basic software for polynomial rings with 
generic coefficient rings

● generic implementations of Gröbner base 
computation and others like factorization

● user friendly selection of suitable 
implementations with GBFactory

● user friendly composition of variants of Gröbner 
base implementation: parallel, FGLM, 
optimization, pair list selection

● parallel algorithm on multi-core computers
● distributed algorithm for compute clusters



Thank you for your attention

Questions ?

Comments ?

http://krum.rz.uni-mannheim.de/jas/
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JAS Implementation overview

● 375+ classes and interfaces
● plus ~170 JUnit test classes,1000+ unit tests
● uses JDK 1.7 with generic types

● Javadoc API documentation
● logging with Apache Log4j
● build tool is Apache Ant
● revision control with Subversion
● public git repository

● jython (Java Python), jruby (Java Ruby) scripts 
● support for Sage compatible polynomial expressions

● Android version based on Ruboto using jruby
● open source, license is GPL or LGPL



Polynomials
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