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Preface

This work treats solvable polynomial rings, which can be characterized as commutative
polynomial rings with a new non-commutative multiplication �, such that the �-product

of two polynomials is the sum of a commutative polynomial, smaller with respect to a
�xed quasi order on the polynomials and a head monomial which is is equal to a scalar
multiple of the head term of the commutative product.

We show under which conditions, the `classical' topics of computational commutative

polynomial ring theory { such as Noetherianity, Gr�obner bases, Buchberger algorithm,
standard representations, elimination ideals, residue class rings, syzygies, module and
subalgebra bases { can be carried over to the theory of suitable solvable polynomial rings.

Furthermore we identify methods not applicable in the theory of solvable polynomial
rings. We present programs for the solution of several problems and discuss computing
examples.

We develop the method of comprehensive Gr�obner bases for solvable polynomial rings

and use it in the model theory of (suitable) algebraically complete structures to show
that these structures are axiomizable and allow elimination of existential quanti�ers.

A detailed introduction and overview is given in the �rst chapter.
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Chapter 1

Introduction

If we compare commutative rings with non-commutative rings and in particular commuta-
tive polynomial rings over �elds with non-commutative polynomial rings over skew �elds,
we observe, that several properties no longer hold in the latter cases. Most remarkably

non-commutative rings are in general no more Noetherian. Even if we restrict our interest
to non-commutative Noetherian rings many properties of commutative Noetherian rings

do no longer hold. Notably the residue class rings modulo a prime ideal need not be
integral domains. In commutative �eld theory the algebraic closure of a �eld is a `well'
behaving object, in non-commutative �eld theory the analogue, the existentially closed

�elds, are in general not even an axiomatic class, i.e. they cannot be characterized by a
set of (�rst order) axioms (not even an in�nite set of axioms).

On the other hand there do exist non-commutative Noetherian rings, which have `good'
properties. Namely the enveloping algebras of Lie algebras, skew polynomial rings (it-

erated Ore extensions) and skew Laurent series rings. There are several attempts to

characterize non-commutative rings as rings with relations. In our characterization of

such rings we emphasize algorithmical computability. That means, that for most de�ni-
tions and propositions, we insist that there exist algorithms (potentially implementable

on a computer under some restrictions) which can carry out the abstract constructions

involved.

Guided by the development of notions compatible with computational methods { Gr�obner
bases, Buchberger algorithm, comprehensive Gr�obner bases { we are nevertheless able to

obtain some far reaching results and characterizations. Most notable, the algebraically

closed skew �elds arising from a subclass of the class of polynomial rings under consider-
ation are indeed an axiomatic class.

In the next section we give a closer overview of the work, then we attempt to trace some

of the sources and related work in the literature. Finally we mention some open problems

and possible future directions of research.

10
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1.1 Overview

Starting point of the current work was the theory of solvable polynomial rings that

has �rst been introduced by [El From 1983] and Gr�obner bases in these rings by

[Kandri-Rody, Weispfenning 1988]. They can be characterized as commutative polyno-

mial rings with a new non-commutative multiplication �, such that the �-product of two

polynomials is a sum of a commutative polynomial, smaller with respect to a �xed quasi

order on the polynomials and a head monomial which is is equal to a scalar multiple of

the head term of the commutative product. There are several types of rings that can

be treated within this framework: commutative polynomial rings, enveloping algebras of

�nite dimensional Lie algebras and iterated Ore extensions of a �eld K introducing only

K-derivations.

The concrete guideline of the current work is the following problem:

how much can the axioms of solvable polynomials be relaxed such that we
can still compute with the elements and there is still a suÆciently interesting

amount of commutative ring and ideal theory which can be carried over to
these generalized solvable polynomial rings.

Thus the main topics with which we are concerned are:

1. solvable polynomial rings where the coeÆcients may not commute with the vari-

ables, conditions on the parameters of multiplication imposed by the associativity
of solvable polynomial rings, conditions for the validity a Hilbert's basis theorem,
structure of the center;

2. left, right, two-sided ideals and the existence of conuent reduction relations and

Gr�obner bases;

3. applications: elimination ideals, syzygies, homogeneous ideals, partial Gr�obner

bases, modules over solvable polynomial rings, subalgebras of solvable polynomial
rings;

4. implementation issues of the computation in solvable polynomial rings, sample com-

putations;

5. properties of Gr�obner bases under specialization of the coeÆcients, existence of

comprehensive Gr�obner bases;

6. Nullstellens�atze, existentially closed structures and model theory.

Solvable polynomial rings in the present sense are axiomatically characterized in chap-
ter 3. In the earlier works of [El From 1983] and [Kandri-Rody, Weispfenning 1988] it is

assumed, that the coeÆcients commute with the variables of the polynomial ring; we

generalize this theory to solvable polynomial rings where the coeÆcients may not com-
mute with the variables. We will continue to call the rings satisfying the modi�ed axioms:
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`solvable polynomial rings'. With this more general concept we can treat the theory of dif-

ference rings, di�erential rings and arbitrary Ore extension rings over a (non-commutative)

�eld in our framework. Furthermore we give conditions, when homomorphic images of

free associative algebras are solvable polynomial rings.

Using a combination of Dickson's lemma and a variant of K�onigs tree lemma we give a

proof of a `Hilbert basis theorem' for solvable polynomial rings over Noetherian coeÆcient

rings. Next the structure of the center of a solvable polynomial ring is determined and by

linear algebra methods, ways to compute elements in the center are investigated. This has

important applications concerning the determination of the so called `Casimir invariants'

in the theory of Lie algebras. In chapter 6 we apply our methods and programs to

examples from the literature.

In the chapter Ideals and Gr�obner bases 4 we discuss appropriate reduction relations
and standard representations. We de�ne Gr�obner bases as ideal bases such that the

corresponding reduction relation is conuent and we show that solvable polynomial rings
admit the construction of left (right, two-sided) Gr�obner bases The proofs are based on
standard representaion methods, since the respective reduction relation methods seemed

to be too tedious to apply. Furthermore we give a proof of the second Buchberger criterion
in order to avoid the consideration of unnecessary critical pairs (S-polynomials).

Applications and further topics in the theory of solvable polynomial are treated in chap-
ter 5. We show that the `classical' applications of Gr�obner bases, such as, elimination

ideals, residue class rings and generators for syzygy modules hold for solvable polynomial
rings as well. Moreover we discuss graded solvable polynomial rings and homogeneous
ideals with partial Gr�obner bases. Here a diÆculty arises, since the �-product of homo-

geneous polynomials is in general no more homogeneous, so only homogeneity respecting
gradings can be used. These results are then applied to free (left) modules over solvable
polynomial rings. Finally we treat bases for subalgebras of solvable polynomial rings. We

remark, that the tag variable method to solve the subalgebra membership problem can
not be used in case of subalgebras of solvable polynomial rings. However we are able

to show that a basis completion method exists, such that there exists a semi-decision

procedure to solve the subalgebra membership problem.

Implementation issues of the computation in solvable polynomial rings are discussed

in chapter 6. We present an implementation of the �-product, left and (improved) two-
sided Gr�obner bases algorithms in the MAS computer algebra system developed by the

author. Much attention is put on a fast implementation of the �-product using the
method of relation tables, which memorizes and reuses partial products to avoid to many

recomputations. Also some computing time statistics and some notes on the complexity

are given. In the implemented algorithms we assume that the coeÆcients commute with
the variables. Part of this chapter has been presented in [Kredel 1990a]. Furthermore we

present algorithms for the computation of elements in the center and the computation

of univariate polynomials of minimal degree in an ideal. The programs are applied to
various examples (centers, minimal generating systems) found in physics journals in order

to demonstrate the workability of the methods.

Comprehensive Gr�obner bases are treated in chapter 7. In this chapter we restrict the
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solvable polynomial rings to the case where the coeÆcients commute with the variables.

Comprehensive Gr�obner bases for commutative polynomial rings have been introduced

by [Weispfenning 1990]. Comprehensive Gr�obner bases are characterized as ideal bases,

such that for every specialization of the parameters in the coeÆcients of the polynomials,

the resulting ideal base is a Gr�obner base in the specialized solvable polynomial ring.

In this context, we consider solvable polynomial rings over rings containing parameters

and show that a product lemma holds. Also reductions and S-polynomials can be de�ned

in this parametric case. We show that comprehensive Gr�obner bases exist for ideals in

solvable polynomial rings and that they can be constructed in a �nite number of steps.

Consequences are, that there exist (for every �xed degree bound) ideal bases, such that all

Gr�obner bases can be obtained simply by specialization from them. Part of this chapter is
a joint work with V. Weispfenning and has been presented in [Kredel, Weispfenning 1990].

Nullstellens�atze and some model theory of solvable polynomial rings are discussed in
chapter 8. Here we prove �rst a `weak Nullstellensatz' based on the results that in iterated

Ore extensions over the rational numbers prime ideals are completely prime.

Using the amalgamation property of skew �elds and comprehensive Gr�obner bases we
obtain furthermore axiomatizability and eliminaton of existential quanti�ers for alge-

braically closed skew �elds `compatible' with solvable polynomial rings. Furthermore
we prove `strong Nullstellens�atze' for existentially (and algebraically) closed skew �elds
`compatible' with solvable polynomial rings. Using the parametric ideal membership test

provided by comprehensive Gr�obner bases we show, that there exists uniform bounds on
the degrees of polynomials required to represent a polynomial as member of an ideal.

In chapter 2 we recall and �x some de�nitions from universal algebra. In a second section
we prove some (known) basic properties of two-sided ideals in non-commutative rings

used in later. The whole chapter may be skipped by those readers familiar with universal
algebra and non-commutative ring theory, or read when necessary.

In appendix A we discuss the requirements for more general solvable polynomial

rings, where the condition that the head term of the polynomials under the �-product is

equal to the head term of the commutative product is dropped. Prominent structures in

this class are Grassmann (exterior) algebras (it is known, that Gr�obner bases exist in this

case). However not much positive results have been achieved with this concept. But in

chapter 3 we show that Grassmann and Cli�ord algebras can be treated as residue rings

of solvable polynomial rings.

The main results of this work are

� We show that the `classical' topics of (computational) commutative polynomial ring
and ideal theory can be transfered to the theory of suitable solvable polynomial rings.

We specify the conditions under which this is possible and we identify methods not

applicable in the theory of solvable polynomial rings.

� We develop the method of comprehensive Gr�obner bases for solvable polynomial

rings and use it in the model theory of (Q-) algebraically closed structures in order
to show that they are axiomatizable and allow elimination of existential quanti�ers.
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1.2 Sources and Related Work

The main sources of this work are: (commutative) Gr�obner base theory, non-commutative

Noetherian rings and model theory. In this section we attempt to trace down the back-

ground and the work of other people.

Text books and surveys are:

commutative algebra:

[V. d. Waerden 1971] and [Zariski, Samuel 1958/60]

commutative algebraic geometry:
[Gr�obner 1968/70], [Kunz 1980]

survey on computer algebra:
[Buchberger et. al. 1982]

non-commutative (Noetherian) �elds, rings and modules:

[Cohn 1971], [Anderson, Fuller 1974], [Cohn 1977],
[McConnell, Robson 1987] and [Goodearl, War�eld 1989]

categories:
[Blyth 1986]

universal algebra:
[Ihringer 1988] and [Cohn 1981]

model theory:

[Robinson 1974], [Hirschfeld, Wheeler 1975], [Pottho� 1981], [Prestel 1986]
and [Cohn 1981]

Lie algebras and enveloping algebras of Lie algebras:
[Jacobson 1962], [Dixmier 1974], [Bohro, Gabriel, Rentschler 1973]

di�erential algebras and di�erence algebras:

[Ritt 1950], [Kolchin 1973] and [Cohn 1965]

Gr�obner base theory of commutative polynomial rings has been invented and developed by

[Buchberger 1965] and subsequent publications; a survey on this topic including further

references is given in [Buchberger 1985]. A text book of computational algebra with

Gr�obner bases will be available with [Becker, Weispfenning 1992].

Conuent reduction relations in ring theory are discussed by [Bergman 1978] and in a

general setting by [Huet 1980]. The basic termination criterion on which all proofs rely
has been provided by [Dickson 1913]. Detection of superuous critical pairs is discussed

by various authors, e.g. by [Buchberger 1979] and [Becker 1991].

Ring and ideal theory of non-commutative Noetherian domains has been studied among
others by [Noether, Schmeidler 1920], [Ore 1931] and [Ore 1933]. Conditions under
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which an associative algebra is Noetherian have been given in [Lesieur, Croisot 1963],

[Lesieur 1978] and also [Gateva-Ivanova 1988].

The theory of Gr�obner bases for free non-commutative polynomial rings has been studied

by [Mora 1985], [Mora 1986], [Mora 1988]. Free non-commutative polynomial rings mod-

ulo some non-commutative Gr�obner bases have been investigated by [Apel 1988]. It is

shown, that enveloping algebras of Lie algebras can be handled within this framework. The

construction of matrix representations for �nitely presented (also free) non-commutative

algebras is presented by [Labont�e 1990]. As mentioned already, ring, ideal and dimension

theory of solvable polynomial rings has been studied by [El From 1983] and Gr�obner bases

in these rings by [Kandri-Rody, Weispfenning 1988].

Lie algebras are of general importance in mathematics and physics. For an introduc-

tion and overview see [Jacobson 1962]; universal enveloping algebras of Lie algebras
are treated in [Bohro, Gabriel, Rentschler 1973] and [Dixmier 1974]. Gr�obner base the-
ory of enveloping algebras has been introduced by [Lassner 1985] and furthermore by

[Apel, Lassner 1988], [Apel 1988].

The structure of the center of �nite dimensional Lie algebras, and of enveloping al-
gebras of Lie algebras, is discussed by [Abellanas, Martinez 1975], [Beck et. al. 1976],
[Conatser, Huddleston 1976] and also by [Patera et. al. 1976], [Zassenhaus 1976]. Ele-

ments of the center are important invariants, which can be used to label irreducible
representations of a given Lie algebra. The authors give characterizations of the center

and show how to compute elements in the center by means of solving partial di�erential
equations. In particular Casimir invariants (elements of the enveloping algebra of Lie al-
gebra under consideration, i.e. polynomials) are determined. Furthermore they determine

also functional invariants (in terms of exponential functions of rational functions). They
present tables of those invariants for low dimensional Lie algebras. They do not deter-
mine non-functional invariants like distributions with their methods. The computation of

polynomial invariants lies within the scope of our methods and we very�ed the results of

the authors in these cases.

Properties ofWeyl algebras, in particular the number of generators of ideals, are discussed

in [Dixmier 1968/70] and [Sta�ord 1978] (who showed, that any left ideal in a Weyl algebra
is generated by at most two elements). A special class of algebras similar to the enveloping

algebra of sl(2) is treated in depth by [Smith 1990]. Especially the structure of its center

and the structure of two-sided ideals is determined.

Gr�obner bases of ideals of di�erential operator rings especially of Weyl algebras are dis-

cussed by [Galligo 1985]. Gr�obner bases for modules of di�erential and di�erence rings

are discussed in [Pankrat'ev 1989]. For overviews on the theory of di�erential algebras

see [Ritt 1950], [Kolchin 1973] and on the theory of di�erence algebras see [Cohn 1965].

Exploiting the fact, that exterior algebras (Grassmann algebras) are �nite dimensional

vector spaces, [Stokes 1989] developed Gr�obner bases for this class of algebras.

Applications of Gr�obner base theory to the computation of generators of the syzygy mod-

ule of a set of polynomials is discussed in [Zacharias 1978]. Computation of univariate

polynomials of minimal degree in zero dimensional ideals is reported in [B�oge et. al. 1986].
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Canonical bases for modules over commutative polynomial rings are discussed in

[Armbruster, Kredel 1986], [M�oller, Mora 1986] and [Furukawa et. al. 1986]. Subalge-

bra membership and canonical subalgebra bases are treated by tag variable methods in

[Shannon, Sweedler 1988], by standard representations in [Robbiano, Sweedler 1988] and

by term rewrite completion methods in [Kapur, Madlener 1989].

Implementation issues for computing in non-commutative polynomial rings are addressed

by [Apel, Klaus 1990], [Apel, Klaus 1991] and [Petermann, Apel 1988]. Implementation

issues for the Buchberger algorithm for the computation of Gr�obner bases are discussed

by [Winkler et. al. 1985] (and various others). Our implementation is based on the

`ALDES/SAC-2' computer algebra system by [Collins, Loos 1980], the distributive poly-

nomial system by [Gebauer, Kredel 1983] and an implementation of Buchberger's algo-
rithm [Gebauer, Kredel 1984], [Kredel 1988a]. The recent implementation is in the `MAS
Modula-2 algebra system' by [Kredel 1988], [Kredel 1990] and [Kredel 1991]. An imple-

mentation of the algorithms for syzygy computations is given in [Philipp 1991].

Some special cases of parametric problems in commutative theory, such as parametric lin-
ear equations are discussed by [Sit 1991] and parametric equations by [Gao, Chou 1991].

Properties of Gr�obner bases under specialization are discussed by [Gianni 1987]. The al-
gorithms for comprehensive Gr�obner bases in the commutative case are implemented in
[Sch�onfeld 1991].

The theory of Ore extensions and in particular the question under which conditions

prime ideals are completely prime are discussed in [Lorenz 1981], [Sigurdsson 1984]
and [Dixmier 1974] (for the case of solvable Lie algebras). For an overview see
[Goodearl, War�eld 1989].

The question under which conditions a ring can be embedded in a �eld are discussed by

[Malcev 1937], [Cohn 1971], [Hirschfeld, Wheeler 1975] and [Cohn 1977] with a survey in
[Cohn 1981].

Model theory of algebraically closed non-commutative groups and �elds is discussed in

[Robinson 1971], [Bacsich 1972], [Simmons 1972] and [Bacsich 1973]. A model theoretic

framework for Nullstellens�atze, using syntactic characterizations of radicals and radical

membership, is presented in [Weispfenning 1977]. Non-commutative existentially closed
structures and a non-commutative Nullstellensatz is given in [Hirschfeld, Wheeler 1975].

Aspects of quanti�er elimination relative to sets of formulas and relative to formu-

lar preserving morphisms are discussed in [Weispfenning 1983]. This article also gives

an overview over (relative) quanti�er elimination in various algebraic theories. Non-

commutative geometry is discussed e.g. in [Manin 1991] and also in several articles in
Physics journals and lecture notes.

1.3 Future Perspectives and Open Problems

There are several topics in commutative Gr�obner base theory, which have not been dis-

cussed in the present work. The most notable are:
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1. Development of a theory of solvable polynomial rings over Euclidean coeÆcient

domains, or Dedekind domains. (We deliberately omit references.)

2. Gr�obner bases with respect to every term order, so called universal Gr�obner bases,

stability of Gr�obner bases under change of the term ordering [Robbiano 1985],

[Weispfenning 1987], [Weispfenning 1987] and [Schwartz 1988].

3. Dimension theory for solvable polynomial rings as in the commutative case

[Kredel, Weispfenning 1988], Hilbert function, Gelfand-Kirillov dimension.

4. Ideal decomposition theory for solvable polynomial rings. (We deliberately omit

references.)

5. Using the framework of [Becker 1990] to derive solvable power series rings and also
comprehensive Gr�obner bases for power series rings.

6. Implementation of algorithms for solvable polynomial rings where the variables do
not commute with the coeÆcients. Implementation of algorithms for the construc-
tion of comprehensive Gr�obner bases for solvable polynomial rings .

7. The class of solvable polynomial rings over computable rings provides a computa-
tional domain with Gr�obner bases as complete constraint solvers for the theory of

constrained logic programming (CLP) [Ja�ar, Lassez 1987].

1.4 Summary

For easy orientation we place this section, which contains a summary and draws some

conclusions, at the end of the introduction. The section is however intended to be read

after the other chapters. We will deliberately use (also technical) notations from the rest

of the work.

In the following two subsections we give a summary of the results about solvable poly-

nomial rings and extension �elds `compatible' with solvable polynomial rings obtained in
this work. In the third subsection we draw some conclusions.

1.4.1 Solvable Polynomial Rings

In table 1.1 we summarize various properties and results on solvable polynomial rings.

The table is organized such that the row boxes surround the chapters, which can be easily

identi�ed. The column boxes show �rst an abbreviation of properties and/or results and

then the main characteristics of solvable polynomial rings as there are the coeÆcient �eld
K and then the commutator relations Q respectively Q0.

The entries in the column labelled K indicate what kind of restriction is placed on the

coeÆcient �eld
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`skew' means, that K may be a skew �eld.

`comm.' means, that K must be a commutative �eld.

`ring' means, that K may be a ring, possibly with some further restriction.

The entries in the columns labelledQ andQ0 indicate whether the results hold for arbitrary

commutator relations or hold only for relations where Q0 speci�es commutativity. I.e. `yes'

means, that the result holds (for arbitrary commutator relations), `no' means, that the

result does not hold (i.e. it holds only for relations where Q0 speci�es commutativity),

`not considered' means, that the result has not been considered and a reference means

that the result holds and was proven in the reference.

The further entries read as follows:

`(old)' means, that the corresponding result has been known, together with an abbrevi-
ated reference who obtained it.

`(new)' means, that the corresponding result was obtained in this work.

`(?)' means, it is not known, if the corresponding result holds, together with an indication
about our opinion if it could hold.

The references have the following meaning:

AL = [Apel, Lassner 1988], KW = [Kandri-Rody, Weispfenning 1988] and
W = [Kredel, Weispfenning 1990]. `GB' stands as abbreviation for Gr�obner base. `Q'
denotes the �eld of rational numbers.

The notes in table 1.1 are explained as follows:

1 the coeÆcient rings must be skew �elds or the commutator relations must be such,

that the cij respectively the cai are contained in a sub�eld of the center of K,

2 only if �i : a 7! caia is an automorphism,

3 if Q0 6= ;, then construction only if K is a �nitely generated algebra over its center,

4 only for �-compatible inverse lexicographical term orders,

5 only for �-homogeneity compatible gradings,

6 in general in�nite objects, a semi-decision procedure for subalgebra membership.

7 with parametric commutator relations,

8 only for certain commutator relations.

9 for �xed Q, Q0 and coeÆcient rings `compatible' with Q0.
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KfX1; : : : ; Xn;Q;Q
0g

properties, results K Q Q0

variety ring yes yes9

�-product skew (new) KW (old) yes (new)

Ore extensions skew (new) KW (old) yes (new)

Hilbert Basissatz restr. ring1 (new) yes1 (new) yes (new)
center structure comm. (new) yes (new) no (?)

left Gr�obner bases skew (new) KW (old) yes (new)
BBEC criterion skew (new) yes (new) yes (new)
BBGC criterion skew (new) no, AL (old) no

right Gr�obner bases skew (new) KW (old) restriction2 (new)

two-sided Gr�obner bases skew (new) KW (old) restriction2 (new)

t-s GB, contruction restriction3 (new) KW (old) restriction2 (new)

elimination ideals skew (new) KW4 (old) yes4 (new)

residue class ring bases skew (new) KW (old) yes (new)
basis for syzygies skew (new) KW (old) yes (new)
partial Gr�obner bases skew (new) yes5 (new) yes5 (new)

module Gr�obner bases skew (new) yes (new) yes (new)
subalgebra GB6 comm. (new) yes (new) no (?)

parametric solvable rings parm. ring with W7 (new) (?)
comprehensive left GB parm. ring with W (new) (?)

comp. two-sided GB parm. ring with W (new) (?)
par. ideal membership parm. ring with W (new) (?)

implementation

�-product Q (new) yes (new) not considered
left Gr�obner bases Q (new) yes (new) not considered

two-sided GB Q (new) yes (new) not considered

BBEC criterion Q (new) yes (new) not considered

elements of the center Q (new) yes (new) not considered

generalized axioms zero divisors zero divisors

�-product skew (new) yes (new) yes (new)

left reduction no not considered
left saturated reduction yes8 not considered

left Gr�obner base yes ? not considered

Table 1.1: Summary of Solvable Polynomial Rings
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In the sequel we will give some further remarks.

The �eld K is mostly of arbitrary characteristic. Some times it must be of characteristic

0 so that Q is contained in the center. The term order < is always �xed, admissible and

�-compatible.

We adapted the method of standard representations for solvable polynomial rings. In our

opinion this method makes the proofs of the construction of (left) Gr�obner bases much

more intelligible and could be also be used for the proof of the BBEC criterion.

1.4.2 Nullstellens�atze

A schematic summary of the results of this work in respect to various `Nullstellens�atze'
is contained in table 1.2.

The references have the following meaning: HW = [Hirschfeld, Wheeler 1975]. The other

entries have the same meaning as in the preceding section.

A listing of properties of existentially closed classes for various algebraic structures can

be found in [Hirschfeld, Wheeler 1975](pp 134{136).

properties, results existential Q-algebraic Q-existential

existance of roots
in extension �eld yes, HW (old) yes (new) yes (new)

in all closed extensions yes, HW (old) yes (new) yes (new)
one cl.ext ! all cl.ext. no, HW (old) yes (new) yes (new)

exist. of degree bounds3 no, HW (old) yes (new) no (?)
Rabinowich trick no1 no1

EC

elementary class no no no

axiomatizable class no, HW (old) yes (new) no (?)

quanti�er elimination no, HW (old) yes2 (new) no (?)

Table 1.2: Summary of Nullstellens�atze

The notes in table 1.2 are explained as follows:

1 only true, if one accepts in�nite formulas,

2 only existential quanti�ers.

3 uniform bounds on the degrees of the polynomials which are used to represent a poly-

nomial as member of an ideal.

In the sequel we will give some further remarks.

The �eldK must be of characteristic 0, i.e. an extension of Q. The term order < is always
�xed, admissible, �-compatible and strict lexicographic.
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1.4.3 Concluding Remarks

One of the main problems was to �nd a suitable notion of `most general' solvable polyno-

mial rings. Our �rst idea to allow also zero divisors (to be able to incorporate e.g. exterior

algebras) was not fruitful. Although a product lemma holds for arbitrary polynomials a

suitable (saturated) reduction could only be de�ned for special cases of commutator rela-

tions. The rests of these attempts have been included in the appendix A and may become

useful later.

The most fruitful concept was to consider solvable polynomial rings

S = KfX1; : : : ; Xn;Q;Q
0g

characterized as polynomial rings over skew �elds K in variables X1; : : : ; Xn, n � 0,

together with a new non-commutative product `�', de�ned by means of commutator re-
lations

Q = fXj �Xi = cijXiXj + pij : 0 6= cij 2 K; XiXj > pij 2 S; 1 � i < j � ng

between the variables and commutator relations

Q0 = fXi � a = caiaXi + pai : 0 6= cai 2 K; pai 2 K; 1 � i � n; a 2 Kg

between the variables and the coeÆcients with respect to a �-compatible term order <,

such that the ring (S; 0; 1;+;�; �) is associative.

We showed, that many of the properties of commutative polynomial rings and solvable
polynomial rings as de�ned by [Kandri-Rody, Weispfenning 1988] could be carried over
to these `more general' solvable polynomial rings. Although at a �rst glance this kind

of generalization may appear to be a `routine' task, many subtle investigations showed
up cases, where a corresponding result for the more general solvable polynomial rings
is false (e.g. construction of two-sided Gr�obner bases, subalgebra membership test by

tag variables, etc.). Moreover the successful cases often required (tedious) proofs by

Noetherian induction over the remainders generated by the �-product (e.g. for the �-

product for polynomials).

In the chapter on the Nullstellens�atze we used methods from di�erent areas of mathemat-

ics to establish axiomatizability and quanti�er elimination for the class of Q-algebraically

closed extension �elds of Q. Most notably are methods from algebra (di�erential opera-

tor rings, Ore domains, non-commutative Noetherian rings, free product of skew �elds),
computer algebra (Gr�obner bases, comprehensive Gr�obner bases) and model theory (ex-

istentially and algebraically closed structures, quanti�er elimination). Furthermore the

eÆcient implementations for computations in solvable polynomial rings and the imple-

mentations (by [Sch�onfeld 1991]) for computations of comprehensive Gr�obner bases in

commutative polynomial rings give hope for an eÆcient and practicable quanti�er elimi-
nation procedure in Q-algebraically closed extension �elds of Q.



Chapter 2

Non-commutative Rings

In this chapter we �rst summarize some de�nitions and notations about universal algebra
and non-commutative rings. Then we prove some basic properties of (two-sided) ideals
of non-commutative rings. Notably a separation lemma of an ideal with respect to a

multiplicatively closed set. Furthermore we include some facts on semiprime ideals. The
results of this section are mainly used in chapter 8.

2.1 Notations and De�nitions

We assume the basic notations and properties of sets, relations and functions. N denotes
the set of natural numbers (including zero) and Z denotes the set of integers (integral

numbers). jAj denotes the cardinality of the set A. A�B denotes the cartesian product
of the sets A and B.

A formal language L is characterized by a tuple (R;F; �; C; V ), where R is a set of relation
symbols, F is a set of function symbols, � is the arity function, C is a set of constants and

V is an enumerable set of variables. Let L be a formal language, let A be an algebraic

structure, then A is called an L-structure, if all operator symbols of the language L have

an interpretation in A. A homomorphism between L-structures is a mapping that respects
the operations. Substructures and extension structures are de�ned as usual and we write
A v B for A is a substructure of B.

For a given language and set of variables, the set of �rst order terms is denoted by Tm and

the set of �rst order formulas is denoted by Fm, respectively by PFm for prime or atomic

formulas. For terms t 2 Tm and formulas ' 2 PFm we de�ne the set of free variables

FV(t), FV(') and the set of bound variables BV(t), BV(') as usual.

Let true and false be two objects distinct from the universe of A. For a formula

' 2 Fm(L; V ) we write A j= ' if for all variable assignments � : V �! A, '� holds in A,
i.e. '� = true. In this case we say `A satis�es '' or also `A is a model of ''. We write

A j= '(a1; : : : ; an) if `' holds at (a1; : : : ; an) in A'. If � is a set of formulas, we write

22
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A j= � () A j= ' for all ' 2 �. In this case we say `A satis�es �' or also `A is a model

�'.

An unitary ring is a structure (R;+;�; �; 0; 1) with universe R, functions +;�; � and

distinguished constants 0; 1. A commutative ring is an (unitary) ring, where � is

commutative. An integral domain or for short a domain is an (unitary) ring that has no

zero divisors. Since all rings which we will consider are unitary rings, we drop the word

`unitary' from now on. We will furthermore assume that always 1 6= 0 holds.

A �eld K is a ring, such that for every 0 6= a 2 K there exists a b 2 K such that ab = 1.

Note, that �elds are in general not necessary commutative. Some authors denote this fact

by speaking explicitly of skew �elds when they refer to non (necessarily) commutative

�elds. Here however we will state explicitly when we require a �eld to be commutative.

For a ring R a left unitary R-module with universe M will be denoted by RM =

(M;+;�; 0; 1; R). Again we will drop `unitary' since we consider only unitary R-modules.
Let K be a �eld. Then the K-module M is called a vector space. For rings R and S a
unitary R-S-bimodule is denoted by RMS = (M;+;�; 0; 1; R; S).

Let (R;+;�; �; 0; 1) be a ring. An R-algebra is denoted by AR = (A;+;�; �; 0; 1; R). Let

R be a ring, X a set of variables. A polynomial ring over R in the variables X is denoted
by R[X]. If X = fX1; : : : ; Xng is �nite, we write also

R[X1; : : : ; Xn]

for a polynomial ring. We assume that the variables commute with the coeÆcients, but
we do not assume, that the coeÆcient ring itself is commutative in general.

De�nition 2.1.1 (Ideal) A left ideal in a ring (R;+;�; �; 0; 1) is a subset I of R such

that

I0: 0 2 I,

Ia: if a; b 2 I, then a + b 2 I,

Il: if a 2 I, r 2 R then ra 2 I.

A right ideal in a ring (R;+;�; �; 0; 1) is a subset I of R such that

I0: 0 2 I,

Ia: if a; b 2 I, then a + b 2 I,

Ir: if a 2 I, r 2 R then ar 2 I.

A two-sided ideal in a ring (R;+;�; �; 0; 1) is a subset I of R such that

I0: 0 2 I,
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Ia: if a; b 2 I, then a + b 2 I,

It: if a 2 I, r 2 R then ra 2 I and ar 2 I.

Since R is assumed to be unitary, `It' can also be written as

It': if a 2 I, r; s 2 R then ras 2 I.

De�nition 2.1.2 We say a left (right, two-sided) ideal is generated by a set F , F � R

if it is of the form:

ideall(F ) = f
X
i2�

riai : ri 2 R; ai 2 F;� �nite g;

idealr(F ) = f
X
i2�

airi : ri 2 R; ai 2 F;� �nite g;

idealt(F ) = f
X
i2�

riaisi : ri; si 2 R; ai 2 F;� �nite g:

If an ideal I is generated by a set F we also say F is a basis for I. An left (right, two-sided)

ideal I is called trivial, if I = f0g and it is called proper, if I 6= R.

If F = ff1; : : : ; fng � R is �nite, then we write also ideall;r;t(f1; : : : ; fn) for ideall;r;t(F ).
In particular if I is an ideal, then I = ideal(I).

De�nition 2.1.3 Let F1; F2 � R then we de�ne

ideal(F1) + ideal(F2) = ideal(F1 [ F2)

ideal(F1) � ideal(F2) = ideal(F ); with F = ff1f2 : f1 2 F1; f2 2 F2g:

2.2 General Properties of Ideals

In this section we prove some basic properties of two-sided ideals and multiplicatively
closed sets of a (non-commutative) ring R with 1. See also [Goodearl, War�eld 1989]

chapter 2 and the references therein (e.g. to Krull and McCoy for the separation lemma).

The proofs are mainly based on Zorn's lemma:

Lemma 2.2.1 (Zorn) A non empty partially ordered set in which every chain (a totally

ordered subset) has an upper bound, has a maximal element.

For completeness we also state a generalized principle of induction, which will be used in

later sections.
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Lemma 2.2.2 (Noetherian Induction) Let A be a quasi ordered set, such that every

non empty subset has a minimal element. Let B be a subset of A which contains any

element of a 2 A whenever it contains all the elements x 2 A such that x < a. Then

B = A.

De�nition 2.2.3 Let J � R be a proper two-sided ideal.

1. J is called prime ideal if, for a; b 2 R, aRb � J implies a 2 J or b 2 J,

2. J is called complete prime ideal if, for a; b 2 R, ab 2 J implies a 2 J or b 2 J,

3. J is called maximal ideal if for any two-sided ideal I, J � I � R implies J = I or

I = R.

The importance of complete prime ideals stems from the fact, that the residue class
ring modulo a complete prime is a domain. In commutative rings all prime ideals are

completely prime. An equivalent characterization of a prime ideal J is: for all ideals
A;B, AB � J , implies that A � J or B � J .

Lemma 2.2.4 Any two-sided maximal ideal is a prime ideal.

Proof: Let M � R be a maximal ideal. Assume for a contradiction thatM is not prime.
Then there exist a; b 2 R with aRb �M but neither a 2M nor b 2M .

Let J1 = idealt(a;M) and J2 = idealt(b;M) then J1 6= M and J2 6= M and so by
the maximality of M we have J1 = J2 = R. Then J1J2 = idealt(a;M) idealt(b;M) =
idealt(aRb;M) that is R = idealt(aRb;M) = idealt(M) = M which contradicts the

maximality of M . 2

Lemma 2.2.5 Let I be a proper two-sided ideal in R. Then I is contained in a two-sided

maximal ideal. More precisely there exists a maximal element M in the set

A = fJ j J two-sided ideal in R; J 6= R; I � Jg

and M is a maximal ideal.

Proof: We are going to show that A satis�es all assumptions of Zorn's lemma, so A

contains a maximal element.

First I 2 A and so A 6= ;. The set inclusion `�' de�nes a partial order on the set of ideals

ofR and also on A. Let K = fJigi2� � A be a chain of ideals; that is K is totally ordered.

Let J� =
S
i2� Ji. If we can show, that J� is an upper bound of K in A all assumptions

of Zorn's lemma are ful�lled and we can conclude that A has a maximal element.

Note that Ji � J� for any i 2 � and so J� is an upper bound for K. To see that J� is in

A, observe that



26 CHAPTER 2. NON-COMMUTATIVE RINGS

1. I � Ji for i 2 � and so I �
S
i2� Ji = J�,

2. J� 6= R, since otherwise from J� = R it would follow that there is 1 2 J�, and so

1 2 Ji for some i 2 � which contradicts the choice of Ji.

3. J� is a two-sided ideal, since a) 0 2 I � J�, b) for a; b 2 J�, there exists i; j 2 �, such

that a 2 Ji and b 2 Jj; now K is a chain so wlog. a 2 Ji � Jj and so a+b 2 Jj � J�,

c) for a 2 J�, r; s 2 R, there exists i 2 � with a 2 Ji; so ras 2 Ji � J�.

Clearly M is a maximal ideal, since the the existence of an ideal J with M � J � R,

would imply that J 2 A, which would contradict the maximality of M in A. 2

Lemma 2.2.6 Let I be a proper two-sided ideal in R, M be a subset of R withM\I = ;.
Then there exists a maximal element in the set

A = fJ j J two-sided ideal in R;M \ J = ;; I � Jg:

Proof: We are going to show that A satis�es all assumptions of Zorn's lemma, so A
contains a maximal element.

First I 2 A and so A 6= ;. The set inclusion `�' de�nes a partial order on the set of ideals
ofR and also on A. Let K = fJigi2� � A be a chain of ideals; that is K is totally ordered.

Let J� =
S
i2� Ji. If we can show, that J� is an upper bound of K in A, all assumptions

of Zorn's lemma are ful�lled and we can conclude that A has a maximal element.

Note that Ji � J� for any i 2 � and so J� is an upper bound for K. The see that J� is
in A observe that

1. I � Ji for i 2 � and so I �
S
i2� = J�,

2. J� \M = ;, since otherwise from J� \M 6= ; it would follow Ji \M 6= ; for some

i 2 � which contradicts the choice of Ji.

3. J� is a two-sided ideal, since a) 0 2 I � J�, b) for a; b 2 J�, there exists i; j 2 �, such

that a 2 Ji and b 2 Jj; now K is a chain so wlog. a 2 Ji � Jj and so a+b 2 Jj � J�,

c) for a 2 J�, r; s 2 R, there exists i 2 � with a 2 Ji; so ras 2 Ji � J�.

Observe, that in general I is not a maximal ideal. 2

2.2.1 Multiplicatively Closed Sets

In this section we discuss the relation between complete prime ideals, multiplicatively

closed subsets and prime ideals and m-sets.

De�nition 2.2.7 A non-empty set M � R is called multiplicatively closed, if for any

a; b 2 M also ab 2 M . A non empty set M � R is called an m-set, if for any a; b 2 M

there exists r 2 R such that arb 2M .
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Clearly in a ring with 1 a multiplicatively closed set is a m-set.

Lemma 2.2.8 Let J be a two-sided complete prime ideal in R. Then the set M = R n J

is multiplicatively closed.

Proof: Assume for a contradiction, that M is not multiplicatively closed. Then there

exist m1; m2 2 M such that m1m2 62 M . So m1m2 2 J and since J is a complete prime

ideal we must have m1 2 J or m2 2 J . But this contradicts m1 2 M or m2 2 M and

proves the lemma. 2

Lemma 2.2.9 Let J be a two-sided prime ideal in R. Then the set M = R n J is an

m-set.

Proof: Assume for a contradiction, that M is not a m-set. Then there exist m1; m2 2M

such that m1rm2 62 M for all r 2 R. So m1Rm2 � J and since J is a prime ideal we

must have m1 2 J or m2 2 J . But this contradicts m1 2 M or m2 2 M and proves the
lemma. 2

Lemma 2.2.10 (Separation) Let I be a proper two-sided ideal in R, M be a m-set in

R. If M \ I = ; then there exists an ideal J maximal with respect to the property I � J

and M \ J = ;. Furthermore any such J is prime.

Proof: By lemma 2.2.6 let J be a two-sided ideal maximal with respect to M \ J = ;
and I � J . Since M 6= ;, J is proper. We claim that J is a prime ideal.

Assume for a contradiction that J is not prime. Then there exist a; b 2 R such that
aRb � J , but a 62 J and b 62 J . Let J1 = fcad+ j j c; d 2 R; j 2 Jg, and J2 = fc

0bd0+ j 0 j

c0; d0 2 R; j 0 2 Jg. Now J
�

6= J1 and J
�

6= J2 (since a; b 62 J and J1, J2 are ideals) and so

by the maximality of J we have J1 \M 6= ; and J2 \M 6= ;. Let mi 2 Ji \M , i = 1; 2,

with m1 = cad + j and m2 = c0bd0 + j 0. Since M is a m-set there exists r 2 R such that
m1rm2 2M holds.

So m1rm2 = (cad + j)r(c0bd0 + j 0) = cadrc0bd0 + jrc0bd0 + cadrj 0 + jrj 0. Now jrc0bd0,

cadrj 0, jrj 0 2 J since J is a two-sided ideal. Furthermore aRb � J so a(drc0)b 2 J

and consequently c(adrc0b)d0 2 J . This shows m1rm2 2 J which contradicts the fact

M \ J = ; and proves the lemma. 2

Specializing J = f0g we obtain:

Corollary 2.2.11 Let M be a m-set of R, and assume 0 62 M . Then there exists a

maximal element I in the set

A = fJ j J two-sided ideal in R; J � R nMg;

and I is a prime ideal.
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Note, that in the special case M = f1g the ideal I is a maximal ideal (cf. 2.2.5).

As a corollary we also note lemma 2.2.10 for multiplicatively closed sets in the form it is

used later.

Corollary 2.2.12 Let I be a proper two-sided ideal in R, M be a multiplicatively closed

set in R. If M \ I = ; then there exists a prime ideal J with I � J and M \ J = ;.

Furthermore J is maximal with respect to this property.

2.2.2 Semiprime Ideals

De�nition 2.2.13 Let R be a ring. An ideal I which is an intersection of prime ideals is

called semiprime. That is I =
T
i2� Ji with Ji prime ideals. The prime radical of an ideal

I is the intersection of all prime ideals which contain I. The prime radical is denoted by

rad(I) =
\
I�Ji

Ji

with Ji prime ideals.

De�nition 2.2.14 Let R be a ring. An ideal I which is an intersection of complete prime

ideals is called completely semiprime. That is I =
T
i2� Ji with Ji complete prime ideals.

The complete prime radical of an ideal I is the intersection of all complete prime ideals

which contain I. The complete prime radical is denoted by

c-rad(I) =
\
I�Ji

Ji

with Ji complete prime ideals.

Lemma 2.2.15 Let R be a ring and let I be an ideal in R. If a 2 rad(I) then there

exists 0 < k 2 N such that ak 2 I.

Proof: Assume for a contradiction a 2 rad(I) and ak 62 I for all 0 < k 2 N. Then the

set M = fak : 0 < k 2 Ng is multiplicatively closed and disjoint to I: M \ I = ;. Now
by the separation lemma 2.2.12 there exists a prime ideal P which contains I: I � P

and still satis�es M \ P = ;. This shows a 62 P . Now P must occur in the intersectionT
I�Pi Pi = rad(I) and therefore a 62

T
I�Pi Pi. This contradicts the assumption a 2 rad(I)

and thus proves the lemma. 2

Lemma 2.2.16 Let R be a ring such that every prime ideal is completely prime. Let I

be an ideal in R and let a 2 R. If ak 2 I for some 0 < k 2 N then a 2 rad(I).
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Proof: Let rad(I) =
T
I�Pi Pi, where each Pi is a complete prime ideal. Let 0 < k 2 N

such that ak 2 I. Then ak 2 rad(I) and therefore ak 2 Pi for each Pi. Now Pi is

completely prime and since ak = aak�1 it follows either a 2 Pi or a
k�1 2 Pi. This implies

in both cases by induction on k that a 2 Pi for all Pi. This shows a 2
T
I�Pi Pi which is

the prime radical of I. 2

If prime ideals are not completely prime, then the situation is considerably more diÆcult.

So only if aRa � I (and not merely ak 2 I) we can conclude that a 2 rad(I), as can be

seen from the following theorem.

Theorem 2.2.17 (Levitzki, Nagata) Let R be a ring. An ideal I is semiprime if and

only if

Whenever a 2 R with aRa � I then a 2 I.

Proof: See [Goodearl, War�eld 1989](p 27). 2

Corollary 2.2.18 Let I be a semiprime ideal in a ring R and let J be a right, left or

two-sided ideal in R. If there exists a positive integer n such that Jn � I then J � I.

Proof: See [Goodearl, War�eld 1989](p 29). 2



Chapter 3

Solvable Polynomial Rings

In this chapter we discuss the axioms of solvable polynomial rings and some consequences
of the axioms. We do not assume that the coeÆcients commute with the variables.
With this more general concept we can treat the theory of di�erence rings, di�erential

rings and arbitrary Ore extension rings over a (non-commutative) �eld in our framework.
Furthermore we give conditions, when homomorphic images of free associative algebras

are solvable polynomial rings.

Using a combination of Dickson's lemma and a variant of K�onigs tree lemma we give a

proof of a `Hilbert basis theorem' for solvable polynomial rings over Noetherian coeÆcient
rings. Next the structure of the center of a solvable polynomial ring is determined and

by linear algebra methods, ways to compute elements in the center are investigated. This
has important applications in the determination of so called `Casimir invariants' in the
theory of Lie algebras.

3.1 Polynomial Rings

Let K be a skew �eld, that is a not necessarily commutative �eld. From now on we will

assume that all �elds are not necessarily commutative (and we will drop the `skew' in
front of �eld) unless otherwise stated. Q denotes the set of rational numbers. An

inverse of an element a 2 K will be denoted by a�1, that means a�1a = 1 holds.

Let R be a polynomial ring R = K[X1; : : : ; Xn] over the �eld K in the commuting

variables (indeterminates) X1; : : : ; Xn for some n 2 N, n � 0. All elements of K
are assumed to commute with the indeterminates X1; : : : ; Xn but K need not be itself

commutative. So R is in general not a commutative ring.

Let T denote the set of terms (power-products of indeterminates)

T = fXe1
1 � : : : �X

en
n 2 R : ei 2 N; 1 � i � ng:

Then there is a bijection e : T �! Nn between T and n-tuples of natural numbers, de�ned

30
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by

e(Xe1
1 � : : : �X

en
n ) = (e1; : : : ; en)

e�1((e1; : : : ; en)) = Xe1
1 � : : : �X

en
n :

An important property of the divisibility relation of terms respectively the component-

wise order of Nn is known as Dickson's lemma and is fundamental for most termination

proofs of polynomial algorithms.

Lemma 3.1.1 (Dickson's Lemma) Let (Nn;�n) be the direct product of n copies of

the natural numbers (N;�) with their natural ordering. Then every subset M of Nn has

a �nite subset B such that for every (m1; : : : ; mn) 2 M , there exists (b1; : : : ; bn) 2 B with

bi � mi for 1 � i � n.

Proof: See [Dickson 1913]. 2

Stated for terms:

Corollary 3.1.2 Let (T; j) be the set of terms T partially ordered by divisibility j. Then

every subset S of T has a �nite subset V such that for every s 2 S there exists v 2 V

with v j s.

Proof: Let (Nn;�n) be as in Dickson's lemma, e : T �! Nn be the bijection between T

and Nn. Then for s; t 2 T : s j t i� e(s) �n e(t), since s = Xe1
1 � : : : �X

en
n j X

e01
1 � : : : �X

e0n
n = t

() ei � e0i for 1 � i � n () e(s) = (e1; : : : ; en) �n (e01; : : : ; e
0
n) = e(t). So the claim

follows by Dicksons's lemma 3.1.1. 2

Beside this partial divisibility order on the terms, we assume that the set T is linearly

(totally) ordered by a suitable order compatible with divisibility, which is denoted by <T

or simply by <. Note such linear orders are well-founded orders (for every non empty

subset of T there exists a unique minimal element). The compatibility condition is de�ned
as follows.

De�nition 3.1.3 An ordering <T on the set of terms T is called admissible if for all

r; s; t 2 T :

1. 1 <T r,

2. r <T s implies rt <T st.

For elements f 2 R, the set of terms of f will be denoted by T (f). The quasi-order

induced by <T on R will also be denoted by <T or simply by <. It is de�ned as follows:

for f; g 2 R let f < g if the highest term in T (g) n T (f) is greater then the highest term
in T (f) n T (g) or T (f) n T (g) is empty.
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For a subset X � fX1; : : : ; Xng we denote by T (X) the set of terms in the variables X.

For a subset V � T we denote by mult(V ) = fsv : s 2 T; v 2 V g the set of multiples of

V .

Let < be an admissible order on T , f 2 R, then HT(f) denotes the head term of f that

is the highest term in f with respect to <. For t 2 T we denote the coeÆcient of t

in f by coe�(t; f). A monomial is a polynomial of the form at with 0 6= a 2 K and

t 2 T . The head monomial of f , denoted by HM(f), is de�ned by coe�(HT(f); f)HT(f).

coe�(HT(f); f) is also denoted by HC(f). A polynomial f is calledmonic, if HC(f) = 1.

A set of polynomials F is called monic, if every f 2 F is monic.

Other concepts form commutative polynomial rings, like the degree of univariate polyno-

mials or the degree in the variable Xi, etc. are de�ned as usual.

3.2 Axioms for Solvable Polynomial Rings

Let K be a skew �eld. A solvable polynomial ring over K is a polynomial ring R =
K[X1; : : : ; Xn] equipped with a new (in general non-commutative) multiplication �. In

this section we �rst state the axioms of the �-product for elements of T and K and
then we determine the �-product for arbitrary elements of R. The axiom set generalizes

[Kandri-Rody, Weispfenning 1988] in that respect, that K can now be non-commutative
and the elements of K need not commute with the variables (axioms 3.2.1(4) are new).
An even more general set of axioms is discussed in the appendix A.1.

Axioms 3.2.1 For a �xed term order <T , (R; �) is called a solvable polynomial ring if

the following axioms for � are satis�ed:

1. (R; 0; 1;+;�; �; <) is an associative ring with 1 and with admissible term order <.

2. (a) For all a; b 2 K, t 2 T (X1; : : : ; Xn), a � b � t = a � (bt) = (a � b) � t = abt.

(b) For all 1 � i � n, s 2 T (X1; : : : ; Xi), t 2 T (Xi; : : : ; Xn), s � t = st.

3. For all 1 � i < j � n there exist 0 6= cij 2 K and pij 2 R, pij <T XiXj such that

Xj �Xi = cijXiXj + pij:

4. For all 1 � i � n and all 0 6= a 2 K there exist 0 6= cai 2 K and pai 2 K, such that

Xi � a = caiaXi + pai:

� will denote the new multiplication, the (non-commutative) multiplication in K and
the commutative multiplication in K[X1; : : : ; Xn] will be denoted by � or juxtaposition of

elements. If it is clear from the context we will even drop the � for the non-commutative
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multiplication in the later chapters. Solvable polynomial rings will be denoted by R =

KfX1; : : : ; Xng, or by

KfX1; : : : ; Xn;Q;Q
0g

if

Q = fXj �Xi = cijXiXj + pij : 0 6= cij 2 K; XiXj > pij 2 S; 1 � i < j � ng;

denotes the set of commutator relations of axiom 3.2.1(3) and

Q0 = fXi � a = caiaXi + pai : 0 6= cai 2 K; pai 2 K; 1 � i � n; a 2 Kg

denotes the set of commutator relations of axiom 3.2.1(4). Note furthermore, that Q is
�nite; Q0 is in�nite ifK is in�nite and Q0 is enumerable if ifK is enumerable. If we assume
that the variables commute with the coeÆcients, then we indicate this by dropping the

Q0 from the notation of the solvable polynomial ring: KfX1; : : : ; Xn;Qg.

3.2.1 Alternative Axioms

Let S = KfX1; : : : ; Xn;Q;Q
0g be a solvable polynomial ring over K. The requirement

that K has to be a skew �eld seems to be rather restrictive. Examining the proofs in this
chapter one �nds that at least the condition

� K is any domain, but all cij = 1 for 1 � i < j � n and all cai = 1 for 1 � i � n,
a 2 K

is suÆcient for the claims in this chapter to hold.

Let cen(R) denote the center of the ring R (cen(R) = fa 2 R : ar = ra; for all r 2 Rg,
see 3.6.1). Other conditions such that

1. K is a commutative domain or

2. all cij; cai 2 cen(K) or even

3. all cij; cai 2 cen(S)

are suÆcient to prove the �-product lemma 3.2.5. However they are not suÆcient to prove
e.g. the Hilbert basis theorem 3.5.12. The condition required in this theorem is

� all cij; cai 2 L, where L � cen(K) is a sub�eld of cen(K).

In other words, the cij and cai must be invertible and must commute with all elements of

K.

On the other hand the condition that K is a skew �eld does not require the cij and cai to
commute with all elements of K. So the condition that K is a skew �eld seems the least
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restrictive requirement and we leave the axioms 3.2.1 of solvable polynomials as stated.

Furthermore we will make use of K being a skew �eld in all proofs. But keeping these

hints in mind when examining the proofs in this chapter will show that the respective

claims are true also when K is a domain and the commutator relations satisfy the above

conditions.

De�nition 3.2.2 Let S = KfX1; : : : ; Xn;Q;Q
0g be a solvable polynomial ring over K.

We say that S satis�es the extended axioms if

1. K is a skew �eld, or

2. K is any domain and there exists L � cen(K) such that L is a sub�eld of cen(K),

and all 0 6= cij 2 L for 1 � i < j � n and all 0 6= cai 2 L for 1 � i � n, 0 6= a 2 K.

3.2.2 Computability

It is known, that one can compute in a commutative polynomial ring over a ring K if

one can compute in the ring K. If moreover the term order is computable (or decidable)
(i.e. for any t; s 2 T we can decide by an algorithm if t = s or if t <T s) we can compute

normalforms of reduction relations. Here `computability' means `e�ective computability':
That is, there exists a Turing maschine which takes the appropriate `inputs', performs a
�nite number of `steps' and terminates after producing the respective `output'.

To compute in solvable polynomial rings we have the additional requirement, that we can

compute with the commutator relations. To compute with the commutator relations be-
tween the variables can be done already if we can compute in the commutative polynomial
ring.

To compute with the commutator relations between the variables and the coeÆcients

requires, that the mappings a 7! caia and a 7! pai are given algorithmically. This is e.g.

the case when the mappings are given by polynomial functions which could be evaluated

at a to �nd caia and pai. In case when a 7! caia has to be an automorphism (e.g.

when we consider right ideals) we require moreover, that the inverse mapping is given

algorithmically.

By this considerations we can compute in a solvable polynomial ring provided the � prod-
uct of two polynomials can be computed. The computation of �-products of polynomials

is shown in lemma 3.2.5 later in this section.

So from now on whenever we discuss algorithms and claim some properties about algo-

rithms we make the assumptions about computability stated above. Further remarks on
computability can be found in chapter 6 on algorithm implementation and in the appendix

on algorithmic notation.
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3.2.3 �-compatible Orders

Any admissible order satisfying condition (3) of axioms 3.2.1 will be called �-compatible.

Let <L be the lexicographical order on T de�ned by X1 < X2 < : : : < Xn. Let R =

KfX1; : : : ; Xng, be a solvable polynomial ring with respect to <L, such that <L is �-

compatible. R is of strictly lexicographical type, if for the commutator relations Q in the

axioms 3.2.1(3) we have

pij <L Xj:

In other words we require pij 2 K[X1; : : : ; Xj�1]. R is of strictly monic lexicographical

type, if for the commutator relations Q in the axioms 3.2.1(3) we have

cij = 1 and pij <L Xj:

The set of commutator relations Q is in this case also called to be of strictly lexicographical
type respectivly of strictly monic lexicographical type.

An admissible �-compatible ordering < on T is called degree compatible if for s; t 2 T

deg(s) <N deg(t) =) s < t:

3.2.4 �-products of Polynomials

In this subsection we extend the computation of the �-product from variables and coeÆ-
cients to arbitrary polynomials of R. We proceed in several steps. The following lemma

determines left multiplication by �eld elements and right multiplication by (special) terms.

Lemma 3.2.3 Let R = KfX1; : : : ; Xn;Q;Q
0g be a solvable polynomial ring.

1. Let a 2 K, f 2 R. Then a � f = af .

2. Let 0 � i � j � k � n and let f 2 K[Xi; : : : ; Xj], t 2 T (Xj; : : : ; Xk). Then

f � t = ft 2 K[Xi; : : : ; Xk].

In particular for i = j = k, t = Xe
i , 0 � e 2 N: f �Xe

i = fXe
i 2 K[Xi].

Proof: By Noetherian induction on f with respect to the quasiorder < on R induced by

< on T .

(1) Let f = b 2 K, then by axiom 3.2.1(2,a) a � b = ab. For f = bt + f 0, bt = HM(f) we

get a � f = a � (bt + f 0) = a � bt + a � f 0. By induction assumption and axiom 3.2.1(2,a)
this is equal to abt + af 0 = af .
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(2) Let f = b 2 K, then by axiom 3.2.1(2,a) f � t = a � t = at. Let f = bt0 + f 0,

bt0 = HM(f), then f � t = (bt0 + f 0) � t = bt0 � t + f 0 � t. Then by axiom 3.2.1(2,b) we

have t0 � t = t0t 2 T (Xi; : : : ; Xk). So f � t = bt0t+ f 0 � t = bt0t + f 0t = ft using induction

assumption on f 0 � t. 2

The next lemma considers products of polynomials having terms with `increasing' sets of

variables. In particular right multiplication with �eld elements is considered.

Lemma 3.2.4 Let R = KfX1; : : : ; Xn;Q;Q
0g be a solvable polynomial ring, let <T be a

�-compatible admissible term order, let 0 � i � j � k � n and let f 2 K[Xi; : : : ; Xj],

g 2 K[Xj; : : : ; Xk].

1. Then there exists 0 6= cgf 2 K and h 2 K[Xi; : : : ; Xk], h < HT(fg) such that

f � g = cgffg + h:

In particular f � g 2 K[Xi; : : : ; Xk] and HT(f � g) = HT(fg).

2. For g = a 2 K we note as a special case: there exists 0 6= caf 2 K and h 2

K[Xi; : : : ; Xj], h < HT(f) such that

f � a = caffa+ h:

In particular f � a 2 K[Xi; : : : ; Xj] and HT(f � a) = HT(f).

3. If the coeÆcients commute with the variables, we note as a special case: if cal = 1,
pal = 0, for 1 � l � n and 0 6= a 2 K, then

f � g = fg:

In particular f � g 2 K[Xi; : : : ; Xk].

Proof: We prove (1) by Noetherian induction on fg with respect to the quasiorder < on
R induced by < on T . (2) and (3) follow since they are special cases of (1).

Case 1: Let f = b 2 K then by lemma 3.2.3 f � g = b � g = bg = 1bg + 0. So the claim

holds with cgf = 1 and h = 0.

Case 2: Let g = a 2 K and assume the claim holds for all f 0g0 < fa. For f = bt + f 0,
bt = HM(f) we get f � a = (bt + f 0) � a = bt � a + f 0 � a. By induction assumption

let f 0 � a = c0af 0f
0 + h0. For the �rst term let 1 � k � j maximal such that ek � 0 in

t = t0Xek+1
k and let t = t0Xe+1

k = u �Xk = t0Xe
k �Xk.

By axiom 3.2.1(4) for Xk � a = cakaXk + pak we have bt � a = b(u �Xk) � a = bu � (Xk � a)
= bu � (cakaXk + pak) = b(u � caka)Xk + b(u � pak) = bt0(Xe

k � caka)Xk + bt0(Xe
k � pak).

By twofold application of the induction assumption to Xe
k � (caka) = c01(caka)X

e
k + p1

and Xe
k � pak = c02pakX

e
k + p2 we get (setting c1 = c01caka and c2 = c02pak): bt � a =

b(t0 � c1X
e
k + t0p1)Xk + b(t0 � c2X

e
k + t0p2).
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Using induction assumption we get t0 � c1 = c3t
0 + p3 and t0 � c2 = c4t

0 + p4 (again

simplifying the coeÆcients to c3 and c4). Furthermore since p1 2 K[Xk] we can conclude

by induction assumption that g1 = bt0 � p1 = d1g
0
1 + q01 2 K[Xi; : : : ; Xk]. And again by

lemma 3.2.3 g1 �Xk = g1Xk 2 K[Xi; : : : ; Xk]. By the same arguments, since p2 2 K[Xk],

g2 = bt0 � p2 2 K[Xi; : : : ; Xk]. So the second and fourth summand can be combined to

h1 = g1 �Xk + g2, and we get bt � a = b(c3t
0 + p3)X

e+1
k + b(c4t

0 + p4)X
e
k + h1.

Now t0 � Xe+1
k = t0Xe+1

k = t and t0 � Xe
k = t0Xe

k by axiom 3.2.1(2,b), and again bp3 2

K[Xi; : : : ; Xk�1], bp4 2 K[Xi; : : : ; Xk�1] and using lemma 3.2.3 on bp3 �X
e+1
k and bp4 �X

e
k

the term bt � a becomes bc3t + h2, where h2 denotes the sum of the remaining parts.

Finally since K is a (skew) �eld, we can �nd caf 2 K such that cafb = bc3 and with

h = h2+h
0+(c0�caf )f

0, and we arrive at f �a = bt�a+c0f 0+h0 = cafbt+h2+c
0f 0+h0 =

caff + h as claimed.

Case 3: Let g = bt + g0, bt = HM(g), then f � g = f � (bt + g0) = (f � b) � t+ f � g0. By

induction assumption: f � b = c0f + h0, where 0 6= c0 2 K and f > h0 2 K[Xi; : : : ; Xj]. So
we obtain (c0f + h0) � t+ f � g0 = c0f � t+ h0 � t+ f � g0.

Now by lemma 3.2.3(2): f � t = ft, h0 � t = h0t and f � g0 = c00fg0 + h00 by induction
assumption. with 0 6= c00 2 K and fg0 > h00 2 K[Xi; : : : ; Xk]. So f � g = c0ft + h0t +

c00fg0 + h00 = cfg + h with 0 6= c00 = cgf 2 K and fg > h 2 K[Xi; : : : ; Xk]. 2

The following lemma treats products of arbitrary polynomials.

Proposition 3.2.5 Let R = KfX1; : : : ; Xn;Q;Q
0g be a solvable polynomial ring, let <T

be a �-compatible admissible term order, and let f; g 2 R. Then there exists h 2 R and

0 6= cfg 2 K, such that

f � g = cfgfg + h

and h <T HT(fg). Moreover, c and h are uniquely determined by f and g.

Proof: The proof generalizes [Kandri-Rody, Weispfenning 1988] lemma 1.4. Uniqueness:

Let f � g = cfg + h = c0fg + h0. Since h; h0 < HT(fg), HT(fg) cannot be cancelled by

some term in h or h0, so c = c0. Then by subtraction of cfg on both sides we see that

h = h0.

Existence: Follows by Noetherian induction on fg with respect to <. Let f = a 2 K,

then by lemma 3.2.3: a�g = ag+0. Let g = b 2 K, then by lemma 3.2.4: f � b = cbf +h.

For the general case let f = as+ f 0, g = bt+ g0 with as = HM(f), bt = HM(g). Then by
distributivity of � and 3 fold application of the induction assumption we get

f � g = as � bt + as � g0 + f 0 � bt + f 0 � g0 = as � bt + d1asg
0 + d2f

0bt + d3f
0g0 + h0;

where d1; d2; d3 2 K, h0 2 R, h0 < st = HT(fg). When we have proved that

as � bt = cabst + h00; (3.1)

with c 2 K and h00 < st = HT(fg), we can set d0i = di � c, h = h00 + d01asg
0 + d02f

0bt +

d03f
0g0 + h0 and the claim f � g = cfg + h follows.
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It remains to show, that equation (3.1) holds. Assume, that s 2 T (Xh; : : : ; Xj) and

t 2 T (Xi; : : : ; Xk) with h; i maximal and j; k minimal with 1 � h � j � n, 1 � i � k � n.

We distinguish 4 cases:

Case j � i: We can apply lemma 3.2.4 to obtain as � bt = cabst + h00, with st > h00 2

K[Xh; : : : ; Xj]. and 0 6= 0 2 K.

Case h � i: Let s = Xe+1
h s00 = Xh � X

e
hs

00 = Xh � s
0 with s00 2 T (Xh+1; : : : ; Xj). Now

s0 < s and by induction assumption let s0 � bt = c2bs
0t + h2. We get as � bt =

aXh � (s
0 � bt) = aXh � (c2bs

0t + h2) = a(Xh � c2b)s
0t + aXh � h2. Since h2 < s0t,

induction assumption can be applied to the last summand giving aXh�h2 = h3 with

h3 < Xhs
0t = st.

By axiom 3.2.1(4) there exist c3; p3 2 K with Xh � c2b = c3(c2b)Xh+ p3. Let c4 2 K

such that c4ab = ac3c2b and let p4 = ap3 then as � bt = a(c3(c2b)Xh + p3)s
0t+ h3 =

c4ab(Xh�s
0t)+p4�s

0t+h3 = c4abXh�(X
e+d
h s00t0)+p4s

0t+h3 = c4ab(Xh�X
e+d
h )�s00t0+

h00 = c4abc5(X
e+1+d
h � s00t0) + h00 = cabst + h00: Using axiom 3.2.1(2,a) for products

with coeÆcients, Xh � s
0 = s, c 2 K with ca = ac4 and h

00 = p4s
0t+ h3 < st.

Furthermore using that the (commutative) term s0t can be written as Xe+d
h s00t0 =

Xe+d
h � s00t0 by axiom 3.2.1(2,b), (d � 0 the degree of Xk in t) and using that by

axiom 3.2.1(2,b) Xh �X
e+d
h = Xe+1+d

h and again by axiom 3.2.1(2,b) Xe+1+d
h � s00t0 =

Xe+1+d
h s00t0 = st. Finally by taking c = c4 the claim follows.

Case j � k: Let t = t0Xe+1
k = t0Xe

k � Xk = u � Xk with t0 2 T (Xi; : : : ; Xk�1). Now

t0 < t and by induction assumption let s � bt0 = c2bst
0 + h2. We get as � bt =

a(s � bt0)Xe
k �Xk = a(c2bst

0 + h2)X
e
k �Xk = a(c2bst

0 �Xe
k) �Xk + (h2 �X

e
k) �Xk

Since h2 < st0 we can apply induction assumption on both products in the second
summand yielding h4 = (h2 �X

e
k) �Xk < st0Xe+1

h = st. Furthermore we can apply

induction assumption to st0 � Xe
k = c3st

0Xe
k + h3, since st

0Xe
k < st. This gives

as � bt = ac2b(c3st
0Xe

k + h3) �Xk+ h4 = ac2bc3(st
0Xe

k) �Xk+ ac2bh3 �Xk+ h4 Again
the second summand can be handled by induction assumption since h3 < st0Xe

k < st,

let h5 = ac2bh3 �Xk + h4 < st.

Now use, that the (commutative) term st0Xe
k can be written as s0t0Xe+d

k = s0t0 �

Xe+d
k by axiom 3.2.1(2,b), (d � 0 the degree of Xk in s). Furthermore by axiom

3.2.1(2,b) we have Xe+d
k � Xk = Xe+1+d

k thus as � bt = ac2bc3s
0t0 � Xe+1+d

k + h5 =

c5ab(s
0t0)Xe+1+d

k + h5, using c5ab = ac2bc3. By axiom 3.2.1(2,b) s0t0 � Xe+1+d
k =

s0t0Xe+1+d
k = st With 0 6= c = c5 2 K and h00 = h5 we get as � bt = cabst + h5 =

cabst + h00 as claimed.

Case i < h & k < j: We use that s = s00Xe+1
j = u � Xj = s00Xe

j � Xj, t = Xd+1
i t00 =

Xi �X
e
i t
00 = Xi � t

0, with s00 2 T (Xh; : : : ; Xj�1), t
0 2 T (Xi+1; : : : ; Xk) and with e � 0

and d � 0 by axioms 3.2.1(2,b).

Lemma 3.2.4 applied to s�b gives c3bs+h1, h1 < s. We obtain as�bt = a(s�b)Xi�t
0 =

a(c3bs+h1)�Xi � t
0 = c4ab(s�Xi)� t

0+ah1 �Xi � t
0 = c4ab(s

00Xe
j )� (Xj �Xi)� t

0+h2.
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Where we used two times induction assumption on ah1�Xi�t
0 = h2 < st and c4 2 K

with c4ab = ac3b.

By axiom 3.2.1(3) let Xj �Xi = cijXiXj+pij so the �rst summand becomes as�bt =

c4ab(s
00Xe

j )�(cijXiXj+pij)�t
0+h2 = c4abs

00(Xe
j �cij)�XiXj�t

0+c4ab(s
00Xe

j )�pij�t
0+h2.

For the �rst summand lemma 3.2.4 can be used to obtain Xe
j � cij = c5X

e
j + h3,

h3 < Xe
j . The second summand can be handled by induction assumption and

combined with h2 to form h4 = c4ab(s
00Xe

j ) � pij � t
0 + h2 < st, so: as � bt =

c4abs
00(c5X

e
j+h3)�XiXj�t

0+h4 = c4ab(s
00c5)X

e
j �XiXj�t

0+c4abs
00�h3�XiXj�t

0+h4.

Using lemma 3.2.4 for s00c5 = c6s
00+h5, h5 < s00 and application of 3 times induction

assumption to the second summand and combination with h4 giving h6 = c4abs
00 �

h3 �XiXj � t
0 + h4 < st, we obtain as � bt = c4ab(c6s

00 + h5)X
e
j � XiXj � t

0 + h6 =
c4abc6(s

00Xe
j �Xi) � (Xj � t

0) + c4abh5X
e
j �XiXj � t

0 + h6.

From now on let s00Xe
j = s0 by axiom 3.2.1(2,b). Since s0Xi < s0XjXi � st and

Xjt
0 < XjXit

0 � st induction assumption can be applied to the �rst and last product

of the �rst summand: s0 � Xi = c8Xis
0 + h8, h8 < s0Xi and Xj � t

0 = c9t
0Xj + h9,

h9 < Xjt
0. For the second summand we use again induction assumption h7 =

c4abh5X
e
j �XiXj�t

0+h6 < st. So we get as�bt = c7ab(c8Xis
0+h8)�(c9t

0Xj+h9)+h7 =
c7ab(c8(Xis

0�c9)t
0Xj+c8Xis

0�h9+h8�c9t
0Xj+h8�h9)+h7 = c7abc8(Xis

0�c9)t
0Xj+h10.

Using several induction assumptions and simpli�cations on the second to fourth

summand, such that h10 = c7ab(c8Xis
0 � h9 + h8 � c9t

0Xj + h8 � h9) + h7, h10 < st.

Using lemma 3.2.4 we can write Xis
0 � c9 = c9Xis

0 + h11, h11 < Xis
0. With further

simpli�cations we get: as � bt = c7abc8(c9Xis
0 + h11)t

0Xj + h10 = c7abc8c9(Xis
0) �

(t0Xj) + c7abc8h11 � t
0Xj + h10 = c10abXi(s

0 � t0)Xj + h12. Using h12 = c7abc8h11 �

t0Xj + h10 < st, and c10 2 K such that c10ab = c7abc8c9.

Since s0t0 < st we can apply induction assumption to the middle product s0 � t0 =
c11s

0t0 + h13, so as � bt = c10abXi(c11s
0t0 + h13)Xj = c10ab(Xic11)s

0t0Xj + c10abXi �

h13 �Xj + h12 = c10ab(c12Xi + h14)(s
0t0)Xj + c10abXi � h13 �Xj + h12 = c10abc12Xi �

(s0t0) �Xj+ c10ab �h14 � (s
0t0) �Xj +h15 = c13abXi � (s

0t0) �Xj +h15, using induction

assumptions on the second summands, Xic11 = c12Xi+h14, coeÆcient products and

collecting the rests in h15 < st.

Now by the hypothesis of this case, s0t0 2 T (Xi; : : : ; Xj) and we can write s0t0 =

Xd
i s

00t00Xe
j = Xd

i � s
00t00 � Xe

j using axiom 3.2.1(2,b). By axiom 3.2.1(2,b) we can

write Xd+1
i � s00t00 = Xd+1

i s00t00. Finally again by axiom 3.2.1(2,b) Xd+1
i s00t00 �Xe+1

j =

Xd+1
i s00t00Xe+1

j = st and with 0 6= c = c13 2 K and h00 = h15 we obtain as � bt =

cabst + h00 as desired.

So in all cases we have proved (3.1) and so the lemma. 2

Corollary 3.2.6 Let R = KfX1; : : : ; Xn;Q;Q
0g be a solvable polynomial ring with re-

spect to a �-compatible admissible term order. Then the � multiplication on R is uniquely

determined by Q and Q0.
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The last lemma of this section shows that solvable polynomial rings have no zero-divisors

and deals with the �-product and the quasi-order <.

Lemma 3.2.7 Let R = KfX1; : : : ; Xn;Q;Q
0g be a solvable polynomial ring, let <T be a

�-compatible admissible term order, and let f; g 2 R. Then

1. HT(f � g) = HT(f)HT(g) = HT(fg) = HT(g)HT(f) = HT(g � f),

2. there exists 0 6= c 2 K, such that HM(f � g) = cHM(f)HM(g),

3. For h 2 R, HT(f) < HT(g) implies HT(f�h) < HT(g�h) and HT(h�f) < HT(h�g).

In particular R has no zero-divisors.

Proof: (1) The assumptions of proposition 3.2.5 are ful�lled, so f � g = cfg + h with

h < fg, and we have HT(f � g) = HT(cfg) = HT(fg) = HT(f)HT(g) and similarly
HT(g � f) = HT(c0gf) = HT(gf) = HT(fg).

(2) As in (1) let f �g = cfg+h with 0 6= c 2 K, then HM(f �g) = HM(cfg) = cHM(fg) =
cHM(f)HM(g).

(3) If HT(f) < HT(g), then by (1) and since < is admissible, we have HT(f �

h) = HT(f)HT(h) < HT(g)HT(h) = HT(g � h) and HT(h � f) = HT(h)HT(f) <

HT(h)HT(g) = HT(h � g). 2

3.3 Associativity

The axioms 3.2.1(2, 3, 4) alone do not guarantee the associativity of the �-product. So
axiom 3.2.1(1) imposes some restrictions on the values of the cai, pai, cij and the coeÆcients

of the pij. We are going to show that these restrictions can be stated as a set of polynomial
equations between these elements.

Consider R as a K bi-module generated by the elements of T .

De�nition 3.3.1 Let R be a ring, � : R �! R be an endomorphism. Æ : R �! R is

called an �-derivation if for all a; b 2 R:

1. Æ(a+ b) = Æ(a) + Æ(b),

2. Æ(ab) = �(a)Æ(b) + Æ(a)b.

If � is the identity, then Æ satis�es the usual sum and product rule of derivations.

Necessary conditions for the cai and pai are noted in the following lemma.
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Lemma 3.3.2 Let R = KfX1; : : : ; Xn;Q;Q
0g be a solvable polynomial ring, then for

1 � i � n the mappings

�i : K �! K; a 7�! �i(a) = caia

must be injective endomorphisms and the mappings

Æi : K �! K; a 7�! Æi(a) = pai

must be �i-derivations. That is for all a; b 2 K and 1 � i � n the images of �i and Æi
satisfy the following equations:

1. ca+b;i(a+ b) = ca;ia + cb;ib,

2. cab;iab = ca;iacb;ib,

3. pa+b;i = pa;i + pb;i,

4. pab;i = ca;iapb;i + pa;ib.

Proof: By distributivity of � over +, Xi � (a+ b) = Xi � a+Xi � b, so we get:

ca+b;i(a+ b)Xi + pa+b;i = (ca;ia+ cb;ib)Xi + pa;i + pb;i:

And by the associativity of �, Xi � (ab) = (Xi � a) � b, so:

cab;iabXi + pab;i = (ca;iacb;ib)Xi + ca;iapb;i + pa;ib:

Comparing coeÆcients the claim follows.

To show injectivity, assume for a contradiction that caia = ca0ia
0 for some a 6= a0, a; a0 2 K.

Then (a � a0) 6= 0 and by axiom 3.2.1(4) 0 6= c(a�a0)i(a � a0) = (caia � ca0ia
0) = 0 a

contradiction. 2

If R is of strict lexicographical type, we obtain similarly necessary conditions for the cij
and pij.

Corollary 3.3.3 Let R = KfX1; : : : ; Xn;Q;Q
0g be a solvable polynomial ring of strict

lexicographical type. Let Rj = KfX1; : : : ; Xj�1;Qj; Q
0
jg be the restriction of R to

K[X1; : : : ; Xj�1]. By the product lemma 3.2.5, let 0 6= cfj 2 K and hfj 2 R with

hfj < fXj such that

Xj � f = cfjfXj + hfj:

If f 2 Rj it follows from the strict lexicographical condition that hfj 2 Rj. Thus Rj is

again a solvable polynomial ring of strict lexicographical type and so for 1 � j � n the

mappings

�j : Rj �! Rj; f 7�! �j(f) = cfjf

must be injective endomorphisms and the mappings

Æi : Rj �! Rj; f 7�! Æj(f) = hfj

must be �j-derivations. That is for all f; g 2 Rj for 1 � j � n the images of �j and Æj
satisfy the following equations:
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1. cf+g;j(f + g) = cf;jf + cg;jg,

2. cfg;jfg = cf;jfcf;jg,

3. hf+g;j = hf;j + hg;j,

4. hfg;j = cf;jfhf;j + hf;jb.

Proof: As in the previous lemma. 2

Further necessary conditions for the cij and cai are given by:

Lemma 3.3.4 Let R = KfX1; : : : ; Xn;Q;Q
0g be a solvable polynomial ring. Then for

1 � i < j < k � n the cai, cij, cik and cjk must satisfy the following equation:

cjkccik;jcikcij = ccij ;kcijcikccjk;icjk;

Proof: The claim follows from comparing coeÆcients of the head terms in

(Xk �Xj) �Xi = cjkccik;jcikcijXiXjXk + smaller order terms

and

Xk � (Xj �Xi) = ccij ;kcijcikccjk;icjkXiXjXk + smaller order terms:

2

A suÆcient condition can be obtained as follows:

Lemma 3.3.5 Let R = KfX1; : : : ; Xn;Q;Q
0g be a not necessary associative K-algebra,

satisfying axioms 3.2.1(2, 3, 4), T the set of terms of R.

R is associative () �r � (�s � t) = (�r � �s) � t

for all �; �;  2 K and all r; s; t 2 T .

Proof: =) If R is associative, then clearly �r � (�s � t) = (�r � �s) � t.

(= Assume that for all �; �;  2 K and all r; s; t 2 T : �r � (�s � t) = (�r � �s) � t. Let
f; g; h 2 R, f =

P
�rfr, g =

P
�sgs and h =

P
tht. Then by distributivity of � over +

(f � g) � h =
X
r;s;t

(�rfr � �sgs) � tht

=
X
r;s;t

�rfr � (�sgs � tht)

= f � (g � h):

This shows that �-products of arbitrary elements of R are associative. 2

More important is the following proposition, which states that there exists a set of equa-
tions between the cai, pai, cij, the coeÆcients of the pij and elements of K, that holds i�

R is associative.
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Proposition 3.3.6 Let R = KfX1; : : : ; Xn;Q;Q
0g be a solvable ring, satisfying axioms

3.2.1(2, 3, 4), T the set of terms of R. Then R is associative () the cai's, pai's, cij's

and the coeÆcients of the pij's, satisfy the following set of equations:

X
v2T

ÆÆ(�;r;�;s;v);v;;t;u =
X
v2T

Æ�;r;Æ(�;s;;t;v);v;u

for all �; �;  2 K and all r; s; t; u 2 T . Here the Æ's are derived as polynomials in the

cai's, pai's, cij's, the coeÆcients of the pij's and elements of K.

To see that the Æ's can also be derived as polynomials over K in the indeterminates cai's,

pai's, cij's and the coeÆcients of the pij's see 7.1.2.

Proof: By lemma 3.3.5 R is associative i� for all for all �; �;  2 K and all r; s; t 2 T :
�r� (�s�t) = (�r��s)�t. We expand the products by proposition 3.2.5: For �; � 2 K

and r; s 2 R let �r � �s =
P

v2T Æ�;r;�;s;vv. Note that the sums are �nite. Now

(�r � �s) � t = (
X
v2T

Æ�;r;�;s;vv) � t =
X

v2T;u2T

ÆÆ(�;r;�;s;v);v;;t;uu

and
�r � (�s � t) = �r � (

X
v2T

Æ�;s;;t;vv) =
X

v2T;u2T

Æ�;r;Æ(�;s;;t;v);v;uu:

Since the u 2 T are linearly independent, the coeÆcients of the u's must vanish exactly
when the associativity condition on the products of the terms are ful�lled. 2

3.3.1 Ring Extensions

In this subsection we discuss under what conditions on the commutator relations of solv-
able polynomial rings, new variables can be added such that the extension ring is still a
solvable polynomial ring.

The next lemma shows that we may add commuting variables and still have a solvable

polynomial ring.

Lemma 3.3.7 Let R = KfX1; : : : ; Xn;Q;Q
0g be a solvable polynomial ring over a �eld

K with respect to a �-compatible admissible term order <. Let Y1; : : : ; Ym be new variables

that commute with all Xi, among themselves and with the elements of K. Furthermore

extend the term order < to a term order <0 on T (X1; : : : ; Xn; Y1; : : : ; Ym) in such a way,

that the restriction of <0 to T (X1; : : : ; Xn) coincides with <. That is we let Q1 = Q [

fYj �Xi = XiYj : Xi < Yj; 1 � i � n; 1 � j � mg [ fXi � Yj = YjXi : Yj < Xi; 1 �

i � n; 1 � j � mg [ fYk � Yj = YjYk : 1 � j < k � mg and Q0
1 = Q1 [ fYj � a = aYj :

a 2 K; 1 � j � mg.

Then R1 = KfX1; : : : ; Xn; Y1; : : : ; Ym;Q1; Q
0
1g is a solvable polynomial ring over the �eld

K with respect to the �-compatible admissible term order <0.
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Proof: By construction the polynomial ring R[Y1; : : : ; Ym] is associative with respect to �.

De�ne � on R[Y1; : : : ; Ym] by � and by Q1 and Q
0
1 then � satis�es axioms (2,3,4) of solvable

polynomial rings 3.2.1. This implies with the associativity of � on the old variables the

associativity of � on the combined set of old and new variables. With lemma 3.3.5 this

shows the associativity of � in the ring R1, so R1 also satis�es axiom (1) of solvable

polynomial rings 3.2.1. 2

We turn now to some examples of solvable polynomial rings.

3.4 Examples of Solvable Polynomial Rings

We show in this section, that several algebraic structures satisfy the axioms 3.2.1 for
special values of the cij, pij, cai and pai.

Clearly commutative polynomial rings are solvable polynomial rings. Let R =
K[X1; : : : ; Xn] be a commutative polynomial ring in the commuting indeterminates

X1; : : : ; Xn. K a (commutative) �eld, commuting with the indeterminates. Then R

satis�es the axioms 3.2.1 if we de�ne

cij = 1, pij = 0, 1 � i � j � n, and
cai = 1, pai = 0 1 � i � n, a 2 K.

3.4.1 Ore Extensions

To de�ne Ore extensions we need some preparations.

Proposition 3.4.1 Let R be a ring, let � be an endomorphism of R, let Æ be an �-

derivation of R and let X be an indeterminate not commuting with R. Then there exists

a unique ring S, containing R as a subring, such that S is a free left R-module with a

basis of the form 1; X;X2; : : : and multiplication � such that

X � r = �(r)X + Æ(r)

for all r 2 R.

Proof: See [Goodearl, War�eld 1989](p 8). 2

Note, that if for all 0 6= r 2 R the highest terms on both sides are equal and R is a

domain (i.e. R has no zero divisors) this implies that � is injective. (Since otherwise the
1; X;X2; : : : would be linearly dependent.) As we consider mostly domains, the assump-

tion of � being injective will be no loss of generality.

De�nition 3.4.2 (Ore extension) The ring S of the preceding proposition is denoted

by

R[X;�; Æ]
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and is called an Ore extension of R. An iterated Ore extension is a ring S de�ned by

R[X1;�1; Æ1][X2;�2; Æ2] : : : [Xn;�n; Æn]

where �2 is now an endomorphism of R[X1;�1; Æ1] and Æ2 is an �2-derivation of

R[X1;�1; Æ1] etc.

Ore extensions have �rst been studied by [Ore 1933] as an unifying approach to di�erential

and di�erence rings.

As a special case of Ore extensions we note the de�nition of di�erential operator rings.

De�nition 3.4.3 (Di�erential operator ring) Let S = R[X;�; Æ] be an Ore extension

of R. If � is the identity map on R, then S is denoted by R[X; Æ] and is called a (formal)

di�erential operator ring.

Let S = R[X1;�1; Æ1][X2;�2; Æ2] : : : [Xn;�n; Æn] be an iterated Ore extension of R. If the

�i are the identity maps of the respective rings we obtain an iterated di�erential operator
ring: R[X1; Æ1][X2; Æ2] : : : [Xn; Æn], denoted by

R[X1; X2; : : : ; Xn; Æ1; Æ2; : : : Æn]:

For more information on di�erential operator rings see the books [Kolchin 1973] or the
older [Ritt 1950].

As a special case of di�erential operator rings we obtain algebras of partial derivatives:

De�nition 3.4.4 (Weyl algebra) Let R = R[X1; : : : ; Xn] be a polynomial ring over a

ring R. Then the formal partial derivatives Æi = @=@Xi
(1 � i � n) are commuting

derivations on R. The n-th Weyl algebra over R is de�ned as the formal di�erential

operator ring:

R[X1; : : : ; Xn;Y1; : : : ; Yn; @=@X1
; : : : @=@Xn ]:

As a further special case of Ore extensions we note the de�nition of di�erence rings.

De�nition 3.4.5 (Di�erence ring) Let S = R[X;�; Æ] be an Ore extension of R. If

� is an injective endomorphism of R and Æ is the zero derivation, then S is denoted by

R[X;�] and is called a (formal) di�erence ring.

Let S = R[X1;�1; Æ1][X2;�2; Æ2] : : : [Xn;�n; Æn] be an iterated Ore extension of R. If the

�i are injective endomorphisms of the respective rings and all Æi are zero, we obtain an

iterated di�erence ring: R[X1;�1][X2;�2] : : : [Xn;�n], denoted by

R[X1; X2; : : : ; Xn;�1; �2; : : : �n]:
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For more information on di�erence rings see the book [Cohn 1965].

The following theorems adapted from [Kandri-Rody, Weispfenning 1988] show under

which conditions iterated Ore extensions are solvable polynomial rings. Note that with

the (new) axioms 3.2.1 we are no more restricted to K-derivations for Ore extensions.

Theorem 3.4.6 Let R be a �eld. Let S = R[X1;�1; Æ1][X2;�2; Æ2] : : : [Xn;�n; Æn] be an

iterated Ore extension such that the endomorphisms �i satisfy �j(Xi) = cijXi with 0 6=

cij 2 R for 1 � i < j � n. Since R is a �eld, the �j jR are injective.

De�ne commutator relations Q = fXj � Xi = cijXiXj + pij : 1 � i < j � ng and

Q0 = fXj � a = caiaXj + pai : 1 � i � n; a 2 Rg by

cijXi = �j(Xi), pij = Æj(Xi) for 1 � i < j � n and

caia = �j(a), pai = Æj(a) for 1 � i � n, a 2 R.

Then S 0 = RfX1; : : : ; Xn;Q;Q
0g is a solvable polynomial ring of strictly lexicographical

type.

Proof: The proof is by induction on n. In case n = 0 nothing is to prove.

For n > 0, let S = R0[Xn;�n; Æn] be such that by induction assumption R0 is already a

solvable polynomial ring of strict lexicographical type.

Since R is a �eld, the equation �n(a) = cana is solvable for 0 6= a 2 R and determines
0 6= cai 2 R. Furthermore de�ne pin = Æn(Xi) for 1 � i < n, and pan = Æn(a) for a 2 R.

The �i are by assumption endomorphisms with the suitable de�nition of cin. Furthermore
Æn(Xi) 2 R[X1; : : : ; Xn�1] so the strict lexicographical term order condition is ful�lled.

We de�ne the �-product by

Xn �Xi = �n(Xi)Xn + Æn(Xi)

therefore satisfying axioms 3.2.1(3) and by

Xn � a = �n(a)Xn + Æn(a)

so satisfying axioms 3.2.1(4). The axioms 3.2.1(1,2) hold by de�nition of an Ore extension.

So the �-product satis�es all axioms 3.2.1 and this makes S 0 indeed a solvable polynomial

ring as claimed. 2

We remark, that in case R is not a �eld we have to add the condition caia = �j(a) such

that 0 6= cai 2 R for 1 � i � n, 0 6= a 2 R to show the claim of the theorem.

Theorem 3.4.7 Let R be a �eld. Let S 0 = RfX1; : : : ; Xn;Q;Q
0g be a solvable polynomial

ring of strictly lexicographical type with Q = fXj �Xi = cijXiXj + pij : 1 � i < j � ng

and Q0 = fXj � a = caiaXj + pai : 1 � i � n; a 2 Rg.

De�ne (mappings) �i and Æi by
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�j(Xi) = cijXi, Æj(Xi) = pij for 1 � i < j � n and

�j(a) = caia, Æj(a) = pai for 1 � i � n, a 2 R.

Then S = R[X1;�1; Æ1][X2;�2; Æ2] : : : [Xn;�n; Æn] is an iterated Ore extension.

Proof: The proof is by induction on n. In case n = 0 nothing is to prove.

For n > 0, by the strict lexicographical condition we have pin 2 R[X1; : : : ; Xn�1]. So

by restriction R0
1 = RfX1; : : : ; Xn�1;Q

�; Q0�g is also a solvable polynomial ring of strict

lexicographical type.

Now we know by lemmas 3.3.3 and 3.3.2 that the �n(Xi) = cinXi for 1 � i < n and the
�n(a) = cana for a 2 R de�ne injective endomorphisms of the respective rings. Further-

more the Æn(Xi) = pin for 1 � i < n and the Æn(a) = pan for a 2 R de�ne (�n)-derivations.

So the given de�nitions for �n and Æn satisfy all conditions of proposition 3.4.1 for an Ore
extension R0

1[Xn;�n; Æn]. By induction assumption we may assume that the corresponding
R1 is an iterated Ore extension which completes the proof. 2

The conditions of theorems 3.4.6 and 3.4.7 are in particular ful�lled if the �j are the iden-

tity mapping on the respective rings. So we obtain the following corollaries for di�erential
operator rings.

Corollary 3.4.8 Let R be a �eld. Let S = R[X1 : : :Xn; Æ1 : : : Æn] be an iterated di�erential

operator ring. De�ne commutator relations Q = fXj �Xi = XiXj + pij : 1 � i < j � ng

and Q0 = fXj � a = aXj + pai : 1 � i � n; a 2 Rg by

pij = Æj(Xi) for 1 � i < j � n and

pai = Æj(a) for 1 � i � n, a 2 R.

Then S 0 = RfX1; : : : ; Xn;Q;Q
0g is a solvable polynomial ring of strictly lexicographical

type.

Especially Weyl algebras are iterated di�erential operator rings, so they are solvable

polynomials rings with pij = 1 for 1 � i < j � n and pai = 0 for 1 � i � n, a 2 R.

Corollary 3.4.9 Let R be a �eld. Let S 0 = RfX1; : : : ; Xn;Q;Q
0g be a solvable polynomial

ring of strictly lexicographical type with Q = fXj � Xi = XiXj + pij : 1 � i < j � ng

and Q0 = fXj � a = aXj + pai : 1 � i � n; a 2 Rg.

De�ne (mappings) Æi by

Æj(Xi) = pij for 1 � i < j � n and

Æj(a) = pai for 1 � i � n, a 2 R.

Then S = R[X1 : : :Xn; Æ1 : : : Æn] is an iterated di�erential operator ring.
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The conditions of theorems 3.4.6 and 3.4.7 are in particular ful�lled if the �j are injective

endomorphisms of the respective rings and the Æj are zero. Then also the condition on the

strict lexicographical term order can be dropped and we obtain the following corollaries

for di�erence rings.

Corollary 3.4.10 Let R be a �eld. Let S = R[X1; : : : ; Xn;�1 : : : �n] be an iterated dif-

ference ring such that the endomorphisms �i satisfy �j(Xi) = cijXi with 0 6= cij 2 R for

1 � i < j � n. Since R is a �eld, the �j jR are injective.

De�ne commutator relations Q = fXj � Xi = cijXiXj : 1 � i < j � ng and Q0 =

fXj � a = caiaXj : 1 � i � n; a 2 Rg by

cijXi = �j(Xi) for 1 � i < j � n and

caia = �j(a) for 1 � i � n, a 2 R.

Then S 0 = RfX1; : : : ; Xn;Q;Q
0g is a solvable polynomial ring.

Again note, that in case R is not a �eld we have to add the condition �j(a) = caia such
that 0 6= cai 2 R for 1 � i � n, 0 6= a 2 R to show the claim of the corollary.

Corollary 3.4.11 Let R be a �eld. Let S 0 = RfX1; : : : ; Xn;Q;Q
0g be a solvable polyno-

mial ring with Q = fXj �Xi = cijXiXj : 1 � i < j � ng and Q0 = fXj � a = caiaXj :

1 � i � n; a 2 Rg.

De�ne (mappings) �i by

�j(Xi) = cijXi for 1 � i < j � n and

�j(a) = caia for 1 � i � n, a 2 R.

Then S = R[X1; : : : ; Xn;�1 : : : �n] is an iterated di�erence ring.

Since R is a �eld (so a domain) the condition that � is injective is automatically ful�lled
by our de�nition of solvable polynomial rings.

3.4.2 Enveloping Algebras of Lie Algebras

For the case of enveloping algebras of Lie algebras we do not obtain more in our cur-
rent framework for solvable polynomial rings 3.2.1. We therefore state the results from

[Kandri-Rody, Weispfenning 1988]. Enveloping algebras of Lie algebras are examples of

solvable polynomial rings, which are not of strictly lexicographical type.

De�nition 3.4.12 (Lie algebra) Let L = (L;+;�; �; 0; 1;K) be a vector space over a

�eld K. Let � be a bi-linear composition on L, that is the � operation satis�es the

following formulas:
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Lb1: (x1 + x2)� y = x1 � y + x2 � y,

Lb2: y � (x1 + x2) = y � x1 + y � x2,

Lb3: a(x� y) = a(x)� y = x� a(y),

where x1; x2; y 2 L and for a 2 K, a : L �! L is the left scalar multiplication by a.

L is a called a Lie algebra if the � operation satis�es in addition the formulas

Lb4: x� x = 0,

Lb5: (x� y)� z + (y � z)� x+ (z � x)� y = 0,

where x; y; z 2 L. `Lb5' is called Jacobi identity.

De�nition 3.4.13 For any associative algebra A = (A;+;�; �; �; 0; 1;K) we can de�ne

a Lie algebra AL = (A;+;�; �;�; 0; 1;K) by de�ning � : A2 �! A by

x� y = [x; y] = x � y � y � x

for x; y 2 A. [x; y] is called the Lie product or commutator of x and y.

It is easily veri�ed, that the de�nition of the � function satis�es all conditions of the �

operation of a Lie algebra.

De�nition 3.4.14 (Universal envelope) Let L be a Lie algebra over a (commuta-

tive) �eld K. An associative algebra U(L) together with an injective homomorphism

� : L �! U(L)L is called an universal enveloping algebra of L if the following condi-

tions are satis�ed:

If A is any associative algebra and  : L �! AL is an injective homomorphism, then

there exists a unique injective homomorphism ' : U(L) �! A such that  = ' Æ �.

For every Lie algebra L there exists a universal enveloping algebra U(L), which is unique
up to isomorphism. The construction of U(L) is described in [Jacobson 1962](p 155).

Theorem 3.4.15 (Poincar�e-Birkho�-Witt) Let L be a Lie algebra over a (commu-

tative) �eld K, �nitely generated with basis X1; : : : ; Xn. Furthermore let U(L) be the

universal enveloping algebra of L. Then the elements of U(L) can be represented uniquely

as commutative polynomials in K[X1; : : : ; Xn].
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Proof: See [Jacobson 1962](p 159). 2

For the product � in U(L) we have

Xj �Xi �Xi �Xj = [Xi; Xj] = pij

for 1 � i < j � n. And since Xi; Xj 2 L we have [Xi; Xj] 2 L, so that pij is a linear

combination of the X1; : : : ; Xn. So deg(pij) � 1 < 2 = deg(XiXj) and for a degree

compatible order < on T it follows pij < XiXj for 1 � i < j � n.

If L is a solvable Lie algebra then for a suitable choice of the basis X1; : : : ; Xn of L it holds

that pij 2 K[X1; : : : ; Xj�1]. See [Jacobson 1962](p 50) and [Dixmier 1974]. So in this case

also for the lexicographical order X1 < : : : < Xn we have pij < Xj for 1 � i < j � n.

We can now de�ne the commutator relations Q;Q0 for a solvable polynomial ring as:

Xj �Xi = XiXj + pij

that is cij = 1, pij =
Pn

k=1 aijkXk = [Xi; Xj], aijk 2 K, 1 � i � j � n, 1 � k � n, and

cai = 1, pai = 0 for 1 � i � n, a 2 K.

In all cases the algebra U(L) satis�es the axioms 3.2.1 and so we obtain theorem 1.14 of
[Kandri-Rody, Weispfenning 1988]:

Theorem 3.4.16 Let L be a �nite dimensional Lie algebra with basis X1; : : : ; Xn over

a �eld K. Then the universal enveloping algebra U(L) of L is a solvable polynomial

ring KfX1; : : : ; Xn;Qg with respect to any degree compatible admissible order < on T .

Moreover, if L is solvable, then for a suitable choice of the basis X1; : : : ; Xn the order <

may be taken as lexicographical order.

Almost Normalizing Extensions

In [McConnell, Robson 1987](p 28), a generalization of skew polynomial rings and en-

veloping algebras is introduced as follows.

De�nition 3.4.17 Let S be a �nitely generated extension of a ring R with generators

X1; : : : ; Xn. Assume the generators satisfy the following conditions

1. RXi = XiR +R, for 1 � i � n,

2. XiXj �XjXi 2
X

k=1;:::;n

XkR +R, for 1 � i; j � n.

Then S is called an almost normalizing extension of R.

The motivation for this de�nition is that the `head terms' of the elements of S behave

like the head terms of commutative polynomials. (The associated graded module gr(S) =

R[X̂1; : : : ; X̂n] is commutative.)

It is clear, that such rings can be considered as solvable polynomial rings, if we take a
degree compatible term order on the Xi.
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3.4.3 Quotients of Free Associative Algebras

In this section we discuss under which conditions a homomorphic image of a free asso-

ciative algebra is a solvable polynomial ring. As a special case, we obtain the results

of [Kandri-Rody, Weispfenning 1988] in the case that the variables commute with the

coeÆcients in the de�nition of a solvable polynomial ring.

Let P = K�X1; : : : ; Xn�, be a free associative ring, generated byK and non-commuting

variables X1; : : : ; Xn. Let Q = fqij = XjXi� cijXiXj � pij : cij 2 K n f0g; pij 2 P; 1 �

i < j � ng, where the pij are commutative polynomials and pij < XiXj for a �xed

admissible term (word) order <. Furthermore let Q0 = fqai = Xia� caiaXi � pai : cai 2

K n f0g; pai 2 K; a 2 K; 1 � i < j � ng, where the pai are elements of K.

Q [ Q0 is called a commutation system for (P;<). For de�nitions of admissible word

orders < see e.g. [Mora 1985].

De�nition 3.4.18 Let idealt(Q [ Q
0) denote the two-sided ideal generated by Q [ Q0 in

P . Then let (NoCg) denote the following hypothesis about idealt(Q [Q
0):

(NoCg) idealt(Q [Q
0) contains no non-zero commutative polynomial.

Theorem 3.4.19 Let P be a free associative ring generated by K and X1; : : : ; Xn, for a

�eld K. Let Q [ Q0 be a commutation system for (P;<) and let R = P=idealt(Q [ Q
0).

Denote the residue class of Xi mod idealt(Q [Q
0) by xi and let R = K�x1; : : : ; xn� be

the free associative ring generated by K and x1; : : : ; xn.

Then Q [ Q0 satis�es hypothesis (NoCg) if and only if R is canonically isomorphic to a

solvable polynomial ring S = KfY1; : : : ; Yn; �Q; �Q0g with respect to < and the multiplication

� of S under an isomorphism �xing K pointwise and mapping xi onto Yi. Where �Q, �Q0

denote the commutator relations Q, Q0 written in the variables Yi.

Proof: \=)" Let S 0 = K[Y1; : : : ; Yn] and let R0 = K[x1; : : : ; xn]. Furthermore let
R = K�x1; : : : ; xn� = P=idealt(Q [Q

0). So R0 � R and we have the situation

P

� # &

R  ! S

 

Where � is the canonical homomorphism and  is de�ned as follows

 : K[Y1; : : : ; Yn] �! K�x1; : : : ; xn�

Yi 7! xi; i = 1; : : : ; n

a 7! a; a 2 K

We are going to show, that  is bijective and preserves the �-product.
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By assumption idealt(Q [Q
0) does not contain a commutative polynomial, so every non-

zero element (a commutative polynomial) of S maps to a non-zero element of R, i.e.  is

an embedding. So  (S) = R0 � R. Denote the multiplication in R0 by � and in R by �,

i.e. f(x1; : : : ; xn) � g(x1; : : : ; xn) = f(X1; : : : ; Xn)g(X1; : : : ; Xn) + idealt(Q [Q
0).

We claim, that R0 is closed under �. By de�nition of R and � we have xj � xi = XjXi +

idealt(Q[Q
0) = (cijXiXj+pij)+idealt(Q[Q

0) = cijxixj+pij and xi�a = Xia+idealt(Q[

Q0) = (caiaXi + pai) + idealt(Q [ Q
0) = caiaxi + pai. That is, R0 satis�es all axioms of

3.2.1, except possibly the closedness under �. So the product proposition 3.2.5 holds in

R0 and we have f � g = c � f � g + h for f; g; h 2 R0 and 0 6= c 2 K. But this shows that

f � g 2 R0.

Finally every element of R is a sum over �-products of the x1; : : : ; xn and elements of K.

This shows R0 = R as sets which implies, that  is surjective and hence is bijective. By
de�nition of the �-product in S and in R we see that  is also a �-homomorphism, which
completes the proof of this direction.

\(=" Assume R and S are canonically isomorphic by an isomorphism � : R �! S. Let

f 6= 0 2 P be a commutative polynomial. Since f is a non-zero commutative polynomial
and the Y1; : : : ; Yn together with the a 2 K do not satisfy a commutative relation in S,
we have f(Y1; : : : ; Yn) 6= 0 in S. Since � is an isomorphism, also 0 6= ��1(f(Y1; : : : ; Yn)) =

f(x1; : : : ; xn). This shows, that 0 6= f in R and so f 62 idealt(Q [Q
0). 2

Corollary 3.4.20 Let P be a free associative ring generated by K and X1; : : : ; Xn, for

a �eld K. Let � : P �! S be the canonical homomorphism between P and a solvable

polynomial ring S = KfX1; : : : ; Xn;Q;Q
0g. Let Q [ Q0 be a commutation system for

(P;<), then Q [Q0 satis�es hypothesis (NoCg).

Proof: Since � is a canonical homomorphism we have ker(�) = idealt(Q [ Q
0) so by

theorem 3.4.19 Q [Q0 must satisfy hypothesis (NoCg). 2

The results from [Kandri-Rody, Weispfenning 1988] are a special case of the foregoing for

solvable polynomial rings in which the variables commute with the coeÆcients.

Let P = KhX1; : : : ; Xni be a free associative algebra overK, generated by non-commuting

variables X1; : : : ; Xn, which commute with the elements of K. Let Q = fqij = XjXi �

cijXiXj � pij : cij 2 K n f0g; pij 2 P; 1 � i < j � ng. Where the pij are commutative

polynomials and

pij < XiXj for a �xed admissible term (word) order <. Q is called a commutation system

for (P;<).

De�nition 3.4.21 Let idealt(Q) denote the two-sided ideal generated by Q in P . Then

let (NoC) denote the following hypothesis about idealt(Q):

(NoC) idealt(Q) contains no non-zero commutative polynomial.
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Corollary 3.4.22 ([Kandri-Rody, Weispfenning 1988] th 1.7) Let P be a free associative

algebra generated by X1; : : : ; Xn over a �eld K. Let Q be a commutation system for (P;<)

and let R = P=idealt(Q). Denote the residue class of Xi mod idealt(Q) by xi and let

R = Khx1; : : : ; xni. Then Q satis�es hypothesis (NoC) if and only if R is canonically

isomorphic to a solvable polynomial ring S = KfY1; : : : ; Yn; �Qg with respect to < and the

multiplication � of S under an isomorphism �xing K pointwise and mapping xi onto Yi.

Where �Q denotes the commutator relations Q written in the variables Yi.

Corollary 3.4.23 Let P be a free associative algebra generated by X1; : : : ; Xn over a �eld

K. Let � : P �! S be the canonical homomorphism between P and a solvable polynomial

ring S = KfX1; : : : ; Xn;Qg. Let Q be a commutation system for (P;<), then Q satis�es

hypothesis (NoC).

Commutation Systems with (NoC)

Using results from [Mora 1986], [Kandri-Rody, Weispfenning 1988] prove the following
characterization of commutation systems satisfying (NoC). It is an open problem, if the
results from Mora can be generalized to free associative rings and commutation systems

satisfying hypothesis (NoCg).

Theorem 3.4.24 (Mora) Let Q be a commutation system for (P;<). Then hypothesis

(NoC) holds for Q if and only if Q is a (free) Gr�obner base for idealt(Q) with respect to

the order <.

Proof: See [Kandri-Rody, Weispfenning 1988](th 1.11). 2

Moreover the condition if hypothesis (NoC) holds for Q can be checked algorithmically

by the (free) Gr�obner base algorithm of [Mora 1986].

Corollary 3.4.25 Let < be an admissible term order on T that can be extended to a

positive term order on the words W (X1; : : : ; Xn) such that t <0 XjXi for j > i and

t 2 T (X1; : : : ; Xj). Then there is an algorithm that decides for any commutation system

Q for (P;<) whether Q satis�es hypothesis (NoC).

Using the product lemma 3.2.5 together with a strict lexicographical term order we can
also allow for more general commutation system for P .

Theorem 3.4.26 Let P be a free associative algebra generated by X1; : : : ; Xn. Let Q

be a commutation system for (P;<) such that the possibly non-commutative polynomi-

als pij = pij(X1; : : : ; Xj�1) 2 P depend only on X1; : : : ; Xj�1 and the cij = 1. Then

R = P=idealt(Q) is a solvable polynomial ring of strict lexicographical type if and only if

hypothesis (NoC) holds for Q.

Proof: See [Kandri-Rody, Weispfenning 1988](th 1.13). 2
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De�nition 3.4.27 Let R = KfX1; : : : ; Xn;Qg be a solvable polynomial ring over K and

let I be a two-sided ideal in R. Then A = R=I is called an algebra of solvable type over

K generated by a1; : : : ; an, where ai = Xi + I for 1 � i � n.

An important class of K-algebras that satisfy the assumptions of this section are the so

called Cli�ord and Grassmann algebras which we will discuss next.

Cli�ord and Grassmann Algebras

De�nition 3.4.28 Let R = K[X1; : : : ; Xn] be a (commutative) polynomial ring over a

(commutative) �eld K. Let q 2 R be a quadratic form de�ned as

q(X1; : : : ; Xn) =
X

1�i�n

qiX
2
i +

X
1�i<j�n

qijXiXj;

where qi; qij 2 K for 1 � i < j � n. Then let C be the K-algebra generated by X1; : : : ; Xn

and multiplication de�ned by

U � U = q(U)

U � V � V � U = q(U + V )� q(U)� q(V );

where U; V 2 C with U =
P

1�i�n uiXi, V =
P

1�i�n viXi and q(U) de�ned as q(u) =
q(u1X1; : : : ; unXn).

The algebra C de�ned by extension of � is called Cli�ord algebra. If q � 0 then C is

called Grassmann algebra.

See e.g. [V. d. Waerden 1971](sec 93.5) for details and properties.

Proposition 3.4.29 [Kandri-Rody, Weispfenning 1988] Let

q(X1; : : : ; Xn) =
X

1�i�n

qiX
2
i +

X
1�i<j�n

qijXiXj;

be a quadratic form. Let R = KhX1; : : : ; Xni=idealt(Q) where Q is the commutation

system de�ned by

Q = fXjXi +XiXj � qij : 1 � i < j � ng:

Then R is a polynomial ring of solvable type and R = KfX1; : : : ; Xn;Qg with commutator

relations Q. Furthermore let

P = fX2
i � qi : 1 � i � ng:

Then C = R=idealt(P ) is a Cli�ord algebra determined by q.

Proof: Since qij 2 K, Q is already a Gr�obner base in KhX1; : : : ; Xni. So Q satis�es

hypothesis (NoC) and so by theorem 3.4.22 R is a solvable polynomial ring.

Now P is already a Gr�obner base in R since all S-polynomials reduce to 0 with respect

to P (and the commutator relations Q). Now f 2 R is in normal form with respect to P ,

i� f is at most linear in each Xi, 1 � i � n. This shows that R=idealt(P ) is a Cli�ord

algebra de�ned by q. 2
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3.5 A Hilbert Basis Theorem

In this section we are going to establish that solvable polynomial rings are so called

Noetherian rings. To show this we prove a version of Hilbert's Basis Satz for solvable

polynomial rings. Note that this theorem cannot be proved by iterated Ore extensions

unless RfX1; : : : ; Xn;Q;Q
0g is a solvable polynomial ring of strictly lexicographical type.

We use a combination of Dickson's lemma and a variant of K�onigs tree lemma in the proof

of `Hilbert basis theorem'.

De�nition 3.5.1 (Noetherian ring) A ring R is called a left (right) Noetherian ring

if it satis�es the following equivalent conditions

ACC There does not exist an in�nite sequence of left (right) ideals such that every ideal

is properly contained in its successor.

MAX Every non empty family of left (right) ideals of R has a maximal element.

HIB Every left (right) ideal of R is �nitely generated.

If R is both left and right Noetherian it is called Noetherian.

For a proof of the equivalence of this conditions see e.g. [Goodearl, War�eld 1989]. Con-

dition `HIB' is also known as Hilbert's Basis Satz, condition `ACC' is called the ascending
chain condition and condition `MAX' is called the maximality condition.

Troughout this section let R be a (non-commutative) domain with 1 and let S =

RfX1; : : : ; Xn;Q;Q
0g be a (non-commutative) polynomial ring of solvable type over R

in the variables X1; : : : ; Xn with respect to the extended axioms 3.2.2.

In case we consider right ideals we will make the global assumption in this
section, that the mapping a 7! caia is an automorphism.

Recall that T denotes the set of terms (power products) of variables and that the elements

of T are totally ordered by an �xed admissible order <. Furthermore for f 2 S, HT(f) =
HT<(f) denotes the highest term (head term) in f with respect to a given term order <

and that HC(f) = coe�(HT(f); f) is the coeÆcient of the head term of f .

De�nition 3.5.2 Let J be a subset of S. For t 2 T let

Jt = fHC(f) : f 2 J;HT(f) = tg [ f0g:

Lemma 3.5.3 Let J be a left (right) ideal in S with respect to the extended axioms (and

for right ideals the mapping a 7! caia is an automorphism). Then for every t 2 T , Jt is

a left (right) ideal in R.
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Proof: Let t 2 T . Let 0 6= a; b 2 Jt and let f; g 2 J with HC(f) = a and HC(g) = b. To

show a � b 2 Jt let c = a � b and let h = f � g. Now either c 6= 0 and since h 2 J and

HT(h) = t we have HC(h) = c 2 Jt, or c = 0 then by de�nition 0 2 Jt. For a left ideal

we show �a 2 Jt for � 2 R. Let c = �a and let h = �f 2 J . Now either c 6= 0 and since

h 2 J and HT(h) = t we have HC(h) = c 2 Jt, or c = 0 then by de�nition 0 2 Jt.

For a right ideal we show a� 2 Jt for � 2 R. Let c = a� and let h = f�0 2 J for �0

so that HC(f � �0) = a�. Now either c 6= 0 and since h 2 J and HT(h) = t we have

HC(h) = c 2 Jt, or c = 0 then by de�nition 0 2 Jt. 2

Lemma 3.5.4 Let J be a left (right) ideal in S and let S satisfy the extended axioms.

Furthermore let t; t0 2 T . If t j t0 then Jt � Jt0.

Proof: Let t0 = ut for some u 2 T . Let a 2 Jt, f 2 J with HC(f) = a. Then u � f 2 J

with HT(u � f) = t0.

Now S is assumed to satisfy the extended axioms, so either R is a skew �eld and for
c = HC(u�f) there exists 0 6= b 2 R, such that HC(bu�f) = bc = a, with bu�f 2 J . This
shows a 2 Jt0 . In the other case all cij and all cai are contained in a sub�eld of the center.

By the product lemma 3.2.5 we have HC(u � f) = ca, where 0 6= c is a product of some
cij and some cai. So c is invertible, say by c0 and we obtain HC(c0u � f) = c0ca = 1a = a.

Again c0u � f 2 J and so a 2 Jt0 . Similarly for right ideals. 2

De�nition 3.5.5 Let J be a left (right) ideal in S. Let BJ denote the set of ideals

Jt. De�ne a partial order on BJ by set inclusion �. Let J1; J2 2 BJ , then we call J2
an immediate successor of J1 if J1 � J2, J1 6= J2 and there is no J3 2 BJ , such that

J1 � J3 � J2 and J1 6= J2 6= J3. We write J1 � J2 if J1 � J2 and J1 6= J2.

Lemma 3.5.6 Let J be a left (right) ideal in S and let S satisfy the extended axioms.

Let (BJ ;�) denote the partially ordered set of ideals Jt. Then BJ has only �nitely many

minimal elements and each Jt 2 BJ has only �nitely many immediate successors.

Proof: First let U = fu 2 T : Ju 2 BJg, then by Dickson's lemma 3.1.1 there exists a

�nite subset U� � U such that every u 2 U is a multiple of some u0 2 U�. This shows
that fJu0 : u0 2 U�g is a �nite set of minimal elements in BJ .

Next for t 2 T , let A = fJu : Jt � Ju; Jt 6= Jug be the set of successors of Jt and
let U = fu 2 T : Ju 2 Ag. By Dickson's lemma 3.1.1 there exists a �nite subset

U� � U such that every u 2 U is a multiple of some u0 2 U�. This shows that the set

A� = fJu0 : u0 2 U�g of immediate successors of Jt is �nite. So there are only �nitely

many immediate successors for each element of BJ . 2

To proceed we need a partial order version of K�onig's tree lemma:

Lemma 3.5.7 Let the partial order (BJ ;�) be in�nite and assume that BJ has only

�nitely many minimal elements and that for any element there are only �nitely many

immediate successors. Then there exists an in�nite sequence F = Jt1 � Jt2 � Jt3 � : : :

in BJ , such that each Jti has in�nitely many successors.
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Proof: Let Jt1 be one of the �nitely many minimal elements, such that Jt1 has in�nitely

many successors. Such a choice is possible, since BJ is in�nite and so there must be one

element which has in�nitely many successors.

Let j > 0 and assume Jtj has already been chosen such that Jtj has in�nitely many succes-

sors. By assumption for any element there are only �nitely many immediate successors,

say Js1; : : : ; Jsk for Jtj . Since BJ is in�nite and Jtj has in�nitely many successors, there

must be one 1 � i � k such that Jsi has in�nitely many successors. Then for j +1 de�ne

tj+1 = si. So by the axiom of choice there exists an in�nite sequence Jt1 � Jt2 � Jt3 � : : :.

2

Lemma 3.5.8 Let J be a left (right) ideal in S and let S satisfy the extended axioms.

Let (BJ ;�) denote the partially ordered set of ideals Jt. If R is left (right) Noetherian

then BJ is �nite.

Proof: Assume for a contradiction, that the set BJ is in�nite. Then by lemma 3.5.6

the assumptions of lemma 3.5.7 are ful�lled and so there exists an in�nite sequence F =
Jt1 � Jt2 � Jt3 � : : : in BJ . Since the Jt are ideals in R { which is left (right) Noetherian

{ any sequence of the Jt becomes stationary. So the sequence F is �nite. This contradicts
our assumption that BJ is in�nite and so proves the lemma. 2

Lemma 3.5.9 Let J be an left (right) ideal in S and let S satisfy the extended axioms.

Let (BJ ;�) denote the partially ordered set of ideals Jt. Let R be left (right) Noetherian,

so that BJ is �nite. Then there exists a �nite set TJ � T , such that the following condition

holds:

For all Js 2 BJ there exists t 2 TJ with Jt = Js and t j s.

Proof: For s 2 T such that Js 2 BJ let As = ft
0 2 T : Jt0 = Js; t

0 j sg. By Dickson's

lemma 3.1.1 there exists a �nite basis A�
s of A. Now let

TJ =
[

Js2BJ

A�
s

Then TJ is �nite, since each A�
s is �nite and by assumption BJ is �nite. The condition

on TJ holds by construction. 2

De�nition 3.5.10 Since R is left (right) Noetherian, each Jt is �nitely generated. Let

Jt = ideall(ai1; : : : ; ait) and let Ft = ffi1; : : : ; fitg, where each fik 2 J is chosen such that

HT(fik) = t and HC(fik) = aik . Let

FJ =
[
t2TJ

Ft:

Since TJ is �nite and each Ft is �nite, FJ is �nite too.
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Lemma 3.5.11 Let J be a left (right) ideal in S and let S satisfy the extended axioms.

Let R be left (right) Noetherian and let FJ be de�ned as before. Then any f 2 J has a

representation

f =
X
i2�

�iui � fi (f =
X
i2�

fi � �iui);

where �i 2 R, ui 2 T and fi 2 FJ for i 2 �, j�j <1. Thus J is �nitely generated by FJ .

Proof: Assume for a contradiction that the claim does not hold. Then there exists a

polynomial f 2 J , HT(f) minimal, such that f has no such representation. Let HC(f) = a

and HT(f) = t. By lemma 3.5.9 there exists s 2 TJ such that s j t and a 2 Js. Let t = us

for some u 2 T . So a =
P

j=i1;:::;is �jaj. Let fj 2 FJ with HC(fj) = aj. Now S satis�es
the extended axioms and so the head coeÆcients of the u�fj are either equal to aj (in this

case let �j = �j) or there exist �j 2 R such that �jaj = �jHC(u � fj) for j = i1; : : : ; is.
Then for the polynomial

f 0 = f �
X

j=i1;:::;is

�ju � fj

we have coe�(t; f 0) = 0 and so HT(f 0) < HT(f). Now by assumption on f we know that
f 0 has a representation

P
i2�0 �iui�fi with respect to FJ . But then f =

P
j=i1;:::;is �ju�fj+P

i2�0 �iui � fi is a representation of f with respect to FJ . This contradicts the existence

of such an f and thus proves that f has a representation with respect to FJ . Finally
J = ideall(FJ) since each f has a representation with respect to FJ . A similar reasoning

establishes the claim for right ideals. 2

Theorem 3.5.12 (Hilbert Basis Satz) If R is left (right) Noetherian, then any poly-

nomial ring of solvable type S = RfX1; : : : ; Xn;Q;Q
0g which satis�es the extended axioms

(and for right ideals the mapping a 7! caia is an automorphism) is left (right) Noetherian.

If R is Noetherian, then S is Noetherian.

Proof: By lemma 3.5.11 any left (right) ideal in S is �nitely generated. So S is left

(right) Noetherian. 2

Note, that the theorem holds not only if S is an iterated Ore extension.

3.6 Center of Solvable Polynomial Rings

Let S = RfX1; : : : ; Xn;Qg be a solvable polynomial ring over a commutative �eld R

in the variables X1; : : : ; Xn, such that the coeÆcients commute with the variables (i.e.

cai = 1 and pai = 0 for 1 � i � n, 0 6= a 2 R; in some cases we will moreover assume that

cij = 1 for 1 � i < j � n). Furthermore let char(R) denote the characteristic of R.

An immediate fact is that the center of such a solvable polynomial ring consists exactly of

all polynomials which commute with all variables. Furthermore we show how to determine

all elements of the center up to a given degree bound and that non-commuting variables
have only trivial centralizer in case the underlying �eld has characteristic zero.
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De�nition 3.6.1 Let S be a ring. The center of S is the set of all elements of S which

commute with all elements of S:

cen(S) = fa 2 S : ab = ba for all b 2 Sg:

Let I be a subset of S. The centralizer of I in S is the set of all elements of S which

commute with all elements of I:

cenS(I) = fa 2 S : ab = ba for all b 2 Ig:

For a; b 2 S, [a; b] = ab� ba denotes the commutator of a and b.

Proposition 3.6.2 Let S = RfX1; : : : ; Xn;Qg be a solvable polynomial ring over R in

the variables X1; : : : ; Xn. Let X = fX1; : : : ; Xng. Then

cen(S) = cenS(X):

Proof: \�" holds, since X is a subset of S.

\�" Let f 2 cenS(X), we show f 2 cen(S). We must show f � g = g � f for all g 2 S.
Assume �rst, that g = u = Xe1

1 : : :Xen
n 2 T (X). Then we have

f � u = f � (Xe1
1 : : :Xen

n )

= f � (X1 : : : X1| {z }
e1

: : :Xn : : :Xn| {z }
en

)

f 2 cenS(X)

=
(X1 : : :X1| {z }

e1

: : :Xn : : :Xn| {z }
en

) � f

= (Xe1
1 : : : Xen

n ) � f

= u � f:

In other words f 2 cenS(T (X)). Now let g 2 S be arbitrary, g =
P

k �kuk, where �k 2 R
and uk 2 T (X). Then we have

f � g = f � (
X
k

�kuk) =
X
k

�kf � uk

f 2 cenS(T (X))

=

X
k

�kuk � f

= (
X
k

�kuk) � f

= g � f:

This shows f 2 cen(S) and completes the proof. 2

An immediate consecuence of the foregoing proposition is that center membership is

decidable.
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Proposition 3.6.3 Let S = RfX1; : : : ; Xn;Qg be a solvable polynomial ring over R in

the variables X1; : : : ; Xn. Assume R is computable and the term order is decidable. Then

there exists an algorithm which decides for any f 2 S if f 2 cen(S).

Proof: Let X = fX1; : : : ; Xng. By proposition 3.6.2 f 2 cen(S) i� f 2 cenS(X) i�

f �Xi �Xi � f = 0; 1 � i � n:

This condition can clearly be decided if we can compute in the solvable polynomial ring

S. 2

3.6.1 Computation of Elements in the Center

Proposition 3.6.2 provides moreover a means to determine elements in the center up
to any degree bound. One takes a polynomial f with indeterminate coeÆcients, then

a necessary and suÆcient condition for f 2 cen(S) is that f must commute with all
variables Xi, i = 1; : : : ; n. This gives a system of linear equations for the coeÆcients of
f . Solving it answers the question if for some values of the coeÆcients f 2 cen(S).

Proposition 3.6.4 Let S = RfX1; : : : ; Xn;Qg be a solvable polynomial ring over R in

the variables X1; : : : ; Xn. Assume R is computable and the term order is decidable. Let

X = fX1; : : : ; Xng.

Given a �nite set of terms T 0 = ft1; : : : ; tkg k 2 N in T (X1; : : : ; Xn), then there is an

algorithm, which decides if there is a polynomial

f =
kX
i=1

aiti 2 cen(S)

for some ai 2 R, 1 � i � k. Moreover the algorithm computes a K-vector space basis of

cen(S) \K[t1; : : : ; tk]:

Proof: Consider S as a R-module R[X1; : : : ; Xn]. Let f 2 S, then by proposition 3.6.2

f 2 cen(S)() f 2 cenS(X). Furthermore f 2 cenS(X)() [f;Xj] = f �Xj�Xj�f = 0
for 1 � j � n. By proposition 3.2.5 f � Xj � Xj � f = hj 2 S. Since the terms form a

R-basis of the R-module S, hj = 0 if and only if all coeÆcients of the terms in hj vanish.

This gives a system of linear equations for the coeÆcients of f .

[f;Xj] = f �Xj �Xj � f

= (
kX
i=1

aiti) �Xj �Xj � (
kX
i=1

aiti)
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=
kX
i=1

ai(ti �Xj �Xj � ti)

=
kX
i=1

ai(hij)

=
kX
i=1

ai(

kijX
l=1

bijltijl)

=

kijX
l=1

(
kX
i=1

aibijl)tijl:

This yields a system of homogeneous linear equations for the ai

kX
i=1

aibijl = 0 1 � l � kij; 1 � i � k; 1 � j � n:

If this system is solvable in the ai 1 � i � k then f =
Pk

i=1 aiti 2 cenS(X) = cen(S).

Moreover let M = f(a01m; : : : ; a
0
km) : 1 � m � m0g be a basis of the solution space. Let

fm =
Pk

i=1 a
0
imti for 1 � m � m0, then all linear combinations of the fm are again in the

center of S. Furthermore any polynomial in the terms T 0 in the center satis�es the above
homogeneous system of linear equations and so it is a linear combination of the fm. 2

Proposition 3.6.5 Let S = RfX1; : : : ; Xn;Qg be a solvable polynomial ring over R in

the variables X1; : : : ; Xn. Assume R is computable and the term order is decidable.

There exists a (non-terminating) procedure to compute a set of polynomials which generate

the center of S.

Proof: Let X = fX1; : : : ; Xng and let fTigi2N be an enumeration of the set of subsets

of the terms T (X). Then for i = 0; 1; 2; 3; : : : determine the set of center polynomials
Pi = ffij : 1 � j � kig by the algorithm in proposition 3.6.4. Then P =

S
i2N Pi is a set

of generating polynomials in the center of S. 2

If there are known bounds on the degrees of generating polynomials one may compute

only elements in the center up to this bound and the terminate the algorithm. So without

such information this is a non-terminating procedure.

3.6.2 Structure of the Center

We are going to show that non-commuting variables have only a trivial centralizer (i.e.

the centralizer of these non-commuting variables is equal to R in case char(R) = 0).
Therefore we need to prepare some technical lemmas. Note that we additionally assume

cij = 1 in some cases.
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Lemma 3.6.6 Let S = RfX1; : : : ; Xn;Qg be a solvable polynomial ring over R in the

variables X1; : : : ; Xn. Let X = fX1; : : : ; Xng.

Let x; y 2 X such that x < y and y � x = xy + p with xy > p 2 S. Then for 0 � m 2 N

and 1 � ` 2 N the following identities hold:

[x`; xmy] = [x`�1; xm+1y]� xm � p � x`�1

and

[xym; y`] = [xym+1; y`�1]� y`�1 � p � ym:

Proof: A short computation yields:

[x`; xmy] = x`(xmy)� (xmy) � x`

= x`�1(xm+1y)� xm(y � x) � x`�1

= x`�1(xm+1y)� xm(xy + p) � x`�1

= x`�1(xm+1y)� (xm+1y) � x`�1 � xm � p � x`�1

= [x`�1; xm+1y]� xm � p � x`�a:

The second identity is proved similarly. 2

Lemma 3.6.7 Let S = RfX1; : : : ; Xn;Qg be a solvable polynomial ring over R in the

variables X1; : : : ; Xn. Let X = fX1; : : : ; Xng.

Let x; y 2 X such that x < y and y � x = xy + p with xy > p 2 S. Then for 0 � m 2 N

and 1 � ` 2 N the following identities hold:

[x`; xmy] = �
`�1X
k=0

xm+k � p � x`�k�1

and

[xym; y`] = �
`�1X
k=0

y`�k�1 � p � ym+k:

Proof: By induction on `. We get for the case ` = 1:

[x; xmy] = [x0; xm+1y]� xm � p � x0

= �xm � p

using the preceding lemma and by the formula

[x; xmy] = �
0X

k=0

xm+k � p � x1�k�1

= �xm � p � x0 = �xm � p
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as claimed. In case ` > 1 a short computation using the preceding lemma and the

induction hypothesis establishes:

[x`+1; xmy] = [x`; xm+1y]� xm � p � x`

= �
`�1X
k=0

xm+1+k � p � x`�k�1 � xm � p � x`

= �
X̀
k=1

xm+k � p � x`�k � xm � p � x`

= �
X̀
k=0

xm+k � p � x`�k:

The second identity is proved similarly. 2

Corollary 3.6.8 For the case m = 0 we note

[x`; y] = �
`�1X
k=0

xk � p � x`�k�1

and

[x; y`] = �
`�1X
k=0

y`�k�1 � p � yk:

Lemma 3.6.9 Let S = RfX1; : : : ; Xn;Qg be a solvable polynomial ring over R in the

variables X1; : : : ; Xn. Let X = fX1; : : : ; Xng.

Let x; y 2 X such that x < y and y � x = xy + p with xy > p 2 S. Then for 1 � ` 2 N

the following holds:

HM([x`; y]) = �`HM(p � x`�1)

and

HM([x; y`]) = �`HM(y`�1 � p):

Proof: A short computation yields:

HM([x`; y]) = HM(�
`�1X
k=0

xk � p � x`�k�1)

= HM(�
`�1X
k=0

HM(xk � p � x`�k�1))

= HM(�
`�1X
k=0

HM(px`�1))

= HM(�`HM(px`�1))

= �`HM(px`�1)

where we used the above corollary and the fact, that the multiplication of head terms

behaves like commutative multiplication of head terms. The second identity is proved

similarly. 2
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Lemma 3.6.10 Let S = RfX1; : : : ; Xn;Qg be a solvable polynomial ring over R in the

variables X1; : : : ; Xn. Let X = fX1; : : : ; Xng.

Let x; y 2 X such that x < y and y � x = xy + p with xy > p 2 S. If p 6= 0 and

char(R) = 0, then for 1 � `;m 2 N with ` 6= m the following holds:

HM([x`; y]) 6= HM([xm; y])

and

HM([x; y`]) 6= HM([x; ym]):

Proof: Since ` and m are not equal to zero in R we have

HM([x`; y]) = �`HM(p � x`�1) 6= �mHM(p � xm�1) = HM([xm; y]):

The second identity is proved similarly. 2

Proposition 3.6.11 Let S = RfX1; : : : ; Xn;Qg be a solvable polynomial ring over R in

the variables X1; : : : ; Xn. Let X = fX1; : : : ; Xng.

Let x; y 2 X such that x < y and y � x = xy + p with xy > p 2 S. If p 6= 0 and

char(R) = 0, then the following holds:

cen(S) \R[x; y] = R:

Note that this does not necessarily imply that cen(S) = R. E.g. for any variable z 2 X,
z 6= x; y, which commutes with all other variables we have R[z] � cen(S) by proposition
3.6.2.

Proof: Assume f 2 cen(S) \R[x; y] with x < y. Let f =
Pkf

k=1 �kx
ekyak with �k 2 R

and ek; ak 2 N. Since f 2 cen(S), we must have [f; x] = [f; y] = 0. Expanding [f; y] and
[f; x] we obtain

0 = [f; y] = [

kfX
k=1

�kx
ekyak ; y]

=

kfX
k=1

�k[x
ekyak ; y] =

kfX
k=1

�k[x
ek ; y]yak

=

kfX
k=1

�k(�ekHM(p � xek�1) + rest)yak

=

kfX
k=1

(�k(�ek)HM(p � xek�1) � yak + �k rest � y
ak);

0 = [f; x] = [

kfX
k=1

�kx
ekyak ; x]
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=

kfX
k=1

�k[x
ekyak ; x] =

kfX
k=1

�kx
ek [yak ; x]

=

kfX
k=1

�kx
ek(�akHM(yak�1 � p) + rest)

=

kfX
k=1

(�k(�ak)x
ek � HM(yak�1 � p) + �kx

ek � rest ):

Consider S as a R-module R[X1; : : : ; Xn]. Then the two expansions de�ne a system of

kf homogeneous equations for the �k. By assumption only e0 = a0 = 0 and for k > 0

not both ek = 0 and ak = 0. Since char(R) = 0 we have ek 6= 0 or ak 6= 0 in R

for 1 � k � kf and ek 6= 0 respectively ak 6= 0 in N. In case ek; ej 6= 0 we have
�ekHM(p � xek�1 � yak) 6= �ejHM(p � xej�1 � yaj ) for 1 � k 6= j � kf . And in case

ak; aj 6= 0 we have �akHM(xek � yak�1 � p) 6= �ajHM(xej � yaj�1 � p) for 1 � k 6= j � kf .
Comparing the coeÆcients of the highest terms of the products (where ek 6= 0 or ak 6= 0),

we see that we must have �k = 0 for k = kf ; kf � 1; : : : ; 1 and �0 arbitrary. That is
f = �1x

0y0, which shows that actually f 2 R as claimed. 2

Proposition 3.6.12 Let S = RfX1; : : : ; Xn;Qg be a solvable polynomial ring over R in

the variables X1; : : : ; Xn. Let X = fX1; : : : ; Xng.

Let x; y 2 X such that x < y and y � x = xy + p with xy > p 2 S. Let R[x; y]d = ff 2
R[x; y] : deg(f) � dg. If p 6= 0, char(R) = q > 0 and 0 � d < q, then the following holds:

cen(S) \R[x; y]d = R:

Proof: In this case we have ek � d for 1 � k � kf and so ek 6= 0 in R. As in the proof

of the preceding proposition we can now conclude, that the system of kf equations has

rank k � 1 and therefore has only one solution such that f 2 R. 2

Remark: In case d � q = char(R) it may happen that

cen(S) \R[x; y]d
�

6= R:

Example 3.6.13 Let S = K2fX; Y ;Qg be a solvable polynomial ring over a �eld K2 of

characteristic 2 in the variables X; Y . Let X < Y and Y �X = XY + 1 with 1 2 K2.

Let f = Y 2 2 K2[X; Y ]2, then clearly f 2 cenS(Y ) and f 2 cenS(X) since Y 2 � X =

Y � (XY + 1) = (XY + 1)Y + Y 1 = XY 2 + Y + Y = XY 2.

This shows that f 2 cen(S) \K2[X; Y ]2 and f 62 K.



Chapter 4

Ideals and Gr�obner Bases

In this chapter we will discuss the main part of Gr�obner bases theory for solvable poly-
nomial rings.

First three sections treat abstract reduction relations, left reduction for solvable poly-
nomial rings and some general properties of conuent left reduction relations. Then we

introduce standard representations and apply them to left reduction relations and to the
left ideal membership problem. Using standard representations we prove that the second
Buchberger criterion for the detection of unnecessary S-polynomials holds for solvable

polynomial rings. Then we de�ne left Gr�obner bases, give several characterizations of
them and show that there exists a Buchberger algorithm to construct them. In the last

sections we discuss right and two-sided ideals and Gr�obner bases. We give conditions on
the coeÆcient �eld under which the algorithmic construction of two-sided Gr�obner bases
is possible.

Throughout this chapter let R = KfX1; : : : ; Xn;Q;Q
0g denote a solvable polynomial ring

over a skew �eld K with respect to a �xed but arbitrary admissible term order <. Q and
Q0 denote the commutator relations as de�ned in the axioms 3.2.1. T denotes the set of

terms in the variables X1; : : : ; Xn and K� = K n f0g. In the algorithms we assume that

K is computable and < is decidable.

4.1 Reduction Relations

In this �rst section we summarize some important notations and de�nitions of reduction

relations. In this section R may be any set, but we will later only use the de�nitions in

case R is a ring.

De�nition 4.1.1 Let �! be a relation on R, (i.e. �!� R � R) then �! is called a

reduction relation if it is a strictly anti-symmetric relation. That means, (a; a) 62�! for

all a 2 R and if for some a; b 2 R (a; b) 2�!, then (b; a) 62�!. Furthermore an element

a 2 R is called irreducible if for all b 2 R (a; b) 62�!.

66
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De�nition 4.1.2 Let �! be a reduction relation on R. Then �! is called Noetherian

if there does not exist an in�nite reduction sequence:

a1 �! a2 �! a3 �! : : :

for ai 2 R, i = 1; 2; 3; : : :.

De�nition 4.1.3 Let �! be a reduction relation on R, f; g; h 2 R.

 � denotes the inverse relation of �!.

 ! denotes the symmetric closure of �!.

�!� denotes the reexive, transitive closure of �!. If for some n 2 N f �!� g is equal

to f = f1 �! : : : �! fn = g we write f �!n g.

 !� denotes the reexive, transitive closure of the symmetric closure of �!. If for some

n 2 N f  !� g is equal to f  ! f0  ! : : : ! fn = g we write f  !n g.

f # g denotes that f and g reduce to a common element, that is there exists h with f �!�

h and g �!� h. In this case f  !� g.

Reduction relations are in general not conuent; this means that two di�erent reductions
of the same element may lead to two di�erent irreducible elements.

De�nition 4.1.4 Let �! be a reduction relation on R, a; b; c; d 2 R. Then

1. �! is conuent if a �!� c and a �!� d implies c # d,

2. �! is locally conuent if a �! c and a �! d implies c # d,

3. �! has the Church-Rosser property if a !� b implies a # b.

4. �! has the unique normal forms if a �!� b, a �!� c and b, c are irreducible

implies b = c.

Lemma 4.1.5 (Newman) Let �! be a Noetherian reduction relation on R, then the

properties 1, 2, 3 and 4 of de�nition 4.1.4 are equivalent.

Proof: See [Bergman 1978], [Huet 1980]. 2
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4.2 Left Reduction

In this section we will de�ne left reduction relations on a solvable polynomial ring R. In

a later section we discuss also right reduction relations.

De�nition 4.2.1 (Left Reduction) Let p 2 R, t 2 T . Then the left reduction �!t;p

� R� R is de�ned as follows:

For f; f 0 2 R, t 2 T (f), f �!t;p f
0 i� there exists u 2 T such that t =

u �HT(p) = HT(u � p) and

f 0 = f � au � u � p;

where au 2 K� is the unique element of K� such that coe�(t; f) = au �

coe�(t; u � p).

By construction t 62 T (f 0). If for certain f , t no such u exists, then t in T (f) is called
irreducible wrt. p.

This de�nition requires that

1. HT(p) divides t in the commutative sense and

2. the head term of u � p is equal to t.

Now (1) is constructive by comparing exponents of powers of Xi in t and in HT(p) (which
also determines u) and (2) holds by proposition 3.2.5.

For a completion procedure with respect to this reduction relation, the following lemma
is required.

Lemma 4.2.2 Let p 2 R, u 2 T , a 2 K� and let t = HT(u � p). Then a � u � p �!t;p 0.

Proof: By proposition 3.2.5 we have a � u � p = cup+h with t = HT(up) = uHT(p). Let

au = a then coe�(t; a �u � p) = au � coe�(t; u � p). So cup+h� (au �u � p) = 0 as claimed.
2

De�nition 4.2.3 Reduction with respect to a polynomial p 2 R and with respect to sets

of polynomials P � R are de�ned as follows:

f �!p f
0 if f �!t;p f

0 for some t in T (f),

f �!t;P f
0 if for some p 2 P , f �!t;p f

0,

f �!P f
0 if for some p 2 P , f �!p f

0.
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For sets P;Q � R we de�ne

P �! Q if for some f 2 P , f 0 2 Q, P n ffg = Q n ff 0g and f �!Pnffg f
0.

We will also use the notations form 4.1.3 for the left reduction.

If f can not be reduced with respect to P we say f is irreducible with respect to P or f

is in normal form with respect to P . P is irreducible or in normal form or autoreduced,

if all f 2 P are irreducible with respect to P n ffg. So if P is autoreduced and we have

P �!� Q, then P = Q. Furthermore we generally assume that 0 62 P for a reduction

relation �!P and that only 0 is reducible with respect to the empty set.

Lemma 4.2.4 Let f; f 0 2 R, P � R, P �nite then

1. f �!P f
0 implies f > f 0,

2. �!P is a Noetherian reduction relation.

3. It exists f 0 with f �!�
P f

0 and f 0 is irreducible with respect to P . f 0 is called a (not

necessarily unique) normal form of f with respect to P .

Proof: (1) Let f �!P f 0, then f �!t;p f
0 for some t 2 T and some p 2 P . Then by

de�nition 4.2.1 t 62 T (f 0). Furthermore for all s 2 T (f) with s > t we have s 2 T (f 0) and

by the product lemma 3.2.5 all new terms in f 0 are < t. By de�nition of the quasi-order
< on R: f > f 0.

(2) If f �!P f
0, then by (1) f > f 0 and since < is a well-founded quasi-order on R, the

claim follows.

(3) Let f �!�
P f

0 be a maximal reduction sequence. Then by (2) this sequence is �nite,

say of length n: f �!P f1 �!P : : : �!P fn then fn is irreducible mod P . 2

The following two important lemmas deal with properties of polynomials under reductions.

Lemma 4.2.5 (Translation Lemma) Let f; g; h; f 0; g0; h0 2 R and let P � R. If f =

g + h and h �!�
P h0 then there exist f 0 and g0 such that f �!�

P f 0, g �!�
P g0 and

f 0 = g0 + h0.

Proof: Let h �!�
P h0 be equal to h �!k

P h0 for some k 2 N. The proof is by induction

on k. For k = 0 let f 0 = f and g0 = g.

For k > 0 let h �!k
P h

0 be equal to h �!k�1
P h00 �!t;P h

0. For some t 2 T (h00) and p 2 P .

By induction assumption there exist polynomials f 00, g00 with f �!k�1
P f 00, g �!k�1

P g00

such that f 00 = g00 + h00.

Let h0 = h00� c �u � p for some u 2 T and some c 2 K� with t = HT(u � p) = HT(up) and

coe�(t; h00) = c � coe�(t; u � p). Let c1; c2 2 K such that coe�(t; f 00) = c1 � coe�(t; u � p)



70 CHAPTER 4. IDEALS AND GR�OBNER BASES

and coe�(t; g00) = c2 � coe�(t; u � p) (possibly c1 = 0 or c2 = 0). Let f 0 = f 00 � c1 � u � p,

g0 = g00 � c2 � u � p. This de�nes two reductions f 00 �!�
t;P f

0 and g00 �!�
t;P g

0.

Since f 00 = g00+h00 we have c1 = c2+ c and so f 0 = g0+h0. By construction and induction

assumption f �!k�1
P f 00 �!�

t;P f
0 and g �!k�1

P g00 �!�
t;P g

0, which proves the lemma. 2

For the special case h0 = 0 we have f 0 = g0, i.e. f #P g:

Lemma 4.2.6 Let f; g 2 R and let P � R. If f � g �!�
P 0 then f #P g.

4.3 Conuent Left Reduction

We summarize some useful properties of conuent (Noetherian) reduction relations.

Given a subset G � R such that �!G is conuent, we show, that there exists minimal
subsets G0 � G such that �!G0 is conuent. Furthermore there exist autoreduced (or

irreducible) subsets G, such that �!G is conuent. Finally we treat reduction relations
which are conuent on certain subsets F (t) of R.

Lemma 4.3.1 Let G � R such that �!G is a conuent Noetherian reduction relation.

Let f; g 2 R with f  !�
G g and let g be irreducible wrt. G. Then f �!�

G g. In particular

for g = 0 we have that f  !�
G 0 implies f �!�

G 0.

Proof: Since �!G is conuent, there exists h 2 R such that f �!�
G h and g �!

�
G h. But

g is irreducible, so g = h which proves the �rst claim of the lemma. Since 0 is irreducible

the second claim is also true. 2

Next we discuss minimal sets for conuent reduction relations.

Lemma 4.3.2 Let G � R such that �!G is a conuent Noetherian reduction relation.

If there exist f 2 G, h 2 R, G0 = G n ffg, t = HT(f) with f �!t;G0 h, then also �!G0

is a conuent Noetherian reduction relation and G �!� G0.

Proof: Clearly �!G0 is a Noetherian reduction relation.

We show that �!G0 has unique normal forms; then by lemma 4.1.5 �!G0 is conuent.
Let g; g1; g2 2 R such that g �!�

G0 g1, g �!
�
G0 g2 and g1; g2 are irreducible with respect

to G0. By the conuence of �!G there exists q 2 R such that g1 �!
�
G q and g2 �!

�
G q.

Now by de�nition of G0, g1 and g2 are also irreducible with respect to G. So g1 = q = g2
which shows the conuence of �!G0. Since f �!G 0 we have f �!G h �!

�
G 0. Then by

de�nition of G0 also f �!G0 h �!�
G0 0 which proves G �!�

G0 G0. 2

Lemma 4.3.3 Let G � R be �nite, such that �!G is a conuent Noetherian reduction

relation. Let G = G0 [G00 such that G0 \ G00 = ;. If for any f 2 G00, there exists h 2 R,

t = HT(f) with f �!t;G0 h, then also �!G0 is a conuent Noetherian reduction relation

and G �!� G0.
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Proof: We show by induction on the number of elements of G00, that G0 is also a conuent

Noetherian reduction relation. If G00 = ;, then G0 = G and we are done. Let f 2 G00,

G000 = G00 nffg. By assumption there exist, h 2 R, t = HT(f) such that f �!t;G0 h. Now

by lemma 4.3.2 G0[G000 is still a conuent Noetherian reduction relation and by induction

assumption on G0 [G000, G0 is a conuent Noetherian reduction relation. 2

An immediate consequence is:

Lemma 4.3.4 Let G � R, G �nite, such that �!G is a conuent Noetherian reduction

relation. There exists G0 � G, jG0j minimal, such that �!G0 is a conuent Noetherian

reduction relation and G �!� G0.

Proof: Let G0 � G with jG0j minimal such that for all f 2 G n G0, there exists h 2 R,
t = HT(f) with f �!t;G0 h. Then G0 and G00 = G nG0 satisfy the assumptions of lemma
4.3.3 and so �!G0 is a conuent Noetherian reduction relation. 2

The next lemma treats reduced polynomials and autoreduced sets.

Lemma 4.3.5 Let G � R, G �nite, such that �!G is a conuent Noetherian reduction

relation. Let g; h 2 G, G00 = G n fgg, h 6= g and t 2 T (g) such that

g �!t;h g
0:

If g0 = 0 then let G0 = G00 otherwise let G0 = G00 [ fg0g. Then �!G0 is a conuent

Noetherian reduction relation and G �!� G0.

Proof: The fact that �!G0 is a Noetherian reduction relation is clear.

We show that �!G0 has unique normal forms, then by lemma 4.1.5 �!G0 is conuent.

Let g; g1; g2 2 R such that g �!�
G0 g1, g �!

�
G0 g2 and g1; g2 are irreducible with respect

to G0. By the conuence of �!G there exists q 2 R such that g1 �!
�
G q and g2 �!

�
G q.

Now g1 and g2 are also irreducible with respect to G, since otherwise g1 and g2 would also

be reducible with respect to G0. So g1 = q = g2, which proves the lemma. 2

Proposition 4.3.6 Let G � R, G �nite, such that �!G is a conuent Noetherian re-

duction relation. Then there exists a autoreduced set G0 such that �!G0 is a conuent

Noetherian reduction relation and G �!� G0.

Proof: By lemma 4.3.4 there exists a minimal set G00 � G such that G �!� G00 and

�!G00 is a conuent Noetherian reduction relation. Then by lemma 4.3.5 there exists a
autoreduced set G0 with G00 �!� G0 such that �!G0 is a conuent Noetherian reduction
relation. 2

The uniqueness of such sets under the condition that G is also monic for left ideals

generated by G is shown in lemma 5.1.2 in chapter 5.

Next we state a lemma on `partially' conuent reduction relations.
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Lemma 4.3.7 Let G � R such that �!G is a conuent Noetherian reduction relation

on F (t) = fh 2 R j h < tg for �xed t 2 T . Let h1 2 F (t), h; h2 2 R with h = h1 + h2.

If h1 �!
�
G 0 and h2 �!

�
G 0 then h �!�

G 0.

Proof: Since h2 �!
�
G 0, by lemma 4.2.6 h #G h1. I. e. there exists h3 2 R such that

h �!�
G h3 and h1 �!

�
G h3. By the conuence of �!G on F (t) and the fact that h1 2 F (t)

there exists h4 2 R such that h3 �!
�
G h4 and 0 �!�

G h4. So h4 = 0 and consequently

h �!�
G 0. 2

4.4 Reductions and Ideal Membership

Let ideall(P ) denote the left ideal generated by P � R. It will be shown that reductions
with respect to P do not lead outside of left ideals. And if the di�erence of two polynomials

is in the ideal, then there exists back and forth reductions between these two polynomials.

De�nition 4.4.1 Let I = ideall(P ) be a left ideal in R, generated by a �nite subset P of

R. Then any f 2 I has a left representation (with respect to P ):

f =
X
p2P

hp � p =
kX
i=1

cisi � pi;

where hp 2 R, ci 2 K
�, si 2 T and pi 2 P for 1 � i � k.

Precisely we should write ci � si � pi but by axiom 3.2.1(2) we have ci � si = cisi. Note,
that the pi are not necessarily distinct. The representation is obtained from the de�nition

of elements in the left ideal by writing the left factor polynomials as sums of terms.

Lemma 4.4.2 Let f; g 2 R, P � R, P �nite. If f  !�
P g then f � g 2 ideall(P ). In

particular if f �!�
P 0 then f 2 ideall(P ).

Proof: Let f  !�
P g be equal to f  !k

P g for some k 2 N. The proof is by induction
on k. For k = 0, g = f and f � g = 0 2 ideall(P ).

For k > 0 let f  !k
P g be equal to f  !k�1

P fk�1  !P fk = g. By induction

assumption f � fk�1 2 ideall(P ). Now fk�1 �!t;p g or g �!t;p fk�1 for some p 2 P .

Thus g = fk�1�a�u�p or fk�1 = g�a�u�p for some a 2 K� and some t; u 2 T . In both

cases fk�1 � g = �a � u � p 2 ideall(P ). In combination with the induction assumption

f � g = (f � fk�1) + (fk�1 � g) 2 ideall(P ) which proves the lemma. 2

Lemma 4.4.3 Let P;Q � R, P;Q �nite, such that P �!� Q, then ideall(P ) = ideall(Q).
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Proof: Let P �!� Q be equal to P �!k Q for some k 2 N. The proof is by induction

on k. For k = 0, P = Q and ideall(P ) = ideall(Q).

For k > 0 let P �!k Q be equal to P �!k�1 P 0 �! Q. By induction assumption

ideall(P ) = ideall(P
0). Now from P 0 �! Q there exists f 2 P 0, f 0 2 Q, P 0nffg = Qnff 0g

such that f �!P 0nffg f
0. By this we have f 0 = f �au�p for some p 2 P 0 and p 2 Q. This

shows that f 0 2 ideall(P
0) and also f = f 0 + au � p 2 ideall(Q). So ideall(P

0) = ideall(Q)

which together with the induction assumption proves the lemma. 2

Lemma 4.4.4 Let G � R such that �!G is a conuent Noetherian reduction relation.

If there exist f 2 G, h 2 R, G0 = G n ffg, t = HT(f) with f �!t;G0 h. Then ideall(G) =

ideall(G
0).

Proof: Let f;G;G0 as in the assumptions of the lemma. Then f �!�
G 0 since f 2 G,

furthermore �!G0 is a conuent Noetherian reduction relation by 4.3.2. So we have also
f �!�

G0 0, which shows f 2 ideall(G
0) by lemma 4.4.2. This shows ideall(G) � ideall(G

0),

the reverse inclusion follows since G0 � G. 2

Lemma 4.4.5 Let P be a �nite subset of R. For all f; g 2 R, if f � g 2 ideall(P ) then
f  !�

P g.

Proof: If f � g 2 ideall(P ) then by de�nition f � g =
Pk

i=1 cisi � pi; where ci 2 K�,
si 2 T and pi 2 P for 1 � i � k.

We prove f  !�
P g by induction on k. For k = 0, f = g and the claim is trivial. For

k > 0 let

f � g0 = f � (g +
k�1X
i=1

cisi � pi) = cksk � pk:

Since HT(sk � pk) = sk � HT(pk) = skHT(pk) by lemma 4.2.2 ck � sk � pk �!P 0 and by

lemma 4.2.6 f #P g0, that is f  !�
P g0. Now g0 � g =

Pk�1
i=1 cisi � pi and by induction

assumption g0  !�
P g. Combining both results we get f  !�

P g. 2

For the left reduction relation there are algorithms, which compute for any element f 2 R
its left normal form and for any �nite set F � R a autoreduced set.

Lemma 4.4.6 Let R be a solvable polynomial ring over a computable skew �eld K with

respect to a decidable term order. Then for any �nite F � R and any f 2 R one can

compute g 2 R such that

1. f �!�
F g and f � g 2 ideall(F ).

2. g is left irreducible modulo F .
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Algorithm: LNF (f; F )

Input: f 2 R and F = ff1; : : : ; fkg � R.

Output: g 2 R satisfying the conditions (1) and (2) of the lemma.

begin D  HT(F ). g  f .

while 9s 2 D with s j t for some t 2 T (g) do

Let p 2 F with HT(p) = s. Let u 2 T with t = su.

c coe�(t; u � p).

g  g � c�1 � u � p.

end.

return(g).
end LNF .

Table 4.1: Algorithm: LNF

Proof: We give an algorithm which computes g in table 4.1.

Partial correctness follows from the de�nition of reduction.

Termination: Let fgigi=0;1;::: be the sequence of reduction polynomials with g0 = g. Let
gi+1 = gi � c

�1
i � si � pi be an immediate reduct of gi. Then we have gi+1 < gi. Since < is

a well-founded quasi-order on R the reduction sequence must be �nite fgigi=0;1;:::;k. 2

Lemma 4.4.7 Let R be a solvable polynomial ring over a computable skew �eld K with

respect to a decidable term order. Then for any �nite F � R one can compute G � R

such that

1. ideall(F ) = idealL(G),

2. G is autoreduced and monic.

Proof: We give an algorithm which computes G in table 4.2.

Partial correctness follows from the fact that ideall(F ) = ideall(G) is an invariant of the

while-loop and irreducibility of G follows by the while-condition.

Termination: Assume that the algorithm does not terminate. Consider the elements of

G during each iteration of the loop written as rows in a scheme, where the zeroes are

also kept in the respective row. Then by the while-condition there exist a column in the
scheme with an in�nite sequence of polynomials p �!G1

: : : �!Gn pn �!Gn+1
: : :. But

this contradicts the Noetherianity of the reduction relation and so proves termination. 2

4.5 Standard Representations

In this section we de�ne representations with the property the head terms of the repre-

senting polynomials do not exceed the head term of the represented polynomial. These
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Algorithm: LIRRSET (F )

Input: F = ff1; : : : ; fkg � R.

Output: G � R satisfying the conditions (1) and (2) of the lemma.

begin G F .

while 9p 2 G with p is reducible wrt. G n fpg do

G G n fpg.

p0  LNF(p;G).

if p0 6= 0 then

p0  HC(p0)�1p0.

G G [ fp0g. end.
end.

return(G).
end LIRRSET .

Table 4.2: Algorithm: LIRRSET

representations are called standard representations. The fact that `normal' representa-
tions need not be standard has been one of the major diÆculties in constructive ideal

theory. We discuss under which conditions a standard representation can be obtained
from a representation.

De�nition 4.5.1 (Standard representation) Let P � R, 0 6= f 2 ideall(P ). A rep-

resentation

f =
kX
i=1

cisi � pi;

with ci 2 K
�, si 2 T , pi 2 P for all 1 � i � k is called a standard representation with

respect to P if for all 1 � i � k the following condition is satis�ed:

HT(si � pi) � HT(f):

For t 2 T the above representation is called a t-representation with respect to P if for all

1 � i � k the following condition is satis�ed:

HT(si � pi) � t:

t-representations have been discussed by [Becker 1990] for commutative polynomial rings

and power series rings.

Lemma 4.5.2 Let P be a �nite subset of R, let f 2 R and b 2 K, u; t 2 T .

1. If f has a standard representation wrt. P , then also bu � f has a standard represen-

tation wrt. P .
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2. For p 2 P , f � p has a standard representation wrt. P .

The same holds with `standard representation' replaced by `t-representation'.

1. If f has a t-representation wrt. P , then also bu � f has a ut-representation wrt. P .

2. For p 2 P with HT(p) � t, f � p has a HT(f)t-representation wrt. P .

Proof: Let f =
Pk

i=1 cisi � pi be a standard representation of f , with ci 2 K
�, si 2 T ,

pi 2 P and HT(si � pi) � HT(f) for all 1 � i � k. Then

bu � f =
kX
i=1

bu � cisi � pi:

Now by the product proposition 3.2.5 there exist di 2 K
� and hi 2 R with hi < usi and

bu � cisi = dibci(usi) + hi. Since hi 2 R we have hi =
Pki

j=1 eijsij. And we can multiply
out. This shows that

bu � f =
kX
i=1

(dibci(usi) +
kiX
j=1

eijsij) � pi =
k0X
i=1

c0is
0
i � pi:

Since siHT(pi) � HT(f) we have usiHT(pi) � uHT(f) and since hi < usi also sij < usi
and so s0iHT(p

0
i) � uHT(f) = HT(uf) = HT(u�f). This shows that bu�f has a standard

representation wrt. P as claimed.

Now let p 2 P and let f =
Pk

i=1 cisi be a polynomial in R with ci 2 K�, si 2 T . Let

s = HT(f) then we have si � s for 1 � i � k. Then by the product proposition 3.2.5
HT(si � p) � HT(s � p) = HT(f � p) for 1 � i � k. This shows, that

f � p =
kX
i=1

cisi � p

is a representation for f � p which is a standard representation wrt. P . In the same way

the claims for t-representations are proved. 2

Lemma 4.5.3 Let P be a �nite subset of R and let f 2 R. If f �!�
P 0, then f has a

standard representation wrt. P .

Proof: Let f �!k
P 0 for some k 2 N. We proceed by induction on k. For k = 0 we have

f = 0 as standard representation.

For k > 0 let f �!P g �!k�1
P 0. Assume by induction assumption g has standard

representation g =
Pk

i=1 cisi � pi, with ci 2 K�, si 2 T , pi 2 P for all 1 � i � k.

By de�nition of the reduction relation there exists t 2 T (f), p 2 P such that we have

f �!t;P g = f � cu � p with t = HT(u � p) = u � HT(p) � HT(f). So

f = cu � p+
kX
i=1

cisi � pi

is a standard representation of f wrt. P . 2



4.5. STANDARD REPRESENTATIONS 77

Lemma 4.5.4 Let P be a �nite subset of R, let ideall(P ) be the left ideal generated by P

and let f 2 ideall(P ). If all 0 6= g 2 ideall(P ) have a standard representation wrt. P then

f �!�
P 0.

Proof: If f = 0, then trivially f �!�
P 0. If f 6= 0 and f 2 ideall(P ), then f has a

standard representation wrt. P : f =
Pk

i=1 cisi � pi, with ci 2 K
�, si 2 T , pi 2 P for all

1 � i � k. Let Jt = fj : 1 � j � n;HT(si � pi) = tg. We proceed by noetherian

induction on t = HT(f).

Now Jt 6= ; since the representation is standard. Pick l 2 Jt, and de�ne a reduction

f �!t;pl g by g = f � csl � pl, where 0 6= c 2 K such that coe�(t; f) = c coe�(t; sl � pl).

Now g < f , by construction g 2 ideall(P ) and so by induction assumption g �!�
P 0.

Combining both reductions we obtain f �!t;P g �!
�
P 0 as claimed. 2

Proposition 4.5.5 Let P be a �nite subset of R, let ideall(P ) be the left ideal generated

by P . Then the following two conditions are equivalent:

1. For all f 2 ideall(P ), f �!
�
P 0.

2. All 0 6= f 2 ideall(P ) have a standard representation wrt. P .

Proof: =) Let 0 6= f 2 ideall(P ), then by assumption f �!�
P 0 and by lemma 4.5.3 f

has a standard representation wrt. P .

(= Let 0 6= f 2 ideall(P ), by assumption all 0 6= g 2 ideall(P ) have a standard repre-
sentation wrt. P . So by lemma 4.5.4 f is reducible to zero: f �!�

P 0. 2

We will now show that all polynomials have standard representations wrt. P if a �nite
set of so called S-polynomials have a standard representation wrt. P . First the de�nition:

De�nition 4.5.6 (Left S-Polynomial) Let f; g 2 R, s; t; u; v; w 2 T , such that s =

HT(f), t = HT(g), w = lcm(s; t), us = w and vt = w. Furthermore let a; b 2 K� such

that a = coe�(w; u � f) and b = coe�(w; v � g). Let b0; a0 2 K� such that b0 = ba�1, a0 = 1
so b0a = a0b, then

LSP(f; g) = b0u � f � a0v � g

is called the left S-polynomial of f and g.

Note, that by proposition 3.2.5 both a and b are 6= 0 and so HT(LSP(f; g)) < w.

Note furthermore that LSP(g; f) = �LSP(f; g) and LSP(f; g) 2 ideall(f; g) respectively

LSP(f; g) 2 ideall(P ) for any set P such that f; g 2 P .

Lemma 4.5.7 Let P be a �nite subset of R, let ideall(P ) be the left ideal generated by

P . Furthermore let H = fLSP(f; g) : f; g 2 P; f 6= gg. Then the following assertions

are equivalent:
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1. all 0 6= f 2 ideall(P ) have a standard representation wrt. P ,

2. all 0 6= h 2 H have a standard representation wrt. P .

Proof: =) Since for 0 6= h 2 H we have h 2 ideall(P ), so h has a standard representation

wrt. P .

(= Let 0 6= f 2 ideall(P ) we may assume that f has a representation wrt. P :

f =
kX
i=1

cisi � pi;

with ci 2 K�, si 2 T , pi 2 P for all 1 � i � k. Let s = HT(f) and let t 2 T with

t = maxki=0fHT(si � pi)g where the maximum is taken with respect to the term order on
T . Let Jt = fj j1 � j � k;HT(sj � pj) = t > sg.

We show by noetherian induction on t and on jJtj, that the representation can be trans-
formed to a standard representation. Case t = s, then jJtj = ; and we have already a

standard representation.

Case t > s, then since t 62 T (f), we have jJtj � 2. Assume �rst that jJtj = 2 and assume
by induction, that the claim holds for all t0 with t > t0 � s and J 0t = ;. Let Jt = fm;ng,
m 6= n.

Then consider cmsm � pm + cnsn � pn from the representation of f . Note that t does

not occur in f so 0 = coe�(t; f) = coe�(t; cmsm � pm) + coe�(t; cnsn � pn), which implies
cmcoe�(t; sm�pm) = �cncoe�(t; sn�pn). Furthermore we have HT(sj�pj) = sjHT(pj) = t,
j = m;n by proposition 3.2.5. Let w = lcm(HT(pm);HT(pn)), then t = w0w.

From the de�nition of the S-polynomial of pm and pn let u; v 2 T with w = uHT(pm) =

vHT(pn) and b; a00 2 K�, such that b coe�(w; u � pm) = a00 coe�(w; v � pn). So write
LSP(pm; pn) = bu � pm � a

00v � pn = bu � pm + av � pn. We have w0u = sm and w0v = sn.

By proposition 3.2.5 let w0 � bu = b0w0u + h1 with 0 6= b0 2 K and h1 < w0u = sm and

w0 � av = a0w0v + h2 with 0 6= a0 2 K and h2 < w0v = sn.

Let b1 = b0�1 and a1 = a0�1 and write sm = w0u = b1w
0 � bu � b1h1 and sn = w0v =

a1w
0 � av � a1h2. So we can write

cmsm � pm + cnsn � pn = cm(b1w
0 � bu� b1h1) � pm + cn(a1w

0 � av � a1h2) � pn

= cm(b1w
0 � bu) � pm + cn(a1w

0 � av) � pn

�cm(b1h1) � pm � cn(a1h2) � pn:

Here it is important that cm(b1w
0) = cn(a1w

0) respectively cmb1 = cna1 which follows from
b coe�(w; u � pm) = a coe�(w; v � pn), cm coe�(t; sm � pm) = �cn coe�(t; sn � pn) and the

de�nition of a1 and b1.

Furthermore by lemma 4.5.2 �cm(b1h1) � pm and �cn(a1h2) � pn both have standard

representations wrt. P . By assumption of the lemma LSP(pm; pn) has a a standard repre-

sentation wrt. P . Multiplication of this representation with cmb1w
0 still yields a standard
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representation by lemma 4.5.2:

LSP(pm; pn) =
k1X
i=1

cisi � pi

(cmb1w
0) � LSP(pm; pn) =

k1X
i=1

(cmb1w
0) � cisi � pi =

k2X
i=1

c0is
0
i � pi

Now using the standard representations of �cm(b1h1) � pm, �cn(a1h2) � pn and (cmb1w
0) �

LSP(pm; pn) write

f =
kX

i=1;i6=m;i6=n

cisi � pi + cmsm � pm + cnsn � pn

=
kX

i=1;i6=m;i6=n

cisi � pi + (cmb1w
0) � LSP(pm; pn)� cm(b1h1) � pm � cn(a1h2) � pn

=
kX

i=1;i6=m;i6=n

cisi � pi +
k2X
i=1

c0is
0
i � pm +

khX
j=1

cjsj � pn

Since HT(s0i � pi) < t and HT(sj � pj) < t this is now a representation of f with jJ 0tj = ;.
The representation is not necessarily a standard representation, but all what is needed
here, is that the number of `bad' terms decreases.

Case t > s, jJtj > 2. Assume by induction, that the claim holds for all t0 with t > t0 � s

and all J 0t with jJ
0
tj < jJtj. Let m;n 2 Jt, m 6= n, J 0t = Jt n fm;ng.

Again consider cmsm � pm + cnsn � pn from the representation of f .

In this case we cannot directly conclude, that this sum can be represented using the S-

polynomial of pm and pn. But we can represent one (say the �rst) summand using the
S-polynomial.

By the same arguments as in the previous case we write cmsm �pm+c
0
nsn �pn = (cmb1w

0)�

LSP(pm; pn)+h1 �pm+h2 �pn. Observe, that probably c
0
n 6= cn. But coe�(t; cmsm �pm) =

�coe�(t; c0nsn � pn) so using the standard representations of (cmb1w
0) � LSP(pm; pn) and

h1 � pm + h2 � pn write

f =
kX

i=1;i6=m;i6=n

cisi � pi + cmsm � pm + cnsn � pn

=
kX

i=1;i6=m;i6=n

cisi � pi + ((cmb1w
0) � LSP(pm; pn) + h1 � pm + h2 � pn)

�c0nsn � pn + cnsn � pn

=
kX

i=1;i6=m;i6=n

cisi � pi + (cn � c
0
n)sn � pn

+
k0X
i=1

c0is
0
i � pi +

k1X
j=1

cj1sj1 � pm +
k2X
j=1

cj2sj2 � pn:
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For this representation (not necessarily standard) we have jJ 0tj � jJtj�1. Now by induction

assumption we can �nd a standard representation for f which completes the proof. 2

Observe, that we actually do not need a standard representation of LSP(pm; pn) but only

a v-representation for some v < lcm(HT(pm);HT(pn)) � t to improve the representation

of f . This fact will be important in the next lemma, where we show, that a smaller

set Hb � H already suÆces to proof the foregoing proposition. The criterion which

characterizes the set Hb will be called (BBEC) for `Buchberger's Euclidean Criterion'

after Buchberger, who �rst invented the criterion ([Buchberger 1979]), and after Euclid,

because the criterion avoids redundant computation as in Euclids algorithm in case of

commutative polynomial rings in one variable.

Lemma 4.5.8 Let P be a �nite subset of R, let ideall(P ) be the left ideal generated by

P . Furthermore let H = fLSP(f; g) : f; g 2 P; f 6= gg and let Hb � H be such that the

following conditions are ful�lled:

if LSP(g1; g2) 2 H with LSP(g1; g2) 62 Hb and g1; g2 2 P then there exists

p 2 P such that

HT(p) j lcm(HT(g1);HT(g2));

and LSP(g1; p) and LSP(p; g2) 2 Hb. (BBEC)

Then the following assertions are equivalent:

1. all 0 6= f 2 ideall(P ) have a standard representation wrt. P ,

2. all 0 6= h 2 Hb have a standard representation wrt. P .

Proof: =) Since for 0 6= h 2 Hb we have h 2 ideall(P ), so h has a standard representa-
tion wrt. P .

(= We may repeat the proof of the foregoing lemma 4.5.7. In case when a S-polynomial,

of some 0 6= pm; pn 2 R, is required which is not in Hb, but in H, we can �nd a t0-

representation with t0 < t = lcm(HT(pm);HT(pm)) for it as described next. Using this
t0-representation of LSP(pm; pn) instead of a standard representation of LSP(pm; pn) is

then suÆcient to improve the representation of f in the foregoing lemma 4.5.7.

The condition HT(p) j lcm(HT(g1);HT(g2)) implies, that there exist s1; s2 2 T such that

s1lcm(HT(g1);HT(p)) = t = s2lcm(HT(p);HT(g2)):

Let the 3 S-polynomials be

LSP(g1; g2) = b01u1 � g1 � a
0
1v1 � g2

LSP(g1; p) = b02u2 � g1 � a
0
2v2 � p

LSP(p; g2) = b03u3 � p� a
0
3v3 � g2:
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Where 0 6= ai; a
0
i; bi; b

0
i 2 K, ui; vi; wi 2 T (i = 1; 2; 3) such that

t = w1 = lcm(HT(g1);HT(g2)) = u1HT(g1) = v1HT(g2);

w2 = lcm(HT(g1);HT(p)) = u2HT(g1) = v2HT(p);

w3 = lcm(HT(p);HT(g2)) = u3HT(p) = v3HT(g2):

Furthermore with a1 = coe�(w1; u1 � g1) and b1 = coe�(w1; v1 � g2), a2 = coe�(w2; u2 � g1)

and b2 = coe�(w2; v2 � p), a3 = coe�(w3; u3 � p) and b3 = coe�(w3; v3 � g2); And with

b0iai = a0ibi, i = 1; 2; 3 by de�nition of the S-polynomials.

By the implications of the conditions on the head terms and the de�nitions of the S-

polynomials let v2; u3 be such that we have t = s1v2HT(p) = s2u3HT(p), which implies
s1v2 = s2u3. Furthermore let u2; v3 be such that s1u2 = u1 and s2v3 = v1.

In order to setup the equation correctly we have to determine the following products:

s1 � b
0
2 � u2 = (e1b

0
2s1 + q1) � u2 = e1b

0
2(e5s1u2 + q5) + q1 � u2

= e1b
0
2e5(s1u2) + e1b

0
2q5 + q1 � u2

s1 � a
0
2 � v2 = (e2a

0
2s1 + q2) � v2 = e2a

0
2(e6s1v2 + q6) + q2 � v2

= e2a
0
2e6(s1v2) + e2a

0
2q6 + q2 � v2

s2 � b
0
3 � u3 = (e3b

0
3s2 + q3) � u3 = e3b

0
3(e7s2u3 + q7) + q3 � u3

= e3b
0
3e7(s2u3) + e3b

0
3q7 + q3 � u3

s2 � a
0
3 � v3 = (e4a

0
3s2 + q4) � v3 = e4a

0
3(e8s2v3 + q8) + q4 � v3

= e4a
0
3e8(s2v3) + e4a

0
3q8 + q4 � v3

where by the product proposition 3.2.5 0 6= ei 2 K, qi 2 R with q1; q2 < s1, q3; q4 < s2,

q5 < u2s1, q6 < v2s1, q7 < u3s2, q8 < v3s2.

Let 0 6= c1; c2; c3; c4; c5 2 K such that the following holds:

coe�(t; c1(e2a
0
2e6)(s1v2) � p) = coe�(t; c2(e3b

0
3e7)(s2u3) � p)

= coe�(t; c3b
0
1(s1u2) � g1);

The existence follows from the Ore condition in K. This implies by the de�nitions of
LSP(p; g2)

coe�(t; c2(e3b
0
3e7)(s2u3) � p) = coe�(t; c3a

0
1(s2v3) � g2):

which in turn implies by de�nition of LSP(g1; g2)

coe�(t; c3b
0
1(s1u2) � g1) = coe�(t; c3a

0
1(s2v3) � g2);

Furthermore let c3b
0
1 = c4(e1b

0
2e5) and c3a

0
1 = c5(e4a

0
3e8).

The �rst equation establishes

0 = �c1(e2a
0
2e6)(s1v2) � p+ c2(e3b

0
3e7)(s2u3) � p:



82 CHAPTER 4. IDEALS AND GR�OBNER BASES

Then we can rewrite the S-polynomial of g1 and g2 as

c3LSP(g1; g2) = c3b
0
1u1 � g1 � c3a

0
1v1 � g2

= c4(e1b
0
2e5)u1 � g1 � c5(e4a

0
3e8)v1 � g2

= c4(e1b
0
2e5)(s1u2) � g1 � c5(e4a

0
3e8)(s2v3) � g2

= c4(e1b
0
2e5)(s1u2) � g1 � c1(e2a

0
2e6)(s1v2) � p

+c2(e3b
0
3e7)(s2u3) � p� c5(e4a

0
3e8)(s2v3) � g2

= c4(s1 � b
0
2 � u2 � e1b

0
2q5 � q1 � u2) � g1

�c1(s1 � a
0
2 � v2 � e2a

0
2q6 � q2 � v2) � p

+c2(s2 � b
0
3 � u3 � e3b

0
3q7 � q3 � u3) � p

�c5(s2 � a
0
3 � v3 � e4a

0
3q8 � q4 � v3) � g2

= c4(s1 � b
0
2 � u2) � g1 � (e1b

0
2q5 + q1 � u2) � g1

�c1(s1 � a
0
2 � v2) � p� (e2a

0
2q6 + q2 � v2) � p

+c2(s2 � b
0
3 � u3) � p� (e3b

0
3q7 + q3 � u3) � p

�c5(s2 � a
0
3 � v3) � g2 � (e4a

0
3q8 + q4 � v3) � g2

= c4(s1 � b
0
2 � u2) � g1 � c1(s1 � a

0
2 � v2) � p

+c2(s2 � b
0
3 � u3) � p� c5(s2 � a

0
3 � v3) � g2

�(e1b
0
2q5 + q1 � u2) � g1 � (e2a

0
2q6 + q2 � v2) � p

�(e3b
0
3q7 + q3 � u3) � p� (e4a

0
3q8 + q4 � v3) � g2

= c1s1 � LSP(g1; p) + c2s2 � LSP(p; g2)

�(e1b
0
2q5 + q1 � u2) � g1 � (e2a

0
2q6 + q2 � v2) � p

�(e3b
0
3q7 + q3 � u3) � p� (e4a

0
3q8 + q4 � v3) � g2:

Now LSP(g1; p) and LSP(p; g2) 2 Hb, so by assumption they have standard representations
in particular they have w0

2 respectively w0
3-representations with w

0
2 < w2 and w0

3 < w3.

Then by lemma 4.5.2 c1s1 �LSP(g1; p) and c2s2 �LSP(p; g2) have standard representations

with products < t.

Furthermore by lemma 4.5.2 all summands (e1b
0
2q5 + q1 � u2) � g1 = h1 � g1, (e2a

0
2q6 + q2 �

v2) � p = h2 � p, (e3b
0
3q7 + q3 � u3) � p = h3 � p and (e4a

0
3q8 + q4 � v3) � g2 = h4 � g2 have

standard representations with products < t. This shows, that the sum of all this standard
representations is a t0-representation of LSP(g1; g2) for some t0 < t.

At this point we can continue as in the proof of the preceding lemma 4.5.7. 2

Proposition 4.5.9 Let P be a �nite subset of R let ideall(P ) be the left ideal generated

by P . Then the following assertions are equivalent:

1. for all f 2 ideall(P ), f �!
�
P 0,

2. for all h 2 H = fLSP(f; g) : f; g 2 P; f 6= gg, h �!�
P 0.

3. for all h 2 Hb � H, such that Hb satis�es the condition (BBEC) of lemma 4.5.8,

h �!�
P 0.



4.5. STANDARD REPRESENTATIONS 83

Proof: (1) =) (2) and (3): Since for h 2 Hb, h 2 H we have h 2 ideall(P ) and by

assumption h �!�
P 0.

(2) =) (1): By assumption all h 2 H, h �!�
P 0. By lemma 4.5.3 this implies that

all 0 6= h 2 H have a standard representation. By lemma 4.5.7 this implies that all

0 6= f 2 ideall(P ) have a standard representation wrt. P . So by lemma 4.5.4 f is

reducible to zero: f �!�
P 0.

(3) =) (1): By assumption all h 2 Hb, h �!
�
P 0. By lemma 4.5.3 this implies that

all 0 6= h 2 Hb have a standard representation. By lemma 4.5.8 this implies that all

0 6= f 2 ideall(P ) have a standard representation wrt. P . So by lemma 4.5.4 f is

reducible to zero: f �!�
P 0. 2

Using this proposition it is possible to reduce the test whether all polynomials in the
left ideal are reducible wrt. P to the �nite set H and furthermore to an even smaller set

Hb. An algorithm which exploits this fact for the construction of ideal bases inducing
conuent reduction relations will be discussed in a later section. But �rst we summarize
the foregoing studies in the next section.

A �nal remark on further `optimizations':

Claim 4.5.10 In commutative polynomial rings the �rst of Buchberger's criteria states

that if for two polynomials f; g 2 G

HT(f)HT(g) = lcm(HT(f);HT(g)) then

SP(f; g) has a standard representation wrt. G. (BBGC)

This criterion will be called (BBGC) for `Buchberger's Gaussian Criterion' after Buch-
berger, who �rst invented the criterion, and after Gauss, because the criterion avoids
redundant computation as in Gauss algorithm in case of commutative linear polynomials.

This criterion is no more valid in the non-commutative case as the following counter-

example shows:

Example 4.5.11 Let R = QfX; Y ;Y �X = XY �1g be the �rst Weyl algebra. Consider

the following two polynomials p = X, q = Y . Then HT(p)HT(q) = lcm(HT(p);HT(q)) =
XY , but SP(p; q) = X � Y � Y � X = XY � XY + 1 = 1 and 1 has no standard

representation wrt. fp; qg.

However as the proof in the commutative case shows, the criterion is a local criterion in

the sense, that only the two involved polynomials need to be commutative. Moreover the

criterion remains true if the coeÆcient ring is non-commutative, as long as it is a �eld.

So the criterion is still valid for commuting polynomials, in particular for elements in the

center it may be exploited. Although it would be too expensive to check each time if

polynomials commute, it might be possible to determine such cases by an analysis of the

commutator relations. This can be done as outlined in section 3.6.
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4.6 Left Gr�obner Bases

We are going to give characterizations of conuent reduction relations in a solvable poly-

nomial ring by ideal membership tests, standard representations and S-polynomials.

De�nition 4.6.1 Let G � R be a �nite subset of R. If the left reduction relation �!G

satis�es one of the conditions of de�nition 4.1.4 then G is called a left Gr�obner base.

(Since �!G is Noetherian, by lemma 4.1.5 �!G satis�es all conditions of de�nition

4.1.4.)

Theorem 4.6.2 Let G be a �nite subset of R, then the following assertions are equivalent.

1. G is a left Gr�obner base.

2. For all f; g 2 R, if f � g 2 ideall(G) then f #G g.

3. For all f 2 ideall(G), f �!
�
G 0.

4. For all 0 6= f 2 ideall(G), f �!G f
0.

5. For all 0 6= f 2 ideall(G), there exists g 2 G such that HT(g) j HT(f).

6. All 0 6= f 2 ideall(G) have a standard representation wrt. G.

7. For all h 2 H = fLSP(f; g) : f; g 2 G; f 6= gg, h �!�
G 0.

8. For all h 2 Hb � H, such that Hb satis�es the condition (BBEC) of lemma 4.5.8,

h �!�
P 0.

Proof: (1) =) (2): Let f; g 2 R such that f � g 2 ideall(G). Then lemma 4.4.5:

f  !�
G g. By (1) �!G has the Church-Rosser property, so f #G g.

(2) =) (3): Specialise g = 0 in (2).

(3) =) (1): We show that �!G is conuent. Let f; f1; f2 2 R such that f �!�
G f1

and f �!�
G f2, that is f1  !

�
G f2. By lemma 4.4.2 f1 � f2 2 ideall(G) and by (3)

f1 � f2 �!
�
G 0. From this by lemma 4.2.6 f1 #G f2.

(3) =) (4): By de�nition of �!�
G.

(4) =) (3): Assume 0 6= f 2 ideall(G) is minimal such that not f �!�
G 0. Now by (4)

f �!G f
0 with f 0 2 ideall(G) by lemma 4.4.2. However by de�nition of f : f 0 �!�

G 0 and
so f �!�

G 0 a contradiction.

(5) =) (4): By de�nition of left head term reduction.

(3) =) (5): Assume 0 6= f 2 ideall(G) and let f �!k
G 0 for some k 2 N. Let 1 � m � k

minimal, and let g 2 G such that fm �!t;g fm+1 where t = HT(f). By de�nition of

reduction this shows that HT(g) j HT(f).
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(3)() (6): follows from the equivalence of claims (1) and (2) in proposition 4.5.5.

(3)() (7): follows from the equivalence of claims (1) and (2) in proposition 4.5.9.

(3)() (8): follows from the equivalence of claims (1) and (3) in proposition 4.5.9. 2

The proof of the following theorem presents the Buchberger algorithm for constructing

Gr�obner bases. The usage of the criterion (BBEC) is not shown, it is discussed in the

implementation section.

Theorem 4.6.3 (Construction of left Gr�obner bases) Let R be a solvable polyno-

mial ring over a computable skew �eld K with respect to a decidable term order. For any

�nite F � R one can construct a left Gr�obner base G of ideall(F ).

Proof: We give an algorithm which computes a left GB in table 4.3.

Algorithm: LGB(F )

Input: F = ff1; : : : ; fkg � R.
Output: A left Gr�obner base G of ideall(F ).
begin G F .

B  f(f; g) : f; g 2 F; f 6= gg.
while B 6= ; do Let (f; g) 2 B.

B  B n f(f; g)g.
h0  LSP(f; g).
h LNF(h0; G).

if h 6= 0
then B  B [ f(p; h) : p 2 Gg.

G G [ fhg

end.

end.

return(G).
end LGB.

Table 4.3: Algorithm: LGB

Correctness follows from theorem 4.6.2(7), since upon termination B = ;, which guar-

anties that all S-polynomials of polynomial pairs of G reduce to zero. Termination follows

since a non-terminating run would produce an in�nite sequence of polynomials where
each new polynomial has an irreducible head term with respect to the earlier ones, which

would contradict Dickson's lemma 3.1.1. 2

4.7 Conuence and S-Polynomials

For completeness we give a direct proof of the properties of Gr�obner bases using S-

polynomials without using standard representations.
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Proposition 4.7.1 Let G � R be a �nite subset of R and let H = fLSP(f; g) : f; g 2

G;LSP(f; g) 62 Gg. Then G is a Gr�obner base i� for all f; g 2 G, LSP(f; g) �!�
G 0.

Proof: =) Let f; g; h; h0 2 G and h = LSP(f; g). If h = 0 then the proposition is true.

If h 6= 0 let h = b � u � f � a � v � g, a; b 2 K�, u; v 2 T as in the de�nition of LSP(f; g).

Again by de�nition of LSP(f; g): HT(u � f) = uHT(f) = t = vHT(g) = HT(v � g). So

we can de�ne two reductions b � u � f �!t;g h = b � u � f � a � v � g = LSP(f; g) and

b � u � f �!t;f h
0 = b � u � f � b � u � f = 0. Since �!G is conuent there exists h1 such

that 0 = h0 �!�
G h1 and LSP(f; g) = h �!�

G h1. By this 0 = h1 and so LSP(f; g) �!�
G 0.

(= Let G0 = fLSP(pi; pj) : pi; pj 2 G;LSP(pi; pj) 62 Gg and let G00 = G [G0.

We show �rst that �!G00 is locally conuent. Let f; f1; f2 2 R, p1; p2 2 G
00, s; t;2 T (f),

u; v 2 T , such that f �!s;G00 f1 = f � a � u � p1 and f �!t;G00 f2 = f � b � v � p2. By
Noetherian induction on the well-founded quasi-ordering <T assume that the reduction

relation �!G00 is locally conuent on F = fh 2 R : h <T minft; sgg. By proposition
4.1.5 �!G00 is conuent on F and in particular for all f 2 ideall(G

00) with HT(f) < t,

f �!�
G00 0 holds. By lemma 4.2.6 it suÆces to show (f1�f2) �!

�
G00 0, since then f1 #G00 f2

as desired. Let f1 � f2 = f � a � u � p1 � (f � b � v � p2) = a � u � p1 � b � v � p2.

Case s 6= t, say s > t: Then s 2 T (f2)nT (f1) and so s 2 T (f1�f2). Now (f1�f2) �!s;G00

(f1 � f2)� a � u � p1 = b � v � p2. By lemma 4.2.2 v � p2 �!G00 v � p2 � v � p2 = 0.

Case s = t: Since both p1 and p2 reduce the same term in f we have HT(u � p1) =

uHT(p1) = t = vHT(p2) = v�HT(p2). In particular t is a multiple of lcm(HT(p1);HT(p2)).
Let t = w lcm(HT(p1);HT(p2)), v = wv0 and u = wu0. Then LSP(p1; p2) = a0 � u0 � p1 �

b0 � v0 � p2 for 0 6= a0; b0 2 K. Furthermore w �LSP(p1; p2) = w � (a0 �u0 � p1� b
0 � v0 � p2) =

(w � a0 � u0) � p1 � (w � b0 � v0) � p2 = (a00wu0 + h1) � p1 � (b00wv0 + h2) � p2 = a00wu0 � p1 �

b00wv0 � p2 + h1 � p1 � h2 � p2 = au � p1 � bv � p2 + h1 � p1 � h2 � p2. Where h1 < u and

h2 < v by proposition 3.2.5. By this

f1 � f2 = a � u � p1 � b � v � p2 = w � LSP(p1; p2)� h1 � p1 + h2 � p2:

Now by lemma 4.2.2 w�LSP(p1; p2) �!t;G00 0. For the second and third sumand h1�p1 < t,

h2�p2 < t and so by induction assumption h1�p1 �!G00 0 and h2�p2 �!G00 0. By twofold

application of lemma 4.3.7 w � LSP(p1; p2)� h1 � p1 + h2 � p2 �!G00 0.

Both cases show that �!G00 is locally conuent and so G00 is a Gr�obner base. By as-

sumption of the proposition LSP(pi; pj) �!
�
G 0. so there exists h 2 R such that

LSP(pi; pj) �!G h. This shows that G;G0; G00 satisfy the assumptions of lemma 4.3.3

which �nally proves that G is a Gr�obner base. 2

In commutative polynomial rings, the following lemma can be proven without knowing

that �!�
P is conuent on `smaller polynomials'. In case of solvable polynomial rings the

proof seems not to hold. However f � p 2 ideall(P ), and if P is a Gr�obner base, then
f � p �!�

P 0 by theorem 4.6.2(3).

Lemma 4.7.2 Let P � R be a Gr�obner base. For all f 2 R, p 2 P we have f �p �!�
P 0.
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4.8 Right Reduction

In this section we introduce right reductions and discuss their relation to left reductions.

For the right reduction we face the following problem: to reduce e.g. the polynomial bXi

we must �nd a 2 K such that bXi = caiaXi where Xi � a = caiaXi + pij by axiom 3.2.1.

In other words, for any b 2 K we must �nd a 2 K such that b = caia. This requires that

the endomorphisms �i : K �! K, a 7! caia must be surjective. Since we have already

shown that each of this endomorphisms is injective in case K is a domain, we require �i
to be bijective and hence to be an automorphism.

So from now on we will make the global assumption that the �i (1 � i � n)

are surjective (hence automorphisms) whenever we consider right ideals and
right reductions.

Let R = KfX1; : : : ; Xn;Q;Q
0g denote a solvable polynomial ring.

De�nition 4.8.1 (Right Reduction) Let p 2 R, t 2 T . Then the right reduction

�!r;t;p � R�R is de�ned as follows:

For f; f 0 2 R, t 2 T (f), f �!r;t;p f
0 i� there exists u 2 T such that t =

u �HT(p) = HT(p � u) and

f 0 = f � p � auu;

where au 2 K
� is the unique element of K� such that coe�(t; f) = coe�(t; p �

auu).

By construction t 62 T (f 0). If for certain f , t no such u exists, then t in T (f) is called
irreducible wrt. p. �!r;p and �!r;P for a subset P � R are de�ned like the respective

de�nitions for left reductions.

This de�nition requires that

1. HT(p) divides t in the commutative sense and

2. the head term of p � u is equal to t,

3. furthermore au must be determined in a way that the coeÆcient of t in f is equal

to the coeÆcient of t in p � auu.

Now (1) is constructive by comparing exponents of powers of Xi in t and in HT(p) (which

also determines u) and (2) holds by proposition 3.2.5. Furthermore (3) can be satis�ed,

since all endomorphisms �i : K �! K with a 7! caia are by assumption surjective. Note

that (3) may be hard to satisfy algorithmicaly and only under further restrictions on the

automorphisms �i, e.g. the condition that �i = idK.
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Lemma 4.8.2 Let p 2 R, u 2 T , a 2 K� and let t = HT(p � u). Then p � au �!r;t;p 0.

Proof: By proposition 3.2.5 we have p � au = cup + h with t = HT(up) = uHT(p). Let

au = a then coe�(t; p � au) = coe�(t; p � auu). So cup+ h� (p � auu) = 0 as claimed. 2

Lemma 4.8.3 Let f; p 2 R, t 2 T (f). Then f is left reducible by p erasing t i� f is

right reducible by p erasing t.

Proof: Under these conditions, we know that t = HT(s � HT(p)) = sHT(p) for s 2 T

and that coe�(t; s � p) 6= 0() coe�(t; p � s) 6= 0. And the coeÆcients can be determined

such that coe�(t; f) = coe�(t; ass � p) = coe�(t; p � a0ss). 2

Lemma 4.8.4 (Right Translation Lemma) Let f; g; h; f 0; g0; h0 2 R, P � R (�nite).

If f = g + h and h �!�
r;P h

0 then there exist f 0 and g0 such that f �!�
r;P f

0, g �!�
r;P g

0

and f 0 = g0 + h0.

Proof: As in the left case. 2

Lemma 4.8.5 Let f; g 2 R, P � R (�nite). If f � g �!�
r;P 0 then f #r;P g.

4.9 Right Representations

Recall that idealr(P ) denotes the right ideal generated by P � R.

De�nition 4.9.1 Let I = idealr(P ) be a right ideal in R, generated by a �nite subset

P = fp1; : : : ; pkg of R. Then any f 2 I has a right representation (with respect to P ):

f =
X
p2P

p � hp =
kX
i=1

pi � cisi;

where hp 2 R, ci 2 K
�, si 2 T and pi 2 P for 1 � i � k.

Again note, that the pi need not be distinct.

Lemma 4.9.2 Let P be a �nite subset of R, f 2 R with f 2 idealr(P ). Then f has a

representation of the form

f =
kX
i=1

pi � si � ci;

where ci 2 K
�, si 2 T and pi 2 P for 1 � i � k.
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Proof: Since f 2 idealr(P ), f has a representation f =
Pk

i=1 pi �bisi with bi 2 K
�, si 2 T

and pi 2 P for 1 � i � k.

The proof is by Noetherian induction on v = maxfHT(pi �si) : 1 � i � kg where pi � bisi
are not jet of the desired form, and J = fi : HT(pi � si) = v; 1 � i � kg.

Assume �rst jJ j = 1 and assume without loss of generality k = 1 with v = HT(p1 � s1) =

HT(p1), that is s1 = 1. Then let c1 = b1 and f = p1 � s1 � c1 is the desired representation.

Now assume that jJ j > 1 and assume without loss of generality k = 1 with v = HT(p1�s1).

By proposition 3.2.5 and surjectivity of the endomorphismsK �! K a 7! caia there exists

c1 2 K
� with s1 � c1 = b1s1 + h1 with b1 6= 0 h1 <t s1, h1 2 R.

Now p1 � h1 <T HT(p1 � s1) and p1 � h1 = f 0 2 idealr(P ), so by induction assumption f 0

has a representation f 0 =
Pk0

i=1 p
0
i �s

0
i � c

0
i, where c

0
i 2 K

�, s0i 2 T and p0i 2 P for 1 � i � k0.

Then b1s1 = s1 � c1 �
Pk0

i=1 p
0
i � s

0
i � c

0
i is a representation of b1s1 in the desired form.

Furthermore for f 0 =
Pk

i=2 pi � bisi we have jJ 0j < jJ j and by induction assumption we
may assume that f 0 has a representation f 0 =

Pk00

i=1 p
00
i � s

00
i � c

00
i . Combining the two

representations we obtain f = p1 � s1 � c1 �
Pk0

i=1 p
0
i � s

0
i � c

0
i +

Pk00

i=1 p
00
i � s

00
i � c

00
i as claimed.

2

The relation between right reductions and membership in right ideals is contained in the
following lemma.

Lemma 4.9.3 Let f; g 2 R, P � R, P �nite. Then f  !�
r;P g if and only if f � g 2

idealr(P ).

Proof: As for the left cases 4.4.2, 4.4.5. 2

As for left reduction there is an algorithm, which computes for any element f 2 R its
right normal form.

Lemma 4.9.4 For any �nite F � R and any f 2 R one can compute g 2 R such that

1. f �!�
r;F g and f � g 2 idealr(F ).

2. g is irreducible modulo F .

Proof: We give an algorithm which computes g in table 4.4.

Partial correctness follows from the de�nition of reduction and lemma 4.8.3. Termination

follows from the well-foundedness of the < quasi-order on R as in the case of left normal

form. 2
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Algorithm: RNF (f; F )

Input: f 2 R and F = ff1; : : : ; fkg � R.

Output: g 2 R satisfying the conditions (1) and (2) of the lemma.

begin D  HT(F ). g  f .

while 9s 2 D with s j t for some t 2 T (g) do

Let p 2 F with HT(p) = s. Let u 2 T with t = su.

Determine c 2 K�, such that coe�(t; g) = coe�(t; p � (cu)).

g  g � p � (cu).

end.

return(g).
end RNF .

Table 4.4: Algorithm: RNF

4.10 Right Gr�obner Bases

Incorporating the de�nitions of the right reduction right standard representations and
right S-polynomials (RSP) we may obtain the right analogons of the left Gr�obner bases.

For completeness we state the theorem, but we omit the proofs.

De�nition 4.10.1 Let G � R be a �nite subset of R. If the right reduction relation

�!r;G satis�es one of the conditions of de�nition 4.1.4 then G is called a right Gr�obner

base. (Since �!r;G is Noetherian, by lemma 4.1.5 �!r;G satis�es all conditions of de�-

nition 4.1.4.)

De�nition 4.10.2 (Right S-Polynomial) Let f; g 2 R, s; t; u; v; w 2 T , such that s =

HT(f), t = HT(g), w = lcm(s; t), us = w and vt = w. Furthermore let a; b 2 K� such

that 1 = coe�(w; f � au) and 1 = coe�(w; g � bv). Then

RSP(f; g) = f � au� g � bv

is called the right S-polynomial of f and g.

Note, that by proposition 3.2.5 both a and b are 6= 0 and so HT(RSP(f; g)) < w.

Note furthermore that RSP(g; f) = �RSP(f; g) and RSP(f; g) 2 idealr(f; g) respectively

RSP(f; g) 2 idealr(P ) for any set P such that f; g 2 P .

Theorem 4.10.3 Let G be a �nite subset of R, then the following assertions are equiva-

lent.

1. G is a right Gr�obner base.

2. For all f; g 2 R, if f � g 2 idealr(G) then f #r;G g.
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3. For all f 2 idealr(G), f �!
�
r;G 0.

4. For all 0 6= f 2 idealr(G), f �!r;G f
0.

5. For all 0 6= f 2 idealr(G), there exists g 2 G such that HT(g) j HT(f).

6. All 0 6= f 2 idealr(G) have a right standard representation wrt. G.

7. For all h 2 H with H = fRSP(f; g) j f; g 2 G; f 6= gg, h �!�
r;G 0.

8. For all h 2 Hb � H, such that Hb satis�es the condition (BBEC) (with respect to

right S-polynomials) of lemma 4.5.8, h �!�
r;G 0.

If the right ideal is contained in the left ideal, then we have the following proposition:

Proposition 4.10.4 Let G be a left Gr�obner base such that idealr(G) � ideall(G). Then

G is also a right Gr�obner base.

Proof: Let f 2 idealr(G). Since G is a left Gr�obner base, every f 2 idealr(G) � ideall(G)
is left reducible modulo G. Then f is also right reducible modulo G by proposition 4.8.3.
This shows by theorem 4.10.3(4) that G is a right Gr�obner base. 2

4.11 Two-sided Gr�obner Bases

Recall that idealt(P ) denotes the two-sided ideal generated by P � R. And that R =

KfX1; : : : ; Xn;Q;Q
0g denotes a solvable polynomial ring.

De�nition 4.11.1 Let I = idealt(P ) be a right ideal in R, generated by a �nite subset

P = fp1; : : : ; pkg of R. Then any f 2 I has a representation (with respect to P ):

f =
X
p2P

hp � p � gp =
kX
i=1

cisi � pi � c
0
is
0
i;

where hp; gp 2 R, ci; c
0
i 2 K

�, si; s
0
i 2 T and pi 2 P for 1 � i � k.

Proposition 4.11.2 Let P be a subset of R. Then the following are equivalent:

1. idealr(P ) � ideall(P ),

2. ideall(P ) = idealt(P ),

3. For all c 2 K, s 2 T , p 2 P , p � cs 2 ideall(P ),

4. For all c 2 K, 1 � i � n, p 2 P , p � c 2 ideall(P ) and p �Xi 2 ideall(P ).
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Proof: (1) =) (4) follows since for all f 2 P � ideall(P ) f � c 2 idealr(P ) � ideall(P )

and f �Xi 2 idealr(P ) � ideall(P ).

(4) =) (3) follows by induction on the structure of s. Let cs = c then p�cs = p�c and by

assumption p � c 2 ideall(P ). Let s = Xe1
1 � : : : �X

ej
j with 1 � j � n minimal with ej � 1.

Then p� cs = p� cXe1
1 � : : : �X

ej�1
j �Xj and p� cs = p� cXe1

1 � : : : �X
ej�1
j �Xj. By induction

assumption f = p � cXe1
1 � : : : �X

ej�1
j 2 ideall(P ). So f has a left representation wrt. P :

f =
Pk

i=1 cisi �pi. Now f �1Xj =
Pk

i=1 cisi �pi �Xj and by assumption pi �Xj 2 ideall(P ).

This shows p � cs = f �Xj 2 ideall(P ) as claimed.

(3) =) (2): clearly ideall(P ) � idealt(P ). To prove the inverse inclusion let f 2 idealt(P ),

Then f has a representation in the form f =
Pk

i=1 cisi�pi�c
0
is
0
i. So from pi�c

0
is
0
i 2 ideall(P )

it follows that cisi � pi � c
0
is
0
i 2 ideall(P ) and consequently f 2 ideall(P ).

(2) =) (1) follows, since idealr(P ) � idealt(P ) = idealr(P ). 2

Note, that claim (4) is not a �nite set of conditions if K is an in�nite �eld, since c runs

through all elements of K in p � c.

However ifK is �nitely generated over its center and the center of K lies in the centralizer
of the variables of R, then the conditions (4) of proposition 4.11.2 are equivalent a (�nite)
set of conditions.

Lemma 4.11.3 Let R = KfX1; : : : ; Xn;Q;Q
0g be a solvable polynomial ring. Assume

furthermore, that

1. K is �nitely generated by C = fc1; : : : ; ckg over its center:

K = f
X

1=1;:::;k

�ici : �i 2 cen(K); ci 2 K; k <1g:

2. and cen(K) � cenR(X1; : : : ; Xn).

Then the following conditions are equivalent:

1. For all c 2 K, 1 � i � n, p 2 P , p � c 2 ideall(P ) and p �Xi 2 ideall(P ).

2. For all c 2 C, 1 � i � n, p 2 P , p � c 2 ideall(P ) and p �Xi 2 ideall(P ).

Conditions (1) are the conditions (4) of proposition 4.11.2.

Proof: (1) =) (2) follows, since C � K.

(2) =) (1): We have to show p � c 2 ideall(P ) for all c 2 K. Since K is �nitely generated

over is center, we have c =
P

1=1;:::;k �ici with �i 2 cen(K), ci 2 C for 1 � i � k.
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Furthermore by cen(K) � cenR(X1; : : : ; Xn) we have

p � c = p � (
X

1=1;:::;k

�ici)

=
X

1=1;:::;k

p � (�ici)

=
X

1=1;:::;k

�i(p � ci):

Now by assumption of (2) all p � ci 2 ideall(P ) for 1 � i � k, so also the sum is in the

left ideal. This shows that p � c 2 ideall(P ) as claimed. 2

We remark, that if the variables commute with the coeÆcients and the coeÆcients com-
mute among themselves the set of conditions (4) of proposition 4.11.2 is also equivalent a
(�nite) set of conditions.

Lemma 4.11.4 Let R = KfX1; : : : ; Xn;Q;Q
0g be a solvable polynomial ring. Assume

furthermore, that

K is commutative and K � cenR(X1; : : : ; Xn).

Then the following conditions are equivalent:

1. For all c 2 K, 1 � i � n, p 2 P , p � c 2 ideall(P ) and p �Xi 2 ideall(P ).

2. For all 1 � i � n, p 2 P , p �Xi 2 ideall(P ).

Condition (1) is the condition (4) of proposition 4.11.2.

Proof: By assumption p � c = cp, so clearly p � c 2 ideall(P ) if cp 2 ideall(P ). 2

Lemma 4.11.5 Let G be a left Gr�obner base in R, then ideall(G) = idealt(G) implies

idealr(G) = idealt(G).

Proof: Clearly idealr(G) � idealt(G). Then assume for a contradiction that A =
idealt(G) n idealr(G) is non-empty. Let f 2 A be minimal with respect to the qua-

siordering < on R. By assumption f 2 ideall(G) and by theorem 4.6.2(6) f has a left

standard representation f =
Pk

i=1 cisi � pi with ci 2 K�, si 2 T , pi 2 G for 1 � i � k.
Now observe that by the product lemma 3.2.5 t = HT(cisi � pi) = HT(pi � cisi). So

by the automorphism assumption (for �k) for right ideals there exists 0 6= di 2 K with
HC(cisi � pi) = HC(pi � dicisi). Let f

0
i = cisi � pi � pi � dicisi, then HT(f 0i) < t � HT(f).

Since pi 2 G we have f 0i 2 idealt(G) and by assumption f 0i 2 ideall(G). Furthermore by

minimality of f we have f 0i 2 idealr(G). This implies cisi �pi = f 0i +pi �dicisi 2 idealr(G).
So f 2 idealr(G), which contradicts the choice of f and so proves the lemma. 2

Recall, that �! denotes left reduction and that �!r right reduction.
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Theorem 4.11.6 Let G be a �nite subset of R. Then the following assertions are equiv-

alent:

1. G is a left Gr�obner base and ideall(G) = idealr(G),

2. G is a left Gr�obner base and ideall(G) = idealt(G),

3. For all f; g 2 R with f � g 2 idealt(G): f # g modulo G.

4. For all f 2 R with f 2 idealt(G): f �!
�
G 0,

5. For all 0 6= f 2 R with f 2 idealt(G) f is left reducible modulo G,

6. G is a left Gr�obner base and for all 0 6= c 2 K, 1 � i � n, p 2 G: p � cXi �!
�
G 0,

7. For all 0 6= f 2 R with f 2 idealt(G) there exists g 2 G such that HT(g) j HT(f).

8. G is a right Gr�obner base and idealr(G) = ideall(G),

9. G is a right Gr�obner base and idealr(G) = idealt(G),

10. For all f; g 2 R with f � g 2 idealt(G): f #r g modulo G.

11. For all f 2 R with f 2 idealt(G): f �!
�
r;G 0,

12. For all 0 6= f 2 R with f 2 idealt(G) f is right reducible modulo G,

13. G is a right Gr�obner base and for all 0 6= c 2 K, 1 � i � n, p 2 G: cXi �p �!
�
r;G 0,

Proof: The equivalence between (1) and (2) follows from the foregoing proposition 4.11.5.

The equivalence between (2), (3), (4), (5) and (7) follows from theorem 4.6.2.

The equivalence between (2) and (6) follows from the proposition 4.11.2.

(8), (9), (10), (11), (12) and (13) are the right hand analogues of (1) { (6) and are

equivalent by the same reasoning.

Finally (5) and (12) are equivalent by lemma 4.8.3. 2

De�nition 4.11.7 A �nite subset G of R is a two-sided Gr�obner base, if it satis�es the
equivalent conditions of theorem 4.11.6.

Note again, that the conditions (6) and (13) are not �nite if K is not �nite. So in order to

obtain an algorithm which computes a two-sided Gr�obner base we have to restrict ourself

to solvable polynomial rings R = KfX1; : : : ; Xn;Q;Q
0g, where K is �nitely generated

over its center and the center of K is contained in the centralizer of the variables of R.

Or we have to impose the restriction, that the coeÆcients commute with the variables.

The proof of the following theorem presents the modi�ed Buchberger algorithm for con-

structing two-sided Gr�obner bases.
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Theorem 4.11.8 (Construction of two-sided Gr�obner bases)

Let R = KfX1; : : : ; Xn;Q;Q
0g be a solvable polynomial ring over a computable �eld K

and with respect to a decidable term order. Such that

K is �nitely generated over its center and cen(K) � cenR(X1; : : : ; Xn),

Then for any �nite F � R one can construct a two-sided Gr�obner base G of idealt(F ).

Proof: We give an algorithm which computes a two-sided GB in table 4.5. Let K be

generated by C = fc1; : : : ; ckg over its center.

Correctness follows e.g. from theorem 4.11.6(6) together with lemma 4.11.3 in case of
condition (1) or with lemma 4.11.4 in case of condition (2). Termination follows from

Dickson's lemma 3.1.1. 2
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Algorithm: TSGB(F )

Input: F = ff1; : : : ; fkg � R, where R satis�es conditions (1,2) above.

Output: A two-sided Gr�obner base G of idealt(F ).

begin G F .

B  f(f; g) : f; g 2 F; f 6= gg.

M  ff � cjXi : f 2 F; 1 � i � n; 1 � j � k; g.

while M 6= ; do Let h 2M .
M  M n fhg.

p LNF(h;G).
if p 6= 0
then B  B [ f(f 0; p) : f 0 2 Gg.

G G [ fpg end.
end.

while B 6= ; do Let (f; g) 2 B.

B  B n f(f; g)g.
h LSP(f; g).

p LNF(h;G).
if p 6= 0
then B  B [ f(f; p) : f 2 Gg.

G G [ fpg. i 0.
while i < n do i i+ 1.

j  0.

while j < k do j  j + 1.

q  LNF(p � cjXi; G).

if q 6= 0

then B  B [ f(f; q) : f 2 Gg.
G G [ fqg end.

end.

end.

end.

end.
return(G).

end TSGB.

Table 4.5: Algorithm: TSGB



Chapter 5

Applications

In this chapter we discuss the `classical' applications of Gr�obner base theory, as there are
elimination ideals, residue class rings, generators for syzygy modules, ideal intersection,
homogeneous ideals and partial Gr�obner bases. Most applications are straight forward

to develop, only homogeneous ideals need some more attention, since the �-product does
not respect homogeneity of the polynomials. Fortunately in one of the most interesting

applications, namely modules over solvable polynomial rings, the homogenous methods
can be used.

Finally we treat bases for subalgebras of solvable polynomial rings. We show that the
tag variable method is not applicable for subalgebra base construction, since the tag

variables must satisfy certain commutator relations, which in general do not de�ne a
solvable polynomial ring. As in the commutative case the bases constructed by completion
procedures may no more be �nite. Even worse, we could only show, that there exists a

semi-decision procedure for the solution of the subalgebra membership problem.

5.1 Reduced Gr�obner Bases

In this section let R = KfX1; : : : ; Xn;Q;Q
0g be a solvable polynomial ring with respect

to an admissible, �-compatible term order < over a �eld K.

De�nition 5.1.1 Let P � R. Recall, that P is called monic if for each p 2 P , HC(p) = 1.

P is called reduced left (right, two-sided) Gr�obner base if P is an autoreduced monic left

(right, two-sided) Gr�obner base.

The existence of autoreduced Gr�obner bases, generating a prescribed ideal, follows from

4.3.6. Dividing each polynomial by its head coeÆcient shows, that there exists also

reduced Gr�obner bases. The following lemma states that reduced Gr�obner bases for a

given ideal are unique relative to a given term order.

97
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Lemma 5.1.2 Let P , Q be a �nite subsets of R such that both P and Q are reduced

left Gr�obner bases. If ideall(P ) = ideall(Q) then P = Q. The same holds for right and

two-sided Gr�obner bases.

Proof: Let P4Q = (P nQ)[(QnP ). Assume for a contradiction, that P4Q 6= ;, and let

0 6= f 2 P4Q with minimal head term, e.g. f 2 P nQ. Since both P and Q are reduced

left Gr�obner bases and f 2 ideall(P ) = ideall(Q) we have f �!�
Q 0. So there exists

g 2 Q, (so g 6= f), with HT(g) j HT(f). Since g 6= f we see g 2 Q n P . By minimality of

f we must have HT(f) = HT(g) since otherwise g 2 P4Q with HT(g) < HT(f).

If HT(g) = HT(f), then also HC(g) = 1 = HC(f) and since f � g 2 ideall(P ) we have

f � g �!�
P 0. This either shows f = g which implies f 2 Q again a contradiction, or

f 6= g; then there exists s = HT(f � g) 2 T (f) [ T (g) with s < HT(f) = HT(g). But

then there exists q 2 P with HT(q) j s, which shows that f or g are reducible with respect
to q 2 P n ff; gg. Again a contradiction to the irreducibility of P .

For right Gr�obner bases the claim follows similarly and for two-sided Gr�obner bases G
recall that the two-sided ideal generated by G is equal to the left ideal generated by G.

2

5.2 Ring and Field Extensions

A useful property to note is the stability of Gr�obner bases under coeÆcient �eld extensions.

By lemma 3.3.7 we can also consider extensions of solvable polynomial rings by new
variables and ask how Gr�obner bases behave in such extensions.

Lemma 5.2.1 Let R = KfX1; : : : ; Xn;Qg be a solvable polynomial ring over a �eld K.

Let L be an extension �eld of K and let R0 = LfX1; : : : ; Xn;Qg be a solvable polynomial

ring with commutator relations Q over the �eld L.

If G is a left (right) Gr�obner base in R with respect to a �-compatible admissible term

order < then G is also a left (right) Gr�obner base in R0 with respect to <. If L is moreover

commutative, then if G is a two-sided Gr�obner base in R with respect to a �-compatible

admissible term order < then G is also a two-sided Gr�obner base in R0 with respect to <.

Proof: G is a left Gr�obner base in R0 if all S-polynomials of elements of G are left

reducible to 0 wrt. G. Let h = LSP(f; g) for some f 6= g 2 G then h 2 R � R0 and

h �!�
G 0 in R and so also in R0. A similar arguments holds for right S-polynomials and

right reduction. Furthermore for c 2 K � L and 1 � i � n we have g � cXi �!
�
G 0, either

by construction in R or since L is commutative and by assumption the elements of L nK

commute with the variables. So g � cXi �!
�
G 0 also in R0. 2

Lemma 5.2.2 Let R = KfX1; : : : ; Xn;Q;Q
0g be a solvable polynomial ring over a �eld

K with respect to a �-compatible admissible term order <. Let Y1; : : : ; Ym be new variables.
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Let R1 = KfX1; : : : ; Xn; Y1; : : : ; Ym;Q1; Q
0
1g be an extension solvable polynomial ring over

the �eld K with respect to a �-compatible admissible term order <0 extending <.

Let G be a left Gr�obner base in R with respect to <. Then G is also a left Gr�obner base

in R1 with respect to <0. If the Y1; : : : ; Ym commute with the elements of K then also for

a right (two-sided) Gr�obner base G in R with respect to < G is also a right (two-sided)

Gr�obner base in R1 with respect to <0.

Proof: G is a left Gr�obner base in R1 if all S-polynomials of elements of G are left

reducible to 0 wrt. G. Let h = LSP(f; g) for some f 6= g 2 G then h 2 R � R1 and

h �!�
G 0 in R and so also in R1. A similar arguments holds for right S-polynomials

and right reduction. Furthermore under the stated restriction on the variables for Yj,
1 � j � m and 0 6= c 2 K we have g � Yj � c = (g � c) � Yj �!

�
G 0, in R1 by applying the

reduction in R. 2

5.3 Elimination Ideals

In this section let R = KfX1; : : : ; Xn;Q;Q
0g be a solvable polynomial ring.

De�nition 5.3.1 Let R = KfX1; : : : ; Xn;Q;Q
0g be a solvable polynomial ring with re-

spect to a �-compatible admissible pure lexicographic ordering <. Let 0 � m � n and

de�ne

Rm = KfX1; : : : ; Xm;Qm; Q
0
mg

with Rm = R\K[X1; : : : ; Xm], Qm = Q\K[X1; : : : ; Xm] and Q
0
m = Q0 \K[X1; : : : ; Xm].

Then Rm is a solvable subring of R, since by de�nition of Qm, Q
0
m and pij, pai 2 Rm

for a 2 K, 1 � i < j � m and by the product lemma 3.2.5, Rm is closed under �

multiplication, where the pij, pai are from the commutator relations Q, respectively Q0.

Rm is called the m-th elimination ring.

In particular R0 = K and Rn = R.

Lemma 5.3.2 Let R = KfX1; : : : ; Xn;Q;Q
0g be a solvable polynomial ring with respect

to a �-compatible admissible pure lexicographic term ordering <. Let 0 � m < n and let

Rm = KfX1; : : : ; Xm;Qm; Q
0
mg be an elimination ring.

Let G be a (reduced) left Gr�obner base in R, Gm = G \Rm. Then Gm is a (reduced) left

Gr�obner base in Rm and

ideall(G) \Rm = ideall(Gm);

where the ideal on the right hand side is taken in Rm. The claim also holds for right or

two-sided ideals and (reduced right or reduced two-sided) Gr�obner bases.
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Proof: First we show that Gm is a (reduced) left Gr�obner base in Rm. Let f 2 Rm \

ideall(G) then f �!t;g f
0 for some t 2 T (f) and some g 2 G. Then HT(g) j t and by

the pure lexicographical order this implies g � HT(g) � t 2 Rm and so g 2 Rm. So

f �!t;g f
0 for some g 2 Gm, which shows the claim by the characterization theorem for

Gr�obner bases.

Next for f 2 ideall(G) \ Rm we have f �!�
G 0 and since Gm is a left Gr�obner base also

f �!�
Gm

0. This shows ideall(G) \ Rm � ideall(Gm). The inverse inclusion follows since

Gm � G \ Rm and consequently in Rm: ideall(Gm) � ideall(G \ Rm) � ideall(G) \ Rm.

A similar argumentation establishes the claim for the right and two-sided case. 2

5.4 Residue Class Rings

Let R be a ring and let I be a left (right, two-sided) ideal, then R=I denotes the left (right)

R-module of the set of cosets of I together with the left (right) scalar multiplication and
addition of cosets de�ned as usual, respectively in the two-sided case the residue class

ring of R modulo the ideal I. In this section let R = KfX1; : : : ; Xn;Q;Q
0g be a solvable

polynomial ring.

Lemma 5.4.1 Let G be a (reduced) left (right, two-sided) Gr�obner base in R. Let

B = fs 2 T : HT(g) 6 js for all g 2 Gg:

Let [s] denote the coset (residue class) of s 2 T modulo ideall;r;t(G) respectively. Then

1. [B] = f[s] : s 2 Bg is a K-basis of the (left, right) vector space R=ideall;r;t(G)

respectively.

2. The (left, right) vector space R=ideall;r;t(G) is �nite dimensional i� for every 1 �

i � n there exists gi 2 G such that HT(gi) 2 T (Xi).

Proof: We show the proof for left ideals, for right and two-sided ideals a similar proof
can be found.

(1) We show �rst that [B] is left linearly independent. Assume for a contradiction, that

for some pairwise di�erent elements [si] there exist non-zero ai 2 K such that

kX
i=1

ai[si] = [0]:

1 � k � jBj. Then we have f =
Pk

i=1 aisi 2 ideall(G). Thus f is reducible wrt. G and

so some si is divisible by a head term of some polynomial of G. But this contradicts the
choice of si as irreducible wrt. G.

Next we show that [B] spans the left vector space R=ideall(G). Therefore let f 2 R

be arbitrary. Let f 0 2 R be an irreducible left reduct of f : f �!�
G f 0. Let f 0 =
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Pk
i=1 aisi, then each si is irreducible wrt. G. This shows each si 2 B and so [f ] = [f 0] =Pk
i=1 ai[si]. Since R �! R=ideall(G) is surjective, we have shown, that every element [f 0]

of R=ideall(G) has a representation as linear combination wrt. [B].

(2) If the condition on the head terms of the polynomials in G is ful�lled, then the total

degree of each si 2 B is bounded. Since there are only �nitely many terms si 2 T with

bounded total degree, the number of elements of B is bounded, whence B is �nite.

Conversely if for some 1 � i � n no g 2 G exists with HT(g) 2 T (Xi), then T (Xi) � B.

Since T (Xi) is in�nite, this implies that B is in�nite too. 2

Lemma 5.4.2 Let I = ideall;r;t(F ) be a left (right, two-sided) ideal in R generated by

F . Then the (left, right) vector space R=ideall;r;t(F ) respectively is �nite dimensional

i� for every 1 � i � n there exists 0 6= fi 2 ideall;r;t(F ) respectively such that fi 2

ideall;r;t(F ) \K[Xi].

Proof: We show the proof for left ideals, for right and two-sided ideals a similar proof
can be found. Let B be a basis of R=ideall(F ). If for some 1 � i � n no 0 6= f 2 ideall(F )

exists with f 2 ideall(F ) \K[Xi], then T (Xi) � B. Since T (Xi) is in�nite, this implies
that B is in�nite too.

Conversely if for every 1 � i � n, there exists 0 6= fi 2 ideall(F ) such that fi 2

ideall(F ) \K[Xi] then the total degree of each si 2 B is bounded. Since there are only
�nitely many terms si 2 T with bounded total degree, the number of elements of B is
bounded, whence B is �nite. 2

In chapter 6 we present an algorithm, which for a given left Gr�obner base computes the

univariate polynomials in the left ideal of minimal degree, provided the conditions of the
lemmas are ful�lled. Here we state the existence of such an algorithm.

Lemma 5.4.3 Let R = KfX1; : : : ; Xn;Q;Q
0g be a solvable polynomial ring over a com-

putable �eld K and with respect to a decidable term order. For two-sided ideals assume

furthermore that

K is �nitely generated over its center and cen(K) � cenR(X1; : : : ; Xn),

Let I = ideall;r;t(F ) be a left (right, two-sided) ideal in R generated by F . Then there

exists an algorithm which decides if the (left, right) vector space R=ideall;r;t(F ) respectively
is �nite dimensional and if so computes for every 1 � i � n polynomials 0 6= fi 2

ideall;r;t(F ) respectively such that fi 2 ideall;r;t(F ) \ K[Xi] respectively. Moreover the

algorithm determines the unique monic polynomial of minimal degree with these properties.

Proof: Let G be a left (right, two-sided) Gr�obner base of ideall;r;t(F ) respectively. Then

by lemma 5.4.1 the (left, right) vector space R=ideall;r;t(F ) respectively is �nite dimen-
sional i� for every 1 � i � n there exists gi 2 G such that HT(gi) 2 T (Xi). Clearly this

condition can be checked by an algorithm.
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Let [B] be a K-basis of the (left, right) vector space R=ideall;r;t(G) respectively. Since

the vector space dimension is �nite, the powers [Xk
i ], k 2 N, must be linearly dependent.

Now every [Xk
i ] can be represented as left (right) linear combination of the basis elements

in [B] using the left (right) normal form algorithm. So for k = 0; : : : a sequence of basis

elements for

f [X0
i ]; [X

1
i ]; : : : ; [X

k
i ] g

can be computed and checked for linear dependence. Then the �rst linear dependence

0 = a0[X
0
i ] + a1[X

1
i ] : : :+ ak[X

k
i ]:

with ai 2 K, ak 6= 0 determines a polynomial

f = a0X
0
i + a1X

1
i + : : :+ akX

k
i 2 ideall(F ) \K[Xi]

That the degree of a polynomial so constructed is minimal is clear and if we divide f by
0 6= ak then it is monic and consequently unique. 2

5.5 Syzygies

In this section let R = KfX1; : : : ; Xn;Q;Q
0g be a solvable polynomial ring with respect

to a �-compatible admissible term order >.

De�nition 5.5.1 Let S be a ring. P = fp1; : : : ; pmg be a �nite subset of S. Let

MP = f(h1; : : : ; hm) 2 S
m : h1p1 + : : :+ hmpm = 0g:

MP is called left module of syzygies for P . The elements of MP are called left syzygies of

P . Right syzygies and two-sided syzygies are similarly de�ned as PM = f(h1; : : : ; hm) 2
Sm : p1h1+ : : :+ pmhm = 0g and MPM = f(h1; h

0
1; : : : ; hm; h

0
m) 2 S

2m : h1p1h
0
1+ : : :+

hmpmh
0
m = 0g respectively.

De�nition 5.5.2 Let R be a solvable polynomial ring with respect to a �-compatible

admissible term order. P = fp1; : : : ; pmg be a monic left Gr�obner base in R. For

1 � i < j � m let

fij = LSP(pi; pj) = aijuij � pi � bijvij � pj

be the left S-polynomials of all distinct pairs of elements of P ; with 0 6= aij; bij 2 K,

uij; vij 2 T and HT(fij) < HT(uij � pi) = uijHT(pi) = vijHT(pj) = HT(vij � pj).

Since fij 2 ideall(P ) and P is a Gr�obner base we have fij �!
�
P 0. This reduction

determines a (standard) representation of fij from which terms belonging to the same pi
can be combined to a polynomial qijk:

fij =
mX
k=1

qijk � pk
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with qijk 2 R and HT(qijk � pk) = HT(qijkpk) � HT(fij). Subtracting both representations

of fij we obtain a syzygy of P . More precisely let bij = (rij1; : : : ; rijm) 2 R
m with

rijk =

8><
>:
qijk k 6= i; j

qijk � aijuij k = i

qijk + bijvij k = j

then B = fbij : 1 � i < j � mg is a set of left syzygies of P .

Using right S-polynomials and right reduction we obtain a corresponding de�nition of

certain right syzygies.

Theorem 5.5.3 Let R be a solvable polynomial ring with respect to a �-compatible ad-

missible term order. Let G be a monic left (right) Gr�obner base in R and let B be the set

of left (right) syzygies as de�ned in 5.5.2. Then B generates MG (GM) as a left (right)

R-module.

Proof: We discuss only the left version, the right version is obtained using the respective
right representations. First we show B � MG as already claimed in the de�nition of B.
Let G = fg1; : : : ; gmg and let bij 2 B then

mX
k=1

rijk � gk =
mX

k=1;k 6=i;k 6=j

qijk � gk + (qiji � aijuij) � gi + (qijj + bijvij) � gj

=
mX
k=1

qijk � gk + (�aijuij) � gi + (+bijvij) � gj

= fij + (�aijuij) � gi + (+bijvij) � gj

= fij � LSP(gi; gj)

= 0

This shows bij 2MG.

Next we show that B generatesMG. Therefore assume for a contradiction, that B does not
generateMG. Then there exists h 2 MG such that h 6=

P
1�i<j�m pij�bij for all pij 2 R. Let

such a h = (h1; : : : ; hm) be minimal in respect, that t = maxfHT(hk � gk) : 1 � k � mg

is minimal (wrt. <T ) and jJtj with Jt = fk : HT(hk � gk) = tg is minimal.

Now
Pm

k=1 hk � gk = 0 and so
P

k2Jt HM(hk � gk) =
P

k2Jt HC(hk � gk)t = 0, which shows

Jt = ; or jJtj � 2. If Jt = ; then we are done, so assume Jt 6= ;. Let e; l 2 Jt such

that t = HT(he � ge) = HT(he)HT(ge) = HT(hl)HT(gl) = HT(hl � gl). This shows

lcm(HT(ge);HT(gl))w
0 = t for some w0 2 T . Let LSP(ge; gl) = au � ge � bv � gl.

Let 0 6= c 2 K such that

coe�(t; he � ge) = c � coe�(t; w0 � au � ge): (5.1)

Let b0 = c � w0 � bel (by componentwise multiplication), then b0 2 MG since bel 2 MG.

Then also h0 = (h01; : : : ; h
0
m) = h� b0 2MG.

Let J 0t = fk : HT(h
0
k � gk) = tg, then we claim that jJ 0tj < jJtj:
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Case k 6= e; l: then HT(h0k�gk) = HT(hk�gk�c�w
0�belk �gk) � maxfHT(hk�gk);HT(c�

w0�belk�gk)g = t. Moreover fk 6= e; l : HT(h0k�gk) = tg = fk 6= e; l : HT(hk�gk) = tg

by the product lemma 3.2.5.

Case k = l: then HT(h0l � gl) = HT(hl � gl � c � w
0 � bell � gl) � maxfHT(hl � gl);HT(c �

w0 � bell � gl)g = t.

Case k = e: then HT(h0e � ge) = HT(he � ge � c � w
0 � bele � ge) < t since by construction

(5.1) t = HT(he � ge) = HT(c � w0 � bele � ge) and the coeÆcients of t cancel in the

di�erence.

Now by minimality of h this shows that h0 has a representation as linear combination
by elements of B. But then h = h0 + b0 has a representation as linear combination by

elements of B, a contradiction. 2

We are now going to prove a `transformation' lemma for syzygies with respect to di�erent
ideal bases. The proposition was reported by [Zacharias 1978] for commutative polynomial
rings and was also stated in [Apel, Lassner 1988] for enveloping algebras.

Proposition 5.5.4 Let I be a left ideal in an unitary ring R and let F;G � R, F =

ff1; : : : ; fmg, G = fg1; : : : ; glg such that I = ideall(F ) = ideall(G). Let Y = (pij) with
pij 2 R for 1 � i � m, 1 � j � l and X = (qij) with qij 2 R for 1 � i � m, 1 � j � l be

the transformation matrices between the F and G:

fi =
X

j=1;:::;l

pij � gj 1 � i � m

gj =
X

i=1;:::;m

qij � fi 1 � j � l

If we consider the F and G also as vectors and denote matrix transposition by t, we can

write more compactly: Gt = XF t and F t = Y Gt. Let Im denote the m�m unit matrix.

Let BG be a generator of MG, then BF (in block matrix representation) de�ned by

BF =

 
Im � Y X

BGX

!

is a generator of MF . If we adopt the convention to write the multiplicants of the sum-

mands of the entries of a product matrix in the right ideal and right representation case

in the reverse order, we also obtain

FB =

 
Im � Y X

GBX

!
:

Note that for a left Gr�obner base G, Y can be computed during the construction of G

and X can be computed by reduction of the fi 2 F wrt. G.
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Proof: We show �rst, that the rows of BF are syzygies:

BFF
t =

 
Im � Y X

BGX

!
F t =

 
ImF

t � Y XF t

BGXF t

!
=

 
F t � Y Gt

BGGt

!
=

 
F t � F t

0

!
= 0:

Now we show, that the rows of BF generate MF : Let h 2 MF , that is hF
t = 0. Since

F t = Y Gt, we have hY Gt = 0 which implies that hY 2 MG. Now BG is a generator for

MG and so hY is a linear combination of the BG. So there exist a = (a1; : : : ; ak) 2 R
k,

k = jBGj such that

hY = aBG:

By back transformation with X we have hY X = aBGX and adding 0 = hIm � hIm on

the left hand side gives h(Im � Im + Y X) = aBGX. So

h = h(Im � Y X) + aBGX = a0
 
Im � Y X

BGX

!
= a0BF

with a0 = (h1; : : : ; hm; a1; : : : ; ak) 2 R
m+k. The right case is handled similarly. 2

Theorem 5.5.5 Let R be a solvable polynomial ring with respect to a �-compatible admis-

sible term order. Let G = fg1; : : : ; gmg be a subset of R such that ideall(G) = idealt(G).
(By theorem 4.11.6 this condition is in particular ful�lled if G is a two-sided Gr�obner

base.) Let MGM be the set of two-sided syzygies and let wt = (h1; h
0
1; : : : ; hm; h

0
m) 2 S

2m.

By proposition 4.11.2 we have ideall(G) = idealt(G) if and only if idealr(G) � ideall(G).
So for 1 � i � m we have gi � h

0
i 2 ideall(G) and consequently there exist fij 2 S, for

1 � i; j � m such that gi � h
0
i =

Pm
j=1 fij � gj. Let

�hj =
Pm

i=1 hi � fij for 1 � j � m and let

wl = (�h1; : : : ; �hm) 2 S
m. Then

wt 2MGM () wl 2MG:

Proof: Let G = fg1; : : : ; gmg and let wt = (h1; h
0
1; : : : ; hm; h

0
m) 2 MGM . For 1 � i � m,

gi � h
0
i 2 ideall(G). So let fij 2 S, for 1 � i; j � m such that gi � h

0
i =

Pm
j=1 fij � gj. Let

�hj =
Pm

i=1 hi � fij for 1 � j � m and let wl = (�h1; : : : ; �hm) 2 Sm. Then the following

equivalences hold

mX
i=1

hi � gi � h
0
i = 0 ()

mX
i=1

hi � (
mX
j=1

fij � gj) = 0

()
mX
i=1

mX
j=1

hi � fij � gj = 0

()
mX
j=1

(
mX
i=1

hi � fij) � gj = 0

()
mX
j=1

�hj � gj = 0:

This shows wl = (�h1; : : : ; �hm) 2MG if and only if wt 2MGM . 2
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Gr�obner bases for BG

Let I = ideall(G), G = fg1; : : : ; gkg and let BG be a generator of the module of syzygies

MG.

One may ask, if given h 2 Rk, is h 2MG ?.

The easy solution is to compute b = h1 �g1+ : : :+hk �gk and to check if b = 0. An answer

including more information would be to represent h as a linear combination of the BG.

To solve this problem we should have a reduction relation and a Gr�obner base GB(BG)

for the module of syzygies, such that

h 2MG () h �!�
GB(BG)

0:

Then examining the reduction steps would provide the representation of h as linear com-
bination of the GB(BG) and hence of BG. This problem is discussed in the subsection on
partial Gr�obner bases in the next section.

5.5.1 Ideal Intersection

In this subsection we are going to reformulate the ideal intersection problem as syzygy

problem. We remark that the `tag variable' method to determine the ideal intersection
known for commutative polynomial rings does also apply here, since tag variables are
only substituted by 0 and 1 respectively (and 0; 1 2 cen(R)). So we do not have to setup

commutator relations for the new variables in such a way, that the resulting polynomial
ring might be no solvable polynomial ring.

The main fact, using syzygies, is contained in the following lemma.

Lemma 5.5.6 Let S be a solvable polynomial ring. Let F1 = ff1; : : : ; frg � S, F2 =

fg1; : : : ; gsg � S and let F = F1 [ F2. Then

ideall(F1) \ ideall(F2) = ideall(P )

where P = fp1; : : : ; pkg � S with pj =
Pr

i=1 hijfij for 1 � j � k = jBF j and

(h1j; : : : ; hrj; h
0
1j; : : : ; h

0
sj) 2 BF . The same holds for right ideals and right syzygies.

Proof: Let I = ideall(F1) \ ideall(F2). Furthermore let MF be the module of syzygies

of F and BF be a set of generators for the module of syzygies of F . Then the following
equations hold. I = ideall(F1) \ ideall(F2) = fp 2 S : p 2 ideall(F1) and p 2 ideall(F2)g

= fp 2 S : p =
rX

i=1

hi � fi and p =
sX

i=1

h0i � gi; hi; h
0
i 2 Sg

= fp 2 S : p =
rX

i=1

hi � fi and 0 =
rX
i=1

hi � fi �
sX

i=1

h0i � gi; hi; h
0
i 2 Sg
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= fp 2 S : p =
rX

i=1

hi � fi for (h1; : : : ; hr; h
0
1; : : : ; h

0
s) 2MF ; hi; h

0
i 2 Sg

= fp 2 S : p =
kX

j=1

h00j � pj where pj =
rX
i=1

hijfi for

(h1j; : : : ; hrj; h
0
1j; : : : ; h

0
sj) 2 BF ; hij; h

0
ij; h

00
i 2 Sg:

The last equality holds, since MF is generated by BF as left S-module:

(h1; : : : ; hr; h
0
1; : : : ; h

0
s) =

kX
j=1

wj � (h1j; : : : ; hrj; h
0
1j; : : : ; h

0
sj)

in the notations as above and wj 2 S. So we have p =
Pr

i=1 hi�fi =
Pr

i=1(
Pk

j=1wj�hij)�fi
=
Pk

j=1wj�(
Pr

i=1 hij�fi) =
Pk

j=1wj�pj as claimed. The right ideal case is proven similarly.
2

Left common multiples

A special case of the ideal intersection problem is the question of the existence of left
common multiples for two elements. That means, given a; b 2 S (solvable polynomial
ring), do there exist b0; a0 2 S such that

b0a = a0b (�)

It is known (cf. 8.2.3) that this problem is always positively solvable in a Noetherian

domain. If the ideal membership problem is solvable in such a ring, then the proof of
this fact can be adapted to obtain an algorithm for the computation of such left common
multiples.

An other method to determine left common multiples is to consider the equation (�) as

an ideal intersection problem

Sa \ Sb = ; ?

or directly as a syzygy problem
b0a� a0b = 0:

The last way is persued and discussed e.g. in [Apel, Lassner 1988].

5.5.2 Ideal Quotient

In this subsection we are going to de�ne ideal left quotients and show how ideal quotients

can be computed using syzygy methods.

De�nition 5.5.7 Let S be a ring. Let I � S be a left (right) ideal, and let J � S be a

subset of S. Then the set

I :l J = fh 2 S : hg 2 I for all g 2 Jg



108 CHAPTER 5. APPLICATIONS

is called the left ideal quotient of I by J. The right ideal quotient of I by J is de�ned

similarly and is denoted by I :r J.

I :l J is a left ideal of S, since for h1g 2 I, h2g 2 I and f 2 S also (h1 � h2)g 2 I

and fh1g 2 I (because I is a left ideal) for all g 2 J . If I is a left ideal generated by

a �nite subset F = ff1; : : : ; fkg of S, i.e. I = ideall(F ), then ideall(F ) :l J = fh 2

S : exists h1; : : : ; hk 2 S; with hg = h1 � f1 + : : :+ hk � fk for all g 2 Jg. Respectively

for right ideals (with F as before, I = idealr(F )) we have idealr(F ) :r J = fh 2 S :

exist h1; : : : ; hk 2 S; with gh = f1 � h1 + : : :+ fk � hk for all g 2 Jg.

If G is a subset of S and I is a left (right) ideal in S, then

I :l G =
\
g2G

I :l fgg; respectively I :r G =
\
g2G

I :r fgg:

This identity holds, since e.g. for left ideals hg 2 I for all g 2 G if and only if h 2 I :l fgg
for all g 2 G. In particular for �nite G = fg1; : : : ; gkg we have I :l;r G =

T
i=1;:::;k I :l;r fgig.

Having reduced the problem of determination of ideal quotients to I :l;r fgg (which we will

simply denote by I :l;r g) we now solve this problem using syzygies for solvable polynomial
rings S.

Lemma 5.5.8 Let S be a solvable polynomial ring. Let I = ideall(F ) be a left ideal in S

generated by a �nite set F = ff1; : : : ; fkg � S and let g 2 S. Let F 0 = fg; f1; : : : ; fkg and

let BF 0 be a generating set for the module of left syzygies of F 0. If we let

H = fh 2 S : exists h1; : : : ; hk 2 S; with (h; h1; : : : ; hk) 2 BF 0g;

then ideall(H) = ideall(F ) :l g. A similar result holds for right ideals and right syzygies.

Proof: \�" For h 2 H there exists (h; h1; : : : ; hk) 2 BF 0, which by de�nition of BF 0

implies hg+h1f1+: : :+hkfk = 0, which implies hg = �h1f1�: : :�hkfk. So hg 2 ideall(F )

and consequently h 2 ideall(F ) :l g.

\�" For h 2 ideall(F ) :l g we get h1; : : : ; hk 2 S with hg � h1f1 � : : : � hkfk = 0

following the above way backwards. This shows that (h; h1; : : : ; hk) 2 MF 0 , the module

of left syzygies of F 0. Since MF 0 is generated by BF 0, i.e. every element of MF 0 is a linear

combination of elements of BF 0. So we see that there exist in particular for the �rst

component polynomials g1; : : : ; gm 2 S such that h = g1h
0
1+ : : :+gmh

0
m with h01; : : : ; h

0
m 2

S from the �rst component of elements from BF 0 . This shows that h01; : : : ; h
0
m 2 H and

so h 2 ideall(H), which completes the proof. 2

Since we have seen, that for solvable polynomial rings S (under the usual computability

conditions) there exists an algorithm to compute a basis for the module of syzygies BF

for any �nite F in S and since we can compute ideal intersections in S, we see that there

is also an algorithm to compute left (right) ideal quotients for any �nite set of elements

of S.
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5.6 Homogeneous Ideals

In this section we consider partial left (right, two-sided) Gr�obner bases over solvable

polynomial rings. Partial Gr�obner bases are Gr�obner bases, where S-polynomial reduction

to zero is restricted to some degree interval. We �rst recall some de�nitions and properties

about graded structures. Then we discuss partial reductions and partial Gr�obner bases.

The presentation is adapted from [Becker, Weispfenning 1992].

As usual let S = KfX1; : : : ; Xn;Q;Q
0g be a solvable polynomial ring, with respect to an

admissible �-compatible ordering, over a �eld K.

5.6.1 Gradings and Homogeneity

De�nition 5.6.1 By a grading  of a polynomial ring K[X1; : : : ; Xn] with set of terms

T we mean a monoid homomorphism

 : (T; 1; �) �! (N; 0;+):

This means that  is a mapping from T to N such that (1) = 0 and (s � t) = (s)+(t)

for s; t 2 T . For polynomials 0 6= f 2 K[X1; : : : ; Xn] we de�ne the -degree of f , which

will also be denoted by (f), as

(f) = maxf(t) : t 2 T (f)g:

For solvable polynomial rings S = KfX1; : : : ; Xn;Q;Q
0g we de�ne the -degree of 0 6=

f 2 S by the -degree of f as element of K[X1; : : : ; Xn].

Let S = K[X1; : : : ; Xn] be a polynomial ring over K in n variables with terms T . A

grading  on T with weights a1; : : : ; an 2 N can be de�ned as

(t) = (X�1
1 : : :X�n

n ) = a1�1 + : : :+ an�n;

where t = X�1
1 : : :X�n

n 2 T . Moreover since  is a homomorphism between (T; 1; �) and
(N; 0;+) any grading on T arises from a linear form. In fact let (Xi) = ai 2 N for
1 � i � n then we have

(X�1
1 : : :X�n

n ) = (X1)�1 + : : :+ (Xn)�n = a1�1 + : : :+ an�n:

This also shows that s j t implies (s) � (t) for all s; t 2 T .

Since a solvable polynomial ring over a domain is a domain by the product lemma 3.2.5

we have:

(fg) = (f � g) = (f) + (g)

for all 0 6= f; g 2 S. By de�nition of the degrees of polynomials it holds also that

(f + g) � maxf(f); (g)g for all 0 6= f; g 2 S.
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We call an element f of S homogeneous of degree d if for all t 2 T (f) we have (t) = d

and we call it homogeneous if for all t; s 2 T (f) we have (t) = (s). So every polynomial

f of S can be represented as a (�nite) sum of its homogeneous components:

f =
X
i2N

fi;

where each fi is homogeneous of degree i. An left (right, two-sided) ideal I in S is

called homogeneous if it is generated by homogeneous elements. One can prove, that

I is homogeneous, i� with each f 2 I it contains every homogeneous component of f .

Homogeneous ideals are denoted by idealhl (F ).

A representation or standard representation of a polynomial f 2 S with respect to a
set of homogeneous polynomials P de�nes a homogeneous representation or homogeneous

standard representation of f with respect to P .

Note that contrary to commutative polynomial rings homogeneity is in general not pre-
served under the �-product in solvable polynomial rings.

Example 5.6.2 Let S = KfX1; : : : ; Xn;Q;Q
0g be a solvable polynomial ring over K

in n variables with commutator relations Q and Q0. The polynomials Xj and Xi are

homogeneous, but their product Xj � Xi = cijXiXj + pij 2 Q is not homogeneous if

pij 6= 0 and (pij) 6= (cijXiXj). Also the polynomials a and Xi are homogeneous, but

Xi � a = caiaXi + pai 2 Q
0 is not homogeneous if pai 6= 0 and (pai) 6= (caiaXi).

This suggests the following de�nition:

De�nition 5.6.3 Let S = (S; �;�) be solvable polynomial ring with �-product and term

order �, then a grading  on S is called homogeneity compatible with � if for all 0 6=
f; g 2 S

f and g homogeneous implies that f � g is homogeneous.

Example 5.6.4 Let S = KfX1; : : : ; Xn; Y1; : : : ; Ym;Q;Qg be a solvable polynomial ring

over a �eld K, such that the variables Yj commute with each other and with all Xi for

1 � j � m and 1 � i � n and the commutator relations between the X's do not contain

any Y 's. Then we de�ne (Xi) = 0 for 1 � i � n, (a) = 0 for 0 6= a 2 K and (Yj) = 1

for 1 � j � m. Then clearly (f � g) = 0 = (f) + (g) for all 0 6= f; g 2 S which do

not contain any Y 's. Let x1y1; x2y2 2 T (X1; : : : ; Xn; Y1; : : : ; Ym) be terms with x1; x2 2

T (X1; : : : ; Xn) and y1; y2 2 T (Y1; : : : ; Ym). Then we have (x1y1) � (x2y2) = (x1 � x2)(y1y2)

and for the degrees we have ((x1y1)�(x2y2)) = ((x1 �x2)(y1y2)) = (x1 �x2)+(y1y2) =

0+(y1y2) = (y1)+(y2) = (x1y1)+(x2y2). So the degrees of polynomials 0 6= p; q 2 S

and the degree of their product p�q depends only on the degrees of the commuting variables.

This shows that if p and q are homogeneous, then their product p � q is homogeneous.
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We conclude this subsection with some remarks about the relation between a grading and

a term order.

Let S be (solvable) polynomial ring with term order �, then a grading  on S is called

compatible with � if for all s; t 2 T

(s) � (t) =) s � t:

Let S be (solvable) polynomial ring with term order �, and let  be a grading on S. Then

there exists a term order �0 on S such that  is compatible with �0. To see this, de�ne

the term order �0 on T as follows:

s �0 t ()

(
(s) < (t); or
(s) = (t) and s � t;

where s; t 2 T . But note that �0 may not be �-compatible.

5.6.2 Partial Gr�obner Bases

We are new prepared to state the main results of partial Gr�obner bases. Throughout this
subsection let S = (S; �;�) be solvable polynomial ring with �-product and �-compatible
admissible term order � and a grading  on S which is homogeneity compatible with �

and compatible with <. We state the claims only for left ideals and left reduction, but
using the previous subsection and the results from chapter 4 on right and two-sided ideals
and right reductions it can be seen, that the claims also hold in the right and two-sided

cases with the respective modi�cations.

Lemma 5.6.5 Let S be solvable polynomial ring with a �-compatible admissible term

order � and a grading  which is homogeneity compatible with � and compatible with �.

Let f0g 6= P � S (�nite), let d 2 N and let 0 6= f; g; p 2 S with (f) = d.

1. If p is homogeneous and f �!p g then (p); (g) � d. If moreover f is homogeneous,

then g is homogeneous with (g) = d.

2. If all elements of P are homogeneous and f �!�
P g then (g) � d and (p) � d

for all p 2 P which occur in the reduction. If moreover f is homogeneous, then g is

homogeneous with (g) = d.

3. If all elements of P are homogeneous and f has a standard representation wrt. P

then (p) � d for all p 2 P which occur in the standard representation of f .

Proof: 1) By de�nition of the left reduction and the properties of the homogeneity

respecting grading . 2) The claims on P follow by induction on the length of a reduction

sequence. 3) Follows, since in the standard representation f =
P

i sipi we have (si�pi) �

(f) because HT(si � pi) � HT(f). 2

Especially for S-polynomials we note:
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Lemma 5.6.6 Let S be solvable polynomial ring with a �-compatible admissible term

order � and a grading  which is homogeneity compatible with � and compatible with <.

Let 0 6= f; g 2 S be homogeneous and let LSP(f; g) 6= 0. Then LSP(f; g) is homogeneous

and

(LSP(f; g)) = (lcm(HT(f);HT(g))):

De�nition 5.6.7 Let F � S be a subset of a solvable polynomial ring with a �-compatible

admissible term order � and a grading  which is homogeneity compatible with � and

compatible with <. For d; e 2 N de�ne

F (d; e) = ff 2 F : d � (f) < eg

and F (d;1) = ff 2 F : d � (f) g. For �nite F � S let the d-restriction of the

reduction relation be de�ned as

�!d;F = �!F \ S(0; d)
2:

We are now going to give characterizations of conuent homogeneous reduction relations
in a solvable polynomial ring by ideal membership tests, standard representations and

S-polynomials.

De�nition 5.6.8 Let S = KfX1; : : : ; Xn;Q;Q
0g be a solvable polynomial ring, with re-

spect to an admissible �-compatible ordering, over a �eld K and with a grading  on S

which is homogeneity compatible with � and compatible with <. Let G � S be a �nite sub-

set of homogeneous polynomials of S and let d 2 N. If the left reduction relation �!d;G

satis�es one of the conditions of de�nition 4.1.4 then G is called a left d-Gr�obner base.

(Since �!d;G is Noetherian, by lemma 4.1.5 �!d;G satis�es all conditions of de�nition

4.1.4.)

Theorem 5.6.9 Let S = KfX1; : : : ; Xn;Q;Q
0g be a solvable polynomial ring, with respect

to an admissible �-compatible ordering, over a �eld K and with a grading  on S which

is homogeneity compatible with � and compatible with <. Let G � S be a �nite subset

of homogeneous polynomials of S and let d 2 N. Then the following assertions are

equivalent.

1. G is a left d-Gr�obner base.

2. For all f; g 2 S(0; d), if f � g 2 ideall(G)(0; d) then f #d;G g.

3. For all f 2 ideall(G)(0; d), f �!
�
d;G 0.

4. For all 0 6= f 2 ideall(G)(0; d), f �!d;G f
0.

5. For all 0 6= f 2 ideall(G)(0; d), there exists g 2 G such that HT(g) j HT(f).

6. All f 2 ideall(G)(0; d) have a homogeneous standard representation wrt. G.
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7. For all h 2 H(0; d) = fLSP(f; g) : f; g 2 G; f 6= gg(0; d), h �!�
d;G 0.

8. For all h 2 Hb � H(0; d), such that Hb satis�es the condition (BBEC) of lemma

4.5.8 for �!d;G reduction, h �!�
d;G 0.

Proof: (1) =) (2): Let f; g 2 S such that f � g 2 ideall(G)(0; d). Then lemma 4.4.5

together with lemma 5.6.5(2): f  !�
d;G g. By (1) �!d;G has the Church-Rosser property,

so f #d;G g.

(2) =) (3): Specialise g = 0 in (2).

(3) =) (1): We show that �!d;G is conuent. Let f; f1; f2 2 S such that f �!�
d;G f1

and f �!�
d;G f2, that is f1  !

�
d;G f2. By lemma 4.4.2 together with lemma 5.6.5(2)

f1 � f2 2 ideall(G)(0; d) and by (3) f1 � f2 �!
�
d;G 0. From this by lemma 4.2.6 together

with lemma 5.6.5(2) f1 #d;G f2.

(3) =) (4): By de�nition of �!�
d;G.

(4) =) (3): Assume 0 6= f 2 ideall(G)(0; d) is minimal such that not f �!�
d;G 0. Now

by (4) f �!d;G f
0 with f 0 2 ideall(G)(0; d) by lemma 4.4.2 together with lemma 5.6.5(2).

However by de�nition of f : f 0 �!�
d;G 0 and so f �!�

d;G 0 a contradiction.

(5) =) (4): By de�nition of left head term reduction.

(3) =) (5): Assume 0 6= f 2 ideall(G)(0; d) and let f �!k
d;G 0 for some k 2 N. Let

1 � m � k minimal, and let g 2 G such that fm �!d;t;g fm+1 where t = HT(f). By
de�nition of reduction this shows that HT(g) j HT(f).

(3) () (6): follows from the equivalence of claims (1) and (2) in proposition 4.5.5
together with lemma 5.6.5(2,3).

(3) () (7): follows from the equivalence of claims (1) and (2) in proposition 4.5.9

together with lemma 5.6.5(2,3).

(3) () (8): follows from the equivalence of claims (1) and (3) in proposition 4.5.9

together with lemma 5.6.5(2,3). 2

The proof of the following theorem presents the Buchberger algorithm for constructing

d-Gr�obner bases.

Theorem 5.6.10 (Construction of left d-Gr�obner bases)

Let S = KfX1; : : : ; Xn;Q;Q
0g be a solvable polynomial ring, with respect to an admissible

�-compatible ordering, over a �eld K and with a grading  on S, with given computable

weights, which is homogeneity compatible with � and compatible with <. For any �nite

F � S of homogeneous polynomials one can construct a left (right) d-Gr�obner base G of

ideall(F )(0; d) (idealr(F )(0; d)).

Proof: We give an algorithm which computes a left d-GB in table 5.1. If we replace the

left normalform algorithm LNF by the right normalform algorithm RNF we obtain the

algorithm RHGB for the computation of a right d-Gr�obner base.

Correctness follows from theorem 5.6.9(7), since upon termination all S-polynomials in

S(0; d) reduce to zero. Termination follows from Dickson's lemma 3.1.1. 2
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Algorithm: LHGB(F; d)

Input: F = ff1; : : : ; fkg � S with each fi homogeneous, d 2 N.

Output: A left d-Gr�obner base G of ideall(F )(0; d).

begin G F .

B  f(f; g) : f; g 2 F; f 6= gg.

while B 6= ; do Let (f; g) 2 B.

B  B n f(f; g)g.

if 0 � (lcm(HT(f);HT(g))) < d

then h0  LSP(f; g).

h LNF(h0; G).
if h 6= 0

then B  B [ f(p; h) : p 2 Gg.
G G [ fhg end.

end.
end.

return(G).

end LHGB.

Table 5.1: Algorithm: LHGB

5.7 Modules over Solvable Polynomial Rings

In this section we consider free left (right, bi) modules over solvable polynomial rings.
Again we remark, that the results of this section also hold for right and bi-modules over
solvable polynomial rings with the respective modi�cations.

Let S = KfX1; : : : ; Xn;Q;Q
0g be a solvable polynomial ring, with respect to an admissible

�-compatible ordering, over a �eld K. LetM = Sm be a free left S-module with canonical
basis u1; : : : ; um. First we need to introduce some notation about generating sets of

submodules.

De�nition 5.7.1 Let M be a R-module. We say a left (right, two-sided) sub module is

generated by a set N , N �M if it is of the form:

modulel(N) = f
X
i2�

riai : ri 2 R; ai 2 N;� �nite g;

respectively moduler(N) = f
P

i2� airi : ri 2 R; ai 2 N;� �nite g, modulet(N) =

f
P

i2� riaisi : ri; si 2 R; ai 2 N;� �nite g. If N = fa1; : : : ; ang � M is �nite, then we

write also modulel;r;t(a1; : : : ; an) for modulel;r;t(N).

We can ask the same questions as for polynomial rings: Let N = modulel(a1; : : : ; ak) be
a left submodule of M generated by a1; : : : ; ak,
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given a 2 M , is a 2 N ?

given a �nite generating set of a submodule N , is there a canonical basis for

N ?

The questions are answered using the method of partial Gr�obner bases form section 5.6.

To apply these we need some preparations.

In the commutative case, where S = K[X1; : : : ; Xn], we can embed the free module

M = Sm = module(u1; : : : ; um) into a polynomial ring with m additional variables:

Sm ,! S[Y1; : : : ; Ym] = K[X1; : : : ; Xn; Y1; : : : ; Ym] = Snm

ui 7! Yi 1 � i � m:

With the restriction of the multiplication in Snm to polynomials from S with polynomials
from Snm. Moreover there are several ways to order the variables, e.g. Xi < Yj, Yj < Xi

or according to some `weights'. This way has been persued e.g. by [M�oller, Mora 1986].
There is also a way proposed by [Armbruster, Kredel 1986] where the embedding into an

extended polynomial ring is not required.

In the non-commutative case we can also embed a solvable polynomial ring S =

KfX1; : : : ; Xn;Q;Q
0g into an extended solvable polynomial ring

Snm = KfX1; : : : ; Xn; Y1; : : : ; Ym;Qnm; Q
0
nmg:

In this case we have to specify commutator relations between the Xi and the Yj: the Y
0s

commute with each other and with all X 0s and with all coeÆcients. By lemma 3.3.7 this

ensures that Snm is really a solvable polynomial ring.

Furthermore we must de�ne a grading  on Snm such that  is homogeneity compatible
with respect to �. As suggested by example 5.6.4 we do this by de�ning (Xi) = 0 for
1 � i � n, (a) = 0 for 0 6= a 2 K and (Yj) = 1 for 1 � j � m. Then clearly

(f � g) = 0 = (f) + (g) for all 0 6= f; g 2 S. Also for homogeneous elements

0 6= u; v 2 Snm, u � v is homogeneous, since all Y 0s commute with the X 0s and with each

other. So we have proved

Lemma 5.7.2 Let S = KfX1; : : : ; Xn;Q;Q
0g be a solvable polynomial ring over a �eld

K with commutator relations Q, Q0 and a �-compatible term order <. Then there exists

an extended solvable polynomial ring

Snm = KfX1; : : : ; Xn; Y1; : : : ; Ym;Qnm; Q
0
nmg

and a grading , which is homogeneity compatible with respect to �, such that the free left

module Sm can be embedded into Snm

Sm ,! Snm

fui 7! fYi f 2 S; 1 � i � m:
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More precisely we have

Sm �= fg 2 Snm : (g) = 1g [ f0gX
1�i�m

fiui 7!
X

1�i�m

fiYi;

with (fi) = 0 for fi 2 S and (Yj) = 1 for 1 � i � m.

As usual we will identify Sm with its image in Snm. Now all results of partial reductions

are available for free left modules over solvable polynomial rings.

In particular for �nite subsets N of Sm there exists a left submodule Gr�obner base G of
modulel(N), since by theorem 5.6.9 for homogeneous left ideals there exists a left partial
1-Gr�obner base for N in Snm.

Furthermore we can �nd bases for the modules of syzygies for a left submodule of Sm,

since we can apply a partial version of the algorithm which generates the left module of
syzygies for a solvable polynomial ring.

Combining all this methods, we can also �nd resolutions (free resolutions if they exist,
or resolutions up to a given bound) for left modules over solvable polynomial rings by

iterating the computation of modules of syzygies.

5.8 Subalgebra Bases

In this section we consider subalgebras of solvable polynomial rings. Let S =
KfX1; : : : ; Xn;Qg be a solvable polynomial ring, where the coeÆcients commute with

the variables, with respect to an admissible �-compatible ordering, over a commutative

�eld K.

As with Gr�obner bases in the case of ideals in S we look for canonical bases F for

subalgebras R of S. That means bases, such that for a suitable reduction relation f 2 R

if and only if f �!�
F 0.

In the commutative case there are three approaches:

1. the tag variable method of [Shannon, Sweedler 1988],

2. the term rewriting method of [Kapur, Madlener 1989] and

3. the standard representation method of [Robbiano, Sweedler 1988].

The tag variable method can be used to determine subalgebra membership by ordinary

reduction (wrt. Gr�obner Bases) of suitable ideals. This method can not be carried over

to solvable polynomial rings since it requires, that the ordering of the tag variables can

be changed deliberately. This in turn requires that the tag variables commute with the
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other variables, which is not the case. More precisely an examination of the respective

proofs show that for tag variables t1; : : : ; tm a homomorphism �:

K[X1; : : : ; Xn; t1; : : : ; tm] �! K[X1; : : : ; Xn]

ti 7! fi 1 � i � m

is required, where f1; : : : ; fm denote the generators of the subalgebra. Now � is a homo-

morphism between solvable polynomial rings if and only if the ti and the fi satisfy the

same commutator relations. So

Xj � ti = tiXj +Xj � fi � fi �Xj (�)

must hold. This in general does not de�ne commutator relations for the ti which satisfy
axioms 3.2.1(3). This follows since the term order must be choosen such that ti < Xj, in

turn this requires that we have Xj � fi� fi �Xj < Xj, which is obviously not guaranteed
for arbitrary polynomials fi.

However the tag variable method can still be applied to determine subalgebra bases for
the center of a solvable polynomial ring, provided a set of generators for the center is

given. Or it can be applied if the commutator relations (�) for the newly introduced
variables can be satis�ed for a particular set of generators.

The latter two methods have the disadvantage, that the constructed subalgebra bases may
not be �nite. More precisely the existence of a �nite (canonical) subalgebra base depends

on the term order, and there are subalgebras which do not have �nite (canonical) subalge-
bra bases with respect to any term order. However this methods can (to a certain extend)
be carried over to solvable polynomial rings. Unfortunately the completion procedure for

the construction of subalgebra bases is only �nite for �xed degree bounds. It provides
therefore not a decision procedure for subalgebra membership as in certain commutative

cases. It provides only a semi-decision procedure, in the sense, that if some polynomial

is an element of a subalgebra, then a subalgebra base can be constructed, such that this
polynomial reduces to zero wrt. this base.

The methods 2 and 3 rely both on the possibility to �nd algorithmically positive solutions

of linear diophantine equations. There are several works on this topic, but we include
only one reference to [Clausen, Fortenbacher 1989] which should be generally available;

for further references see also the above cited articles.

To proceed we need �rst some de�nitions, then we discuss a suitable reduction relation,

standard representations and �nally the subalgebra base construction.

De�nition 5.8.1 Let F � S, with F = ffigi2�. Let f = fj1 �fj2 � : : :�fjk be a word with

ji 2 � for 1 � i � k. Let Jf = fjig1�i�k (Jf is called an indexed set), then we de�ne

�Y
J

F = F �
J =

�Y
Jf

F = fj1 � fj2 � : : : � fjk :
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For l 2 � let el = el(Jf) = jfi : l = ji; ji 2 Jfgj. Then let ` = jJf j and let E = E(Jf) =

(e1(Jf); : : : ; e`(Jf )) and de�ne for the commutative product of the fj

FE =
Y
FE =

Y
FE(Jf ) =

Y
FE(J) = f e11 � : : : � f

e`
` :

As usual the empty products are de�ned to be 1, F �
; = F ; = 1.

Q�
J F and FE will be our preferred notation.

De�nition 5.8.2 Let F � S be a subset of S. We denote the K-subalgebra of S gener-

ated by F by

subalg(F ) = KhF i = f
X
i2�0

ai

�Y
Ji

F : ai 2 K;�
0; Ji �nite g:

We denote subalg(F ) also by K-subalg(F ) if we want to indicate the dependence on the

�eld K.

In other words we have K � subalg(F ) and if f; g 2 subalg(F ) then f � g and f � g 2
subalg(F ).

Lemma 5.8.3 Let F be a �nite subset of S, let J be an indexed set and let E = E(J).
Then there exists 0 6= c 2 K and h 2 S such that

�Y
J

F = c
Y
FE + h;

with h < HT(
Q
FE). In particular HT(

Q�
J F ) = HT(

Q
FE).

Proof: By induction on jJ j using the product lemma 3.2.5. 2

5.8.1 Subalgebra Reduction

Recall that reduction of a term t from a polynomial f means, that a suitable multiple

of some other polynomial is subtracted from f , such that the term t disappears in the

di�erence. In case of subalgebra reduction we have the diÆculty that we must represent
such a term as the head term of a product of some polynomials from the subalgebra.

The determination of such suitable polynomials can be done by solving systems of linear
diophantine equations generated by the required relations between the exponents of the

head terms of the involved polynomials. We de�ne now a suitable reduction relation in

subalgebras and discuss the decidability and computability of such a reduction relation.

De�nition 5.8.4 (Subalgebra Reduction) S be a solvable polynomial ring, let F =
ffigi2� be a subset of S and let t 2 T . Then �!t;F � S � S denotes a subalgebra

reduction relation if
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for f; f 0 2 S, t 2 T (f) with f �!t;F f
0, there exists

1. a �nite subset Ft � F with Ft = ffj : 1 � j � lg, l � 0, and

2. an indexed set Jt = fji : 1 � ji � l; i 2 �g, such that t = HT(
Q�
Jt
Ft),

3. and 0 6= a 2 K such that coe�(t; f) = a coe�(t;
Q�
Jt
Ft)

and

f 0 = f � a
�Y
Jt

Ft:

By the product lemma 3.2.5 and the construction t 62 T (f 0). If for certain f , t no such

Ft exists, then t in T (f) is called irreducible. Ft is called a reduction set for t. We

furthermore de�ne

f �!F g if for some t 2 T : f �!t;F g.

Since a�
Q�
Jt
Ft 2 subalg(F ) we see that f�f 0 2 subalg(F ). Note furthermore that Jt = ;

is allowed, so elements of the ground �eld K can always be reduced to zero.

Furthermore note, that any permutation � 2 S` of

f�(i1) � : : : � f�(i`)

of the polynomials in the word fi1 � : : :�fi` with ` = jJtj could be taken for the subalgebra
reduction. (S` the group of permutations of a set of ` elements.)

Instead of the de�nition `f �!t;F g if for some t 2 T : f �!t;F g' it would be suÆcient
for our purposes, to add the restriction such that for no t0 2 T with t0 > t f �!t0;F g. In

other words a term t would be selected for reduction only if no t0 with bigger head term
could be taken. But matters will not be much more complicated, so we stay with the �rst
de�nition.

The other concepts like irreducibility and the reexive and transitive closure of the subal-
gebra reduction relation are de�ned as for (abstract) reduction relations (cf. 4.1.1). Also

autoreduced bases are de�ned as in the ideal case.

Lemma 5.8.5 Let S be a solvable polynomial ring, let F = ff1; : : : ; fmg be a �nite subset

of S and let t 2 T . Then there exists an algorithm which determines if t is subalgebra

reducible with respect to F .

Proof: Let S have n variables X1; : : : ; Xn and let t = Xet1
1 : : :Xetn

n . Furthermore let the

set of head terms of F be fti = Xei1
1 : : :Xein

n : ti = HT(fi); 1 � i � m g.

Then by de�nition 5.8.4 t is subalgebra reducible with respect to F if there exists natural

numbers d1; : : : ; dm, such that t =
Q
i=1;:::;m t

di
i . Comparing exponents of equal variables

this condition leads to a set of n linear diophantine equations for the di:X
i=1;:::;m

eijdi = etj; 1 � j � n:
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Together with the conditions 0 � di � e; 1 � i � m where e = maxfetj : 1 � j � ng.

Now using an algorithm which can solve the problem of positive solutions of linear dio-

phantine equations (see e.g. [Clausen, Fortenbacher 1989]) we can solve the subalgebra

reduction problem. 2

Note, that the problem for �nding the di's (1 � i � n) in the conditions in the above proof,

is a special instance of the so called `knapsack problem'. Both the `linear diophantine

equations' and the `knapsack' problems are known to be NP-complete. For a survey on

NP-complete problems see e.g. [Garey, Johnson 1978].

Lemma 5.8.6 Let S be a solvable polynomial ring with a �-compatible admissible term

order <. Then for every subset F � S the reduction relation �!F is Noetherian.

Proof: First by de�nition of the reduction relation f �!t;F g this says, that g =
f � a

Q�
Jt
Ft for some 0 6= a 2 K and a reduction set Ft. Furthermore t = HT(

Q�
Jt
Ft)

by the product lemma 3.2.5, so any new term in g is smaller than t in the quasi-order
induced by the term order <. This implies that f > g and then the claim follows by the

well-ordering of >. 2

Lemma 5.8.7 Let F � S. Then for any �nite subset F 0 = ff1; : : : ; fkg of F and any

�nite indexed set J there exists a subalgebra reduction

�Y
J

F 0 �!t;F 0

where t 2 T is the head term of
Q�
J F

0. Moreover if F is �nite, such a reduction can be

found in a �nite number of steps.

Proof: By proposition 3.2.5 we have p =
Q�
J F

0 = cF 0E+h = cq+h with t = HT(
Q�
J F

0) =

HT(F 0E). This shows, that there exists a subset Ft of F and a indexed set Jt (namely

Ft = F 0 and Jt = J) such that t is reducible. Then with a = 1 we have coe�(t; p) =

a � coe�(t; p) and so cq + h� (a � p) = 0 as claimed.

To construct such Ft and Jt we may examine all subsets of the �nite set F to determine
�rst all �nitely many possible solutions of t = HT(F 0E) by an algorithm for the solution of

linear diophantine equations. Then we may check all J 0 such that E = E(J 0) if subalgebra

reduction to zero is possible. 2

The following two important lemmas deal with properties of sums of polynomials under
reductions.

Lemma 5.8.8 Let f; g; h; f 0; g0; h0 2 S, F � S. If f = g + h and h �!�
F h0 then there

exist f 0 and g0 such that f �!�
F f

0, g �!�
F g

0 and f 0 = g0 + h0.
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Proof: The proof is similar to the proof of lemma 4.2.5. Let h �!�
F h0 be equal to

h �!k
F h0 for some k 2 N. The proof is by induction on k. For k = 0 let f 0 = f and

g0 = g.

For k > 0 let h �!k
F h0 be equal to h �!k�1

F h00 �!t;F h0. For some t 2 T (h00) and

reduction set Ft. By induction assumption there exist polynomials f 00, g00 with f �!k�1
F

f 00, g �!k�1
F g00 such that f 00 = g00 + h00. Let h0 = h00 � c � p for p =

Q�
Jt
Ft and

some c 2 K with t = HT(p) and coe�(t; h00) = c � coe�(t; p). Let c1; c2 2 K such that

coe�(t; f 00) = c1 � coe�(t; p) and coe�(t; g00) = c2 � coe�(t; p) (possibly c1 = 0 or c2 = 0).

Let f 0 = f 00 � c1 � p, g
0 = g00 � c2 � p. This de�nes two reductions: f 00 �!t;F f 0 and

g00 �!t;F g
0. Since f 00 = g00 + h00 we have c1 = c2 + c and so f 0 = g0 + h0. By construction

and induction assumption f �!k�1
F f 00 �!t;F f

0 and g �!k�1
F g00 �!t;F g

0, which proves
the lemma. 2

For the special case h0 = 0 we have f 0 = g0, i. e. f #F g:

Lemma 5.8.9 Let f; g 2 S, F � S. If f � g �!�
F 0 then f #F g.

5.8.2 Reductions and Subalgebra Membership

In this subsection we will show, that reductions do not lead outside a subalgebra and give

algorithms for subalgebra reduction.

Lemma 5.8.10 Let f; g 2 S, F � S. If f  !�
F g then f � g 2 subalg(F ).

Proof: Let f  !�
F g be equal to f  !k

F g for some k 2 N. The proof is by induction

on k. For k = 0, g = f and f � g = 0 2 subalg(F ).

For k > 0 let f  !k
F g be equal to f  !

k�1
F fk�1  !F fk = g. By induction assumption

f�fk�1 2 subalg(F ). Now fk�1 �!t;F g or g �!t;F fk�1 for some reduction set Ft. Thus
g = fk�1 � a � p or fk�1 = g � a � p for some a 2 K and some t 2 T , p =

Q�
Jt
Ft. In

both cases fk�1� g = �a� p 2 subalg(F ). In combination with the induction assumption

f � g = (f � fk�1) + (fk�1 � g) 2 subalg(F ) which proves the lemma. 2

Lemma 5.8.11 Let F be a subset of S. For all f; g 2 S, if f � g 2 subalg(F ) then there

exists a subalgebra reduction f  !�
F g.

Proof: If f � g 2 subalg(F ) then by de�nition f � g =
Pk

i=1 ci �
Q�
Ji
Fi, where ci 2 K

and Fi � F for 1 � i � k.

We prove f  !�
F g by induction on k. For k = 0, f = g and the claim is trivial. For

k > 0 let

f � g0 = f � (g +
k�1X
i=1

ci �
�Y
Ji

Fi) = ck �
�Y
Jk

Fk:
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By lemma 5.8.7 there exists a subalgebra reduction ck�
Q�
Jk
Fk �!F 0 and by lemma 5.8.9

f #F g0, that is f  !�
F g0. Now g0 � g =

Pk�1
i=1 ci �

Q�
Ji
Fi and by induction assumption

g0  !�
F g. Combining both results we get f  !�

F g. 2

Next we give an algorithm which computes a subalgebra normal form.

Lemma 5.8.12 Let S be a solvable polynomial ring over a computable �eld and with

decidable term order. For any �nite F � S and any f 2 S one can compute g 2 S such

that

1. f �!�
F g and f � g 2 subalg(F ).

2. g is subalgebra irreducible modulo F .

Proof: We give an algorithm which computes g in table 5.2.

Algorithm: SRNF (f; F )
Input: f 2 S and F = ff1; : : : ; fkg � S.
Output: g 2 S satisfying the conditions (1) and (2) of the lemma.

begin g  f .
while exists Ft; Jt for some t 2 T (g) do

h 
Q�
Jt
Ft.

c coe�(t; h).
g  g � c�1 � h.

end.
return(g).

end SRNF .

Table 5.2: Algorithm: SRNF

Ft denotes a reduction set of t and Jt denotes an indexed set such that t = HT(h) =Q�
Jt
HT(F ). Partial correctness then follows from the de�nition of reduction.

Termination: Let fgigi=0;1;::: be the sequence of reduction vectors with g0 = f . Let

gi+1 = gi � a
�1
i � hi be an immediate reduct of gi. Then we have gi+1 < gi. Since < is a

well-founded quasi-order on S the reduction sequence must be �nite fgigi=0;1;:::;k. 2

Note that the lemma is also true if F is an in�nite set of polynomials such that for each

t 2 T there are only �nitely many polynomials in F with head term equal to t. This

holds, since there are only �nitely many divisors of a term t and consequently we need

only consider the �nite set of polynomials with these divisors as head terms. However

this would require an algorithm which determines such a �nite set of polynomials in a

�nite number of steps. See [Robbiano, Sweedler 1988] for further discussion of reductions

by in�nite sets. If there are in�nitely many polynomials with the same head term, then

the lemma does not hold.
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As in the case of polynomial ideals, there is an algorithm to compute an autoreduced and

monic subalgebra base, where the concepts are de�ned as in the ideal case.

Lemma 5.8.13 Let S be a solvable polynomial ring over a computable �eld and with

decidable term order. For any �nite F � S one can compute G � S such that

1. subalg(F ) = subalg(G),

2. G is autoreduced and monic.

Proof: As in the ideal case. 2 The algorithm will be called SRIRRSET .

5.8.3 Standard Representations

De�nition 5.8.14 Let F � S, f 2 subalg(F ). A representation

f =
kX
i=1

ci

�Y
Ji

Fi;

with ci 2 K, Fi � F (�nite), for all 1 � i � k is called a standard representation with

respect to F if for all 1 � i � k the following condition is satis�ed:

HT(
�Y
Ji

Fi) � HT(f):

The next lemma shows, that standard representations are preserved under multiplication.

Lemma 5.8.15 Let F be a subset of S, let f 2 F and g =
Q�
Jg
F 2 S. If f has a standard

representation wrt. F , then g � f and f � g have a standard representation wrt. F .

Proof: We show only the case g � f . Let f =
Pk

i=1 ci
Q�
Ji
Fi be a standard representation

of f , with ci 2 K, Fi � F and HT(
Q�
Ji
Fi) � HT(f) for all 1 � i � k. Then

g � f =
kX
i=1

g � ci

�Y
Ji

Fi:

Now the coeÆcients commute with the variables, so g � ci = cig. This shows that

g � f =
kX
i=1

cig �
�Y
Ji

Fi =
kX
i=1

ci

�Y
Jg

F �
�Y
Ji

Fi =
kX
i=1

ci

�Y
J 0

i

F 0
i :

Since
Q�
Jg
F � HT(g) and

Q�
Ji
Fi � HT(f) we have

Q�
J 0

i
F 0
i � HT(gf). This shows that

g � f has a standard representation wrt. F as claimed. The case f � g is proved similarly.
2
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Lemma 5.8.16 Let F be a subset of S and let f 2 S. If f �!�
F 0, then f has a standard

representation wrt. F .

Proof: Let f �!k
F 0 for some k 2 N. We proceed by induction on k. For k = 0 we have

f = 0 as standard representation.

For k > 0 let f �!F g �!k�1
F 0. Assume by induction assumption g has standard

representation g =
Pk

i=1 ci
Q�
Ji
Fi, with ci 2 K, Fi � F , for all 1 � i � k. By de�nition of

the reduction relation there exists t 2 T (f) such that we have f �!t;F g = f � c
Q�
Jt
Ft

with t = HT(
Q�
Jt
Ft). So t � HT(f) and

f = c
�Y
Jt

Ft +
kX
i=1

ci

�Y
Ji

Fi

is a standard representation of f wrt. F . 2

Lemma 5.8.17 Let F be a subset of S, let subalg(F ) be the subalgebra generated by F

and let f 2 subalg(F ). If all g 2 subalg(F ) have a standard representation wrt. F then

f �!�
F 0.

Proof: Since f 2 subalg(F ), f has a standard representation wrt. F : f =
Pk

i=1 ci
Q�
Ji
Fi,

with ci 2 K, Fi � F for all 1 � i � k. Let It = It(f) = fi : 1 � i � k;HT(
Q�
Ji
Fi) = tg.

We proceed by noetherian induction on t = HT(f) and jItj. Case f = 0, then trivially
f �!�

F 0.

Case f 6= 0, t = HT(f). Now It 6= ; since the representation is standard. Pick l 2 It,
and de�ne a reduction f �!t;F g by g = f � c

Q�
Jl
Fl, where 0 6= c 2 K such that

coe�(t; f) = c coe�(t;
Q�
Jl
Fl). Now HT(g) < HT(f) or jIt(g)j < jIt(f)j, by construction

g 2 subalg(F ) and so by induction assumption g �!�
F 0. Combining both reductions we

obtain f �!t;F g �!
�
F 0 as claimed. 2

Proposition 5.8.18 Let F be a subset of S, let subalg(F ) be the subalgebra generated by

F . Then the following two conditions are equivalent:

1. For all f 2 subalg(F ), f �!�
F 0.

2. All f 2 subalg(F ) have a standard representation wrt. F .

Proof: =) Let f 2 subalg(F ), then by assumption f �!�
F 0 and by lemma 5.8.16 f has

a standard representation wrt. F .

(= Let f 2 subalg(F ), by assumption all g 2 subalg(F ) have a standard representation

wrt. F . So by lemma 5.8.17 f is reducible to zero: f �!�
F 0. 2
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5.8.4 Superposition Polynomials

In analogy to S-polynomials in ideal theory we de�ne now superposition polynomials.

De�nition 5.8.19 Let F be a subset of a solvable polynomial ring S. The superposition

polynomials are de�ned as

SUP-POL(F ) = f p1 � cp2 : p1; p2 2 S; p1 =
�Y
J1

F1; p2 =
�Y
J2

F2; F1 � F; F2 � F;

HT(p1) = HT(p2); HC(p1) = cHC(p2); 0 6= c 2 K; g:

The superposition indexes are de�ned as

SUP-IDX(F ) = f (J1; J2) : p1 � cp2 2 SUP-POL(F ); p1 =
�Y
J1

F1; p2 =
�Y
J2

F2 g:

The superposition exponents are de�ned as

SUP-EXP(F ) = f (e1; e2) : p1 � cp2 2 SUP-POL(F ); p1 =
�Y
J1

F1; p2 =
�Y
J2

F2;

e1 = E(J1); e2 = E(J2) g:

We will continue to call the elements of SUP-POL(F ) S-polynomials.

Note that by construction SUP-POL(F ) � subalg(F ). Furthermore for p = p1 � cp2 2

SUP-POL(F ) we have by construction HT(p) < HT(p1) = HT(p2).

Lemma 5.8.20 Let F be a subset of S, let subalg(F ) be the subalgebra generated by F .

Furthermore let H = SUP-POL(F ). Then the following assertions are equivalent:

1. all f 2 subalg(F ) have a standard representation wrt. F ,

2. all h 2 H have a standard representation wrt. F .

Proof: =) Since for h 2 H we have h 2 subalg(F ), so h has a standard representation
wrt. F .

(= Let f 2 subalg(F ) we may assume that f has a representation wrt. F :

f =
kX
i=1

ci

�Y
Ji

Fi;

with ci 2 K, Fi � F for all 1 � i � k. Let s = HT(f) and let t 2 T with t =
maxfHT(

Q�
Ji
Fi) : 1 � i � k g, where the maximum is taken with respect to the term

order on T . Let It = f i : 1 � i � k;HT(
Q�
Ji
Fi) = t > s g. We show by noetherian
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induction on t and on jItj, that the representation can be transformed to a standard

representation. Case t = s, then jItj = ; and we have already a standard representation.

Case t > s, then since t 62 T (f), we have jItj � 2. Assume by induction, that the claim

holds for all t0 with t > t0 � s and I 0t with jI
0
tj < jItj. Let m;n 2 It, m 6= n, I 0t = It n fmg.

Then consider cm
Q�
Jm
Fm + cn

Q�
Jn
Fn from the representation of f . Note that we have

HT(
Q�
Jm
Fm) = HT(

Q�
Jn
Fn) = t. So by de�nition of the elements of H = SUP-POL(F ),

there exists 0 6= c 2 K such that h =
Q�
Jm
Fm � c

Q�
Jn
Fn 2 H. So we can write

cm

�Y
Jm

Fm + cn

�Y
Jn

Fn = cm(
�Y
Jm

Fm � c
�Y
Jn

Fn) + (cn � ccm)
�Y
Jn

Fn:

Now by assumption h has a standard representation wrt. F , say h =
Pk0

i0=1 ci
Q�
J 0

i
F 0
i . So

we can rewrite f as

f = cm

�Y
Jm

Fm + cn

�Y
Jn

Fn +
kX

i6=n;m

ci

�Y
Ji

Fi

= cm(
�Y
Jm

Fm � c
�Y
Jn

Fn) + (cn � ccm)
�Y
Jn

Fn +
kX

i6=n;m

ci

�Y
Ji

Fi

=
k0X
i0=1

cmc
0
i

�Y
J 0

i

F 0
i + (cn � ccm)

�Y
Jn

Fn +
kX

i6=n;m

ci

�Y
Ji

Fi

For this representation we have now jI 0tj � jItj � 1 since t > HT(h) � HT(
Q�
J 0

i
F 0
i ) for

1 � i0 � k0. Now by induction assumption we can �nd a standard representation for f

which completes the proof. 2

Proposition 5.8.21 Let F be a subset of S and let subalg(F ) be the subalgebra generated
by F . Then the following assertions are equivalent:

1. for all f 2 subalg(F ), f �!�
F 0,

2. for all h 2 H = SUP-POL(F ), h �!�
F 0.

Proof: (1) =) (2): Since for h 2 H we have h 2 subalg(F ) and by assumption h �!�
F 0.

(2) =) (1): By assumption all h 2 H, h �!�
F 0. By lemma 5.8.16 this implies that

all h 2 H have a standard representation wrt. F . By lemma 5.8.20 this implies that all

f 2 subalg(F ) have a standard representation wrt. F . So by lemma 5.8.17 f is reducible
to zero: f �!�

F 0. 2

5.8.5 Generation of Superposition Polynomials

De�ne the concatenation operation `k' on indexed sets J as follows:
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De�nition 5.8.22 Let J1; J2 be indexed sets. With J1 = fji1g1�i1�k1, J2 = fji2g1�i2�k2
and k1; k2 2 N. Then de�ne the concatenation J = J1kJ2 as J = fjig1�i�k with

ji =

(
ji1 ; i = i1; 1 � i1 � k1
ji2 ; i = k1 + i2; 1 � i2 � k2

;

where k = k1 + k2.

Observe that k is associative and that ; is the neutral element with respect to k. So the

set J of indexed sets J forms a non-commutative monoid. In particular SUP-IDX(F ) the

set of superposition indexed pairs is closed under component wise concatenation and so

also forms a non-commutative monoid. This suggests the following de�nition

De�nition 5.8.23 Let F � S. A generating set for the critical indexed sets is a subset

B = SUP-IDX-BASE(F ) of I = SUP-IDX(F ), such that for every (J1; J2) 2 I there exist

(J1j; J2j) 2 B, 1 � j � k with

(J1; J2) = (J11; J21)k : : : k(J1k; J2k);

where k denotes the component wise concatenation.

De�nition 5.8.24 Let F � S. The indexed generating superposition polynomials of F

are de�ned as

SUP-IDX-POL-BASE(F ) = f p1 � cp2 2 SUP-POL(F ) : p1 =
�Y
J1

F; p2 =
�Y
J2

F;

(J1; J2) 2 SUP-IDX-BASE(F ) g:

We will continue to call the elements of SUP-IDX-POL-BASE(F ) S-polynomials.

Note that by construction SUP-IDX-POL-BASE(F ) � SUP-POL(F ) � subalg(F ).

Lemma 5.8.25 Let F be a subset of S and let subalg(F ) be the subalgebra generated by

F . If all h 2 SUP-IDX-POL-BASE(F ) have a standard representation wrt. F , then all

g 2 SUP-POL(F ) have a standard representation wrt. F .

Proof: Let g 2 SUP-POL(F ). Then we have g = p1� cp2 with p1 =
Q�
J1
F1, p2 =

Q�
J2
F2,

HC(p1) = c HC(p2), HT(p1) = HT(p2), p1; p2 2 S, 0 6= c 2 K and (J1; J2) 2 SUP-IDX(F ).

Now SUP-IDX(F ) is generated by B = SUP-IDX-BASE(F ), which means that there

exists there exist (J1j; J2j) 2 B, 1 � j � k with (J1; J2) = (J11; J21)k : : : k(J1k; J2k). Let
hj = q1j � cjq2j 2 SUP-IDX-POL-BASE(F ) with q1j =

Q�
J1j
F1j, q2j =

Q�
J2j
F2j. By

assumption each element hj of SUP-BASE(F ) has a standard representation

hj =
�Y
J1j

F1j � cj

�Y
J2j

F2j =
X

lj=1;:::;kj

dlj

�Y
Jlj

Flj :
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So we write
�Y
J1

F1 =
�Y

j=1;:::;k

(
�Y
J1j

F1j)

=
�Y

j=1;:::;k

�
cj

�Y
J2j

F2j +
X

lj=1;:::;kj

dlj

�Y
Jlj

Flj

�

=
�Y

j=1;:::;k

�
cj

�Y
J2j

F2j

�
+

�Y
j=1;:::;k

� X
lj=1;:::;kj

dlj

�Y
Jlj

Flj

�

= c0
�Y
J2

F2 +
X

l=1;:::;k0

dl

�Y
Jl

Fl:

Since the term order is multiplicative on the head terms, we see that HT(
Q�
J2
F2) >

HT(
P

l=1;:::;k0 dl
Q�
Jl
Fl). Furthermore since the head monomials in

Q�
J1j
F1j � cj

Q�
J2j
F2j

cancel and the coeÆcients commute with the variables, we must also have that the head
monomials in

Q�
J1
F1 � c0

Q�
J2
F2 cancel, which in turn implies that c = c0. Together

with lemma 5.8.15 this shows that
P

l=1;:::;k0 dl
Q�
Jl
F is a standard representation of g =Q�

J1
F1 � c

Q�
J2
F2, which completes the proof. 2

So we get the following improvement of proposition 5.8.21.

Proposition 5.8.26 Let F be a subset of S and let subalg(F ) be the subalgebra generated

by F . Then the following assertions are equivalent:

1. for all f 2 subalg(F ), f �!�
F 0,

2. for all h 2 H = SUP-IDX-POL-BASE(F ), h �!�
F 0.

Proof: (1) =) (2): Since for h 2 H we have h 2 subalg(F ) and by assumption h �!�
F 0.

(2) =) (1): By assumption for all h 2 H, h �!�
F 0. By lemma 5.8.16 this implies that

all h 2 H have a standard representation with respect to F . By lemma 5.8.25 this implies
that all f 2 SUP-POL(F ) have a standard representation wrt. F . and so by lemma 5.8.20

this implies that all f 2 subalg(F ) have a standard representation wrt. F . So by lemma

5.8.17 f is reducible to zero: f �!�
F 0. 2

The next question is: can the set of required S-polynomials be reduced even further ? We

show next, that a set of `commutative' S-polynomials (as de�ned below) is not suÆcient

as S-polynomials.

Let D = SUP-EXP(F ). As for indexed sets we see that if (e1; e2); (d1; d2) 2 D and � 2 N

then also (e1+d1; e2+d2) 2 D (by component-wise addition) and � (e1; e2) = (�e1; �e2) 2
D. This suggests the following de�nition

De�nition 5.8.27 Let F � S. A generating set for the superposition exponents is a

subset D = SUP-EXP-BASE(F ) of D0 = SUP-EXP(F ), such that for every (e1; e2) 2 D
0

there exist (e1j; e2j) 2 D and �j 2 N for 1 � j � k with

(e1; e2) =
X

j=1;:::;k

�j(e1j; e2j):
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Note that by Dickson's lemma 3.1.1 D is �nite if F is �nite, since then D0 � N2jF j and

so there exists a Dickson base for D0.

De�nition 5.8.28 The generating superposition polynomials are de�ned as

SUP-EXP-POL-BASE(F ) = f p1 � cp2 2 SUP-POL(F ) :

p1 =
�Y
J1

F; p2 =
�Y
J2

F; e1 = E(J1); e2 = E(J2);

(e1; e2) 2 SUP-EXP-BASE(F ) g:

We will continue to call the elements of SUP-EXP-POL-BASE(F ) S-polynomials.

Note that by construction SUP-EXP-POL-BASE(F ) � SUP-IDX-POL-BASE(F ) �
SUP-POL(F ) � subalg(F ).

The following example shows, that in general SUP-IDX-POL-BASE(F ) can not be derived
from SUP-EXP-POL-BASE(F ).

Example 5.8.29 Let S be a solvable polynomial ring over a �eld K and let F � S with

F = ff1; f2; f3; f4; f5g. Assume that the polynomials do not commute with each other and

assume furthermore that

HT(f1 � f2) = HT(f4 � f5);

HT(f1) 6= HT(f4);

HT(f2) 6= HT(f5);

and that the variables in the head term of f3 do not occur in the head terms of the other

f1; f2; f4; f5. (E.g. HT(f1) = X2
1X2, HT(f2) = X1X

2
2 , HT(f3) = X3, HT(f4) = X1X

2
2 ,

HT(f5) = X2
1X2)

Then observe that for some 0 6= c; c0 2 K

f1 � f2 � cf4 � f5 2 SUP-EXP-POL-BASE(F );

f1 � f3 � f2 � c
0f4 � f3 � f5 62 SUP-EXP-POL-BASE(F );

f1 � f3 � f2 � c
0f4 � f3 � f5 2 SUP-IDX-POL-BASE(F ):

The second statement follows, since neither

f1 � c
00f4 2 SUP-IDX-POL-BASE(F ); nor

f2 � c
000f5 2 SUP-IDX-POL-BASE(F )

for some 0 6= c00; c000 2 K by construction of the head terms. This shows that there exist

elements of SUP-IDX-POL-BASE(F ) which can not be written as � products of elements

of SUP-EXP-POL-BASE(F ).
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Using some notations from section 5.6 on graded structures, we obtain a construction

method for SUP-POL(F ) up to any predescribed degree d 2 N. We will globaly assume,

that for a graded solvable polynomial ring S over a �eldK, with respect to a �-compatible

admissible term order < and with corresponding compatible grading , the

grading  has positive weights only.

This ensures that for any d 2 N, the set of terms ft 2 T : (t) � dg with degree less than

or equal to d is �nite. The �niteness of this set of terms is essential in the termination

proofs of the algorithms in the sequel.

De�nition 5.8.30 Let S be a graded solvable polynomial ring over a �eld K, with respect

to a �-compatible admissible term order < and with corresponding compatible grading .

Let F be a subset of S. Then for d 2 N

SUP-POL(F; d) = f p1 � cp2 : p1; p2 2 S; p1 =
�Y
J1

F1; p2 =
�Y
J2

F2; F1 � F; F2 � F;

HT(p1) = HT(p2); HC(p1) = cHC(p2); 0 6= c 2 K;

(HT(p1)) = (HT(p2)) � d g:

In slight abuse of notation the elements of SUP-POL(F; d) will be called S-polynomials of

degree d. (They are actually of degree less than or equal to d as polynomials.) Furthermore

let

SUP-IDX-POL-BASE(F; d) = SUP-IDX-POL-BASE(F ) \ SUP-POL(F; d):

Lemma 5.8.31 Let S be a graded solvable polynomial ring over a computable �eld K,

with respect to a �-compatible admissible and decidable term order < and with correspond-

ing compatible grading , with given positive weights. Let F = ff1; : : : ; fmg be a �nite

subset of S. Then there exists an algorithm which determines SUP-POL(F; d) and an

algorithm which determines SUP-IDX-POL-BASE(F; d) for any d 2 N.

Proof: The algorithm description for the construction of SUP-POL(F; d) is given in table

5.3.

In the very �rst step the elements of K are removed from F . This ensures that (f) � 1

for any f 2 F . This is required to ensure termination and is no loss of generality since
elements ofK are not necessary to construct S-polynomals. The construction is performed

in two steps

1. determination of SUP-EXP-BASE(F ),

2. multiplication of elements of F with elements of SUP-EXP-POL-BASE(F ), up to

degree d for the product and permutation of all polynomials in the corresponding
non-commutative product.
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Algorithm: SUPPOL(F; d)

Input: F = ff1; : : : ; fmg � S. d 2 N.

Output: H = SUP-POL(F; d) a set of S-polynomials up to degree d.
begin F  F nK.

D  a generating set for the solution of the systems of linear

diophantine equations from the head terms of the elements of F .
D0  f (e1; e2) 2 D : (HT(

Q
F e1)) � d g.

D  D0.
repeat

D00  f (e01; e
0
2) = (e1 + (Æij); e2 + (Æij)) : (e1; e2) 2 D

0;

(HT(fi
Q
F e1)) � d; fi 2 F; i = 1; : : : ; m g.

D  D [D00. D0  D00.
until D00 = ;.

J  
[

(e1;e2)2D

f (J1; J2) : E(J1) = e1; E(J2) = e2 g. J1; J2 indexed sets.

H  ;.

while J 6= ; do Let (J1; J2) 2 J .
J  J n f(J1; J2)g.
p1  

Q�
J1
F . p2  

Q�
J2
F .

c HC(p1)HC(p2)
�1.

H  H [ f p1 � cp2 g.

end.
return(H).

end SUPPOL.

Table 5.3: Algorithm: SUPPOL
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The �rst step (the second statement in algorithm 5.3) is solved as follows:

Let S have n variables X1; : : : ; Xn. Furthermore let the set of head terms of F be

fti = Xei1
1 : : :Xein

n : ti = HT(fi); fi 2 F; 1 � i � m g. Then by de�nition 5.8.19

(e1; e2) 2 SUP-EXP(F ) if there exist natural numbers �1; : : : ; �m1
and �1; : : : ; �m2

, such

that
Q
i=1;:::;m1

t
�i
i =

Q
i=1;:::;m1

t�ii . Comparing exponents of equal variables this condition

leads to a system of n linear diophantine equations for the �i; �i:X
i=1;:::;m1

eij�i �
X

i=1;:::;m2

dij�i = 0; 1 � j � n:

Together with the conditions 0 � �i; 1 � i � m1, 0 � �i; 1 � i � m2. Now using an

algorithm which can solve the problem of �nding positive solutions of linear diophantine
equations (see e.g. [Clausen, Fortenbacher 1989]) we can solve the S-polynomial construc-
tion problem.

The second step (the remaining statements in algorithm 5.3) is solved as follows:

Let H = SUP-EXP-POL-BASE(F ) \ SUP-POL(F; d). Now for every p 2 H, as long as
fp 2 SUP-POL(F; d) for some f 2 F nK let H = H [ ffpg. Since (also by assumtion on

the grading ) the degree of fp increases at least by 1 this process must terminate. This
implies, that H is �nite.

Let H 0 = ;. Now for all p 2 H, p = p1 � cp2 with p1 =
Q
F e1; p2 =

Q
F e2, and

for all permutations of the indexed sets J1; J2 with e1 = E(J1) and e2 = E(J2) let

p0 =
Q�
J1
F � c0

Q�
J2
F (0 6= c0 2 K appropriate) and let H 0 = H 0 [ fp0g. Since H is

�nite and the set of all permuations of �nite sets is �nite, this process terminates and
so H 0 is also �nite. Clearly H 0 � SUP-POL(F; d). Also every p 2 SUP-POL(F; d) is

of the form p = p1 � cp2 with (HT(p1)) � d and p1 =
Q�
J1
F with J1 determined as

in the construction of the elements of H 0. Finally, since SUP-POL(F; d) is �nite, the

subset SUP-IDX-POL-BASE(F; d) can be determined by examination of the elements of
SUP-POL(F; d). 2

5.8.6 Subalgebra Gr�obner Bases

We are going to give characterizations of conuent subalgebra reduction relations in a

solvable polynomial ring by subalgebra membership tests, standard representations and
S-polynomials.

De�nition 5.8.32 Let S be a solvable polynomial ring over a �eld K, with respect to a

�-compatible admissible term order <. Let F � S be a subset of S. If the subalgebra

reduction relation �!F satis�es one of the conditions of de�nition 4.1.4 then F is called

a subalgebra Gr�obner base. (Since �!F is Noetherian, by lemma 4.1.5 �!F satis�es all

conditions of de�nition 4.1.4.)

Theorem 5.8.33 Let S be a solvable polynomial ring over a �eld K, with respect to a �-

compatible admissible term order <. Let F be a subset of S, then the following assertions

are equivalent.
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1. F is a subalgebra Gr�obner base.

2. For all f; g 2 S, if f � g 2 subalg(F ) then f #F g.

3. For all f 2 subalg(F ), f �!�
F 0.

4. For all 0 6= f 2 subalg(F ), f �!F f
0.

5. For all 0 6= f 2 subalg(F ), there exists a reduction set Ft � F such that t = HT(f).

6. For all f 2 subalg(F ), f has a standard representation wrt. F .

7. For all h 2 H = SUP-POL-BASE(F ), h �!�
F 0.

8. For all h 2 H = SUP-IDX-POL-BASE(F ), h �!�
F 0.

Proof: (1) =) (2): Let f; g 2 S such that f � g 2 subalg(F ). Then lemma 5.8.11:
f  !�

F g. By (1) �!F has the Church-Rosser property, so f #F g.

(2) =) (3): Specialise g = 0 in (2).

(3) =) (1): We show that �!F is conuent. Let f; f1; f2 2 S such that f �!�
F f1

and f �!�
F f2, that is f1  !

�
F f2. By lemma 5.8.10 f1 � f2 2 subalg(F ) and by (3)

f1 � f2 �!
�
F 0. From this by lemma 5.8.9 f1 #F f2.

(3) =) (4): By de�nition of �!�
F .

(4) =) (3): Assume 0 6= f 2 subalg(F ) is minimal such that not f �!�
F 0. Now by (4)

f �!F f 0 with f 0 2 subalg(F ) by lemma 5.8.10. However by de�nition of f : f 0 �!�
F 0

and so f �!�
F 0 a contradiction.

(5) =) (4): By de�nition of subalgebra reduction.

(3) =) (5): Assume 0 6= f 2 subalg(F ) and let f �!k
F 0 for some k 2 N. Let 1 � m � k

minimal, and let g 2 F such that fm �!t;F fm+1 where t = HT(f). By de�nition of
reduction this shows that there exists a reduction set Ft.

(3)() (6): follows from the equivalence of claims (1) and (2) in proposition 5.8.18.

(3)() (7): follows from the equivalence of claims (1) and (2) in proposition 5.8.21.

(3)() (8): follows from the equivalence of claims (1) and (2) in proposition 5.8.26. 2

The proof of the following theorem presents the completion procedure (Buchberger algo-
rithm) for constructing subalgebra Gr�obner bases. It is known, that even in in the case of

commutative polynomial rings the completion procedure may not terminate (for a certain

term order < or even for all term orders <). For examples see [Robbiano, Sweedler 1988].
In case of subalgebras of solvable polynomial rings, the completion procedure terminates

for every degree bound d 2 N. However there is in general also no criterion for which d
the constructed subalgebra bases are in fact a subalgebra Gr�obner base.
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Theorem 5.8.34 (Construction of subalgebra Gr�obner bases) Let S be a graded

solvable polynomial ring over a computable �eld K, with respect to a �-compatible ad-

missible and decidable term order < and with corresponding compatible grading , with

given positive weights. For any �nite F � S and any degree d 2 N one can construct a

subalgebra base Gd, such that

1. G =
[
d2N

Gd is a subalgebra Gr�obner base of subalg(F ) and

2. subalg(F ) = subalg(Gd) = subalg(G).

Proof: We give an algorithm which computes a subalgebra base Gd in table 5.4.

Algorithm: SRB(F; d)
Input: F = ff1; : : : ; fkg � S. d 2 N.
Output: A subalgebra base Gd such that G =

S
d2NGd

is a subalgebra Gr�obner base of subalg(F ).
begin Gd  F . d0  0.

repeat d0  d0 + 1.
B  SUPPOL(Gd; d

0).
C  ;.

while B 6= ; do Let h0 2 B.
B  B n fh0g.
h SRNF(h0; Gd).

if h 6= 0 then C  C [ fhg. end.
end.

Gd  Gd [ C

until d0 � d.

return(Gd).

end SRB.

Table 5.4: Algorithm: SRB

The construction of SUPPOL(Gd; d
0) in the algorithm can be done by lemma 5.8.31. Note

that the construction of SUPPOL(Gd; d
0) should be optimized to avoid multiple generation

and reduction of the same S-polynomials.

Termination follows since (by assumption on the grading ) the set of terms occuring in

polynomials in B = SUP-POL(Gd; d
0) is �nite for every d0 2 N (and arbitrary Gd) and

the repeat-loop is executed exactly d times.

To show partial correctness, observe that by construction subalg(F ) = subalg(Gd) =

subalg(G). To show that G is a subalgebra Gr�obner base of subalg(F ) we use theorem
5.8.33(7), i.e. we show, that all S-polynomials reduce to zero. Let G =

S
d2NGd and let

p 2 SUP-POL(G). By de�nition of G we have p 2 SUP-POL(Gd) for some d 2 N. If the
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algorithm terminates for that d, then all S-polynomials p1 � cp2 2 SUP-POL(Gd) with

(HT(p1)) � d reduce to zero. In particular p �!�
Gd

0 and consequently p �!�
G 0. 2

Theorem 5.8.35 (Subalgebra Membership) Let S be a graded solvable polynomial

ring over a computable �eld K, with respect to a �-compatible admissible and decidable

term order < and with corresponding compatible grading , with given positive weights.

Let F � S be a �nite subset of S and let f 2 S. If f 2 subalg(F ) then one can construct

d 2 N and a subalgebra base Gd, such that

f �!�
Gd

0:

Proof: We give an algorithm which computes d 2 N and Gd, if f 2 subalg(F ) in table
5.5.

Algorithm: SRMEM(f; F )
Input: f 2 S. F = ff1; : : : ; fkg � S.

Output: (d;Gd) if f 2 subalg(F ), with d 2 N and
a subalgebra base Gd such that f �!�

Gd
0.

Otherwise the algorithm probably does not terminate.
begin d �1.

repeat d d+ 1.

Gd  SRB(F; d).
f 0  SRNF (f;Gd).
until f 0 = 0.

return((d;Gd)).
end SRMEM .

Table 5.5: Algorithm: SRMEM

To prove termination if f 2 subalg(F ) observe that by 5.8.34 there exists a subalgebra

Gr�obner base G of F . Then f �!�
G 0. Since only �nitely many polynomials are used

during this reduction we have f �!�
G0 0 for a �nite subset G0 of G. Since G0 is �nite and

G =
S
Gd, there exists d 2 N such that G0 � Gd = SRB(F; d) and f �!�

Gd
0. By this we

must have f 0 = 0 at some time in the repeat-loop and the algorithm terminates. Partial

correctness follows also from these arguments. 2

The case f 62 subalg(F ) can not be decided by these methods, except for special F 's (see

5.8.40).

Lemma 5.8.36 Let S be a graded solvable polynomial ring over a computable �eld K,

with respect to a �-compatible admissible and decidable term order < and with correspond-

ing compatible grading , with given positive weights. For any �nite F � S and any degree

d 2 N one can construct a monic autoreduced subalgebra base Gd, such that
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1. G =
[
d2N

Gd is a subalgebra Gr�obner base of subalg(F ) and

2. subalg(F ) = subalg(Gd) = subalg(G).

Proof: We give an algorithm which computes a monic autoreduced subalgebra base Gd

in table 5.6.

Algorithm: SRIRRB(F; d)

Input: F = ff1; : : : ; fkg � S. d 2 N.

Output: A monic autoreduced subalgebra base Gd such that G =
S
d2NGd

is a subalgebra Gr�obner base of subalg(F ).

begin H 0  SRB(F; d).
repeat H  H 0.

C  SRIRRSET (H).
H 0  SRB(C; d).
until H = H 0.

return(H).
end SRIRRB.

Table 5.6: Algorithm: SRIRRB

To prove termination of algorithm SRIRRB, observe that, starting with a �nite set F ,

at each iteration in the repeat-loop the sets C and H 0 stay �nite by construction of
SRIRRSET and SRB. Assume for a contradiction that the algorithm does not termi-
nate. Consider the elements of H during each iteration of the loop written as rows in

a scheme, where the zeroes are also kept in the respective row. Then by the repeat-
condition there exist a column in the scheme with an in�nite sequence of polynomials

p �!H1
: : : �!Hn pn �!Hn+1

: : :. But this contradicts the Noetherianity of the reduc-

tion relation and so proves termination.

Partial correctness of algorithm SRIRRB follows from the condition subalg(F ) =

subalg(H) = subalg(SBR(F; d)) = subalg(SBR(SRIRRSET (H); d))) as invariant of

the repeat-loop. Then upon termination H is both monic autoreduced and every S-

polynomial in SUP-POL(H; d) reduces to zero wrt. H. The other claims of the lemma

follow as in theorem 5.8.34. 2

Proposition 5.8.37 Let S be a solvable polynomial ring over a �eld K, with respect to a

�-compatible admissible term order <. For any �nite F � S of S and any degree d 2 N,

there exists a monic autoreduced subalgebra base Gd, such that

1. there exists a set G0 which is a monic autoreduced subalgebra Gr�obner base of

subalg(F ) and

2. subalg(F ) = subalg(Gd) = subalg(G0).
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Proof: For d 2 N let Gd = SRIRRB(F; d), ifK is not computable or < is not decidable,

then the algorithm still provides the existence of such a set Gd. Assume the polynomials

in the Gd's are arranged in sequences

Gd : pd;1; : : : ; pd;nd
...

...

Gd0 : pd0;1; : : : ; pd0;nd0 :

The arrangement should have the following properties: nd � nd0 and for all 1 � j � nd
and any d0 � d we have

pd0;j =

8><
>:

0 or

pd00;j d � d00 � d0; or
p pd;j �!

�
Gd0

p:

Observe that for d 2 N and for 1 � j � nd the sequence pm;j for m 2 N cannot be
an in�nite decreasing reduction sequence because of the Noetherianity of the subalgebra

reduction relation.

De�ne G0 to be the union over the sequence fpkgk2N of the irreducible polynomials in the
respective columns fpm;kgm2N. Let G =

S
d2NGd then since each pk of G

0 appears in some
row it is an element of some Gd, so G

0 � G. To show that G0 is a subalgebra Gr�obner

base of subalg(F ) we show, that all S-polynomials reduce to zero. Let p 2 SUP-POL(G0).
By de�nition of G0 � G we have p 2 SUP-POL(F; d) for some d 2 N. By 5.8.34 all

S-polynomials p 2 SUP-POL(F; d) reduce to zero wrt. Gd. For d 2 N let �Gd = Gd \ G
0.

By construction of G0 there exists d0 � d, such that p reduces to zero wrt. �Gd0 . This shows
that p reduces to zero wrt. G0. By construction every p 2 G0 is irreducible wrt. G0 n fpg

which shows that G0 is autoreduced. 2

Theorem 5.8.38 Let S be a solvable polynomial ring over a �eld K, with respect to a

�-compatible admissible term order <. Let F be a �nite subset of S. Let G be a monic

autoreduced subalgebra Gr�obner base of the subalgebra generated by F . Then G is uniquely

determined by S, < and F .

Proof: Let H, G be subsets of S such that both H and G are monic autoreduced

subalgebra Gr�obner bases with respect to a given term order < and with subalg(H) =

subalg(G). Assume G 6= f1g 6= H, since otherwise trivially H = G. Let G4H =

(G nH) [ (H n G). Assume for a contradiction, that G4H 6= ;, and let 0 6= f 2 H4G

with minimal head term, e.g let f 2 H nG. Since both H and G are reduced subalgebra
Gr�obner bases and f 2 subalg(H) = subalg(G) we have f �!�

G 0.

By this there exists Q = fq1; : : : ; qkg � G, k 2 N, with HT(
Q�
J Q) = HT(f) for some

indexed set J . By assumption on f we have f 6= qi and so qi 2 GnH for i = 1; : : : ; k. Let

g =
Q�
J Q, then g 2 subalg(G) = subalg(H) and g �!�

H 0. Furthermore for every q 2 Q
we have q 2 subalg(G) = subalg(H) and q �!�

H 0. Assume wlog. 1 62 Q, then if jQj > 1
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or jJ j > 1 or if k > 1 then HT(f) is reducible wrt. H n ffg, a contradiction. This shows

that Q = fgg and k = 1, and HT(g) = HT(f) and also HC(g) = 1 = HC(f).

Since f � g 2 subalg(H) we have f � g �!�
H 0. This either shows f = g which implies

f 2 G again a contradiction, or f 6= g then there exists s = HT(f � g) 2 T (f) [ T (g)

with s < HT(f) = HT(g). But then there exists P 0 2 H and a indexed set J 0 with

HT(
Q�
J 0 P 0) = s, which shows that f or p are reducible with respect to P 0 � H n ff; gg.

Again a contradiction to the irreducibility of H. 2

Corollary 5.8.39 Let S be a solvable polynomial ring over a �eld K, with respect to

a �-compatible admissible term order <. Let F be a �nite subset of S. If F = ffg

then G = fHC(f)�1fg is the unique monic autoreduced subalgebra Gr�obner base of the

subalgebra generated by F .

Proof: Every S-polynomial of SUP-POL(ffg) is identically zero. 2

Corollary 5.8.40 Let S be a solvable polynomial ring over a �eld K, with respect to a

�-compatible admissible term order <. Let F be a subset of S. If subalg(F ) = subalg(G)
where G = fgg is a one element set. Then then G0 = fHC(g)�1gg is the unique monic

autoreduced subalgebra Gr�obner base of the subalgebra generated by F .

Proof: Clearly G0 is a monic autoreduced subalgebra Gr�obner base. Let F 0 be the unique
monic autoreduced subalgebra Gr�obner base of the subalgebra generated by F . Then,

since subalg(F 0) = subalg(F ) = subalg(G) = subalg(G0), by uniqueness F 0 = G0. 2

Proof: For a direct proof of this claim without using uniqueness of reduced subalge-
bra Gr�obner bases one may argue as follows: Let F = ff1; : : : ; fkg and G = fgg with

subalg(F ) = subalg(G). From F � subalg(G) = Khgi = K[g] it follows, that every
f 2 F has a representation as univariate `commutative' polynomial in g. Since K[g] is an

Euclidean domain, the gcd of the elements from F exists. Let f 0 = gcd(F ). It follows,

that f 0 is a multiple of g and since g 2 subalg(F ) also g is a multiple of f 0. So up to a
factor from K, g equals f 0. 2

Notes: The last two corollaries provide criterions whether for some d 2 N

Gd = G0 �
[

d02N

Gd0

where Gd = SRIRRB(F; d) from algorithm 5.6 and G0 is the reduced subalgebra Gr�obner
base of F .

1. If Gd = fgg for some d 2 N, then Gd is already a reduced subalgebra Gr�obner base.

2. If it is known a priori, that subalg(F ) = subalg(fgg) for some g 2 S, then there
exists d 2 N such that Gd = fgg. Then Gd is the reduced subalgebra Gr�obner

base. In this case there exists also a decision procedure for subalgebra membership:

compute Gd = fgg, then f 2 subalg(F ) i� f 2 subalg(Gd) i� f �!
�
Gd

0.
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It is also clear, that if there exists a �nite reduced subalgebra Gr�obner base G, then the

sequence of bases Gd produced by the algorithm will be equal to G for some d 2 N.

However this does not provide a termination criterion, since the fact that Gd is a reduced

subalgebra Gr�obner base of F can not be tested. It would be necessary to test whether

Gd = G0 �
S
d02NGd0 or not in a �nite number of steps.

Further questions are: under what conditions �nite subalgebra bases do exist. In the

case of commutative polynomial rings a result from [Robbiano, Sweedler 1988] says, that

if there exists a �nitely generated subalgebra, which is integral over the graded subalgebra

under consideration, then there exists a �nite subalgebra Gr�obner base (of the later). It is

open if such a result also holds in case of solvable polynomial rings.



Chapter 6

Implementation

In this chapter we present implemented optimized algorithms (and prove their cor-
rectness) for computation in solvable polynomial rings: non-commutative products
with respect to commutator relations, left reduction, left (and two-sided) Gr�obner

bases and elements in the center. The algorithms are stated in the frame work of
[Kandri-Rody, Weispfenning 1988] where a solvable polynomial ring is an ordinary com-

mutative polynomial ring R = K[X1; : : : ; Xn] equipped with a new non-commutative
multiplication �. The �eld K is assumed to be commutative and the elements of K are
assumed to commute with the indeterminates X1; : : : ; Xn. The algorithms are imple-

mented for the case, that the coeÆcient �eld K is the �eld of rational numbers. Examples
computed in the MAS system are included.

6.1 Introduction

One of the most important tools in the algorithmic theory of commutative polynomial
rings is the calculation of Gr�obner bases by Buchbergers algorithm [Buchberger 1965].

Several implementations of this algorithm have been reported, to mention a few

[Winkler et. al. 1985], [Gebauer, Kredel 1984], [B�oge et. al. 1986].

Algorithms for Gr�obner Bases in enveloping algebras of �nite dimensional Lie algebras
have been studied by Apel and Lassner [Apel, Lassner 1988]. An implementation of their

algorithms was given by Petermann and Apel [Petermann, Apel 1988] in the LOGLAN

system [Bartol et. al. 1983].

In physics there are several computer algebra systems and application programs dealing

with non-commutative multiplications. Most of them use the method of matching and

term rewriting to manipulate non-commutative expressions. (e.g. in REDUCE with the
so called `LET-rules'.) Special systems have been designed to handle the tremendous sets

of millions of terms generated during rewriting. As reference we only note the journal of

`Symbolic Computation' [J. Symb. Comp. 1986-], where many overview articles on this
topic can be found.

140
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In this chapter we describe an implementation of the theory of Kandri-Rody andWeispfen-

ning in the MAS system [Kredel 1990]. The implementation is based on an earlier imple-

mentation in the ALDES / SAC-2 system [Collins, Loos 1980]. We include correctness

proofs for the algorithms and show examples computed with the MAS system. To im-

prove eÆciency of the non-commutative product algorithm, we introduce the method of

incrementaly computed relation tables.

We proof the correctness of the presented algorithms using the de�nitions and propositions

of [Kandri-Rody, Weispfenning 1988] and of chapters 3 and 4. In order to make the

chapter mostly self contained we summarize most required items. For a full statement of

all propositions and theorems together with the proofs see the chapters 3 and 4.

The correctness proof of the �-product algorithm is di�erent to the existence proof in

the original article, since the induction hypothesis does not coincide with the recursive
application of the �-algorithm. Also the original �-algorithm can not be modi�ed to
include the relation table handling with out making the proof invalid.

We prove furthermore the correctness of the reduction (normal form) and the set reduction

algorithm. The computation of a reduced Gr�obner base can be made more eÆcient when
the Gr�obner base properties are exploited. Finally a more eÆcient version of the algorithm
for the computation of two-sided GB's is presented.

In more detail the main implementation design considerations can be summarized as

follows:

1. The algebras of solvable type are commutative polynomial rings equipped with a
non-commutative product. In the implementation we use an ordinary commuta-
tive (distributive) polynomial representation. Actually the Distributive Polynomial

System of [Gebauer, Kredel 1983], implemented in the SAC-2 / ALDES system is
used.

2. The non-commutative product � is de�ned via relations, which are elements of

a free associative algebra. These relations are implemented as triples (u; v; p) of
(commutative) terms u; v and a (commutative) polynomial p, such that u � v = p.

3. Besides the de�ning relations between variables of the non-commutative product,

many relations between powers of variables and terms are derived during computa-

tion. These relations are incrementaly stored in a so called relation table. Each time

a product of terms is to be computed the relation table is scanned for an applicable

relation. Missing relations are treated as if the two variables commute.

An implementation of a product algorithm without the relation table method was
given by [Apel, Klaus 1990]. An example with timings is presented in table 6.6 and

shows the need for our method.

4. Once the non-commutative product algorithm is available, the input-routines for

polynomials can be setup to respect the order of variables in the products.
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5. For the rest of the Gr�obner base algorithms the existing ones from the Buchberger

algorithm system of [Gebauer, Kredel 1984] could be used as a starting point. How-

ever great care was inorder to assure that for no algorithm the input parameters

where commuted. Furthermore the non-commutative product modi�es the leading

coeÆcients of the product polynomials, so the order of computation steps had also

to be checked.

6. It is known, that not all criteria derived by Buchberger for the detection of unnec-

essary reductions are valid in the non-commutative case. The valid criterion BBEC

is implemented as in the commutative case and leads to similar improvements of

computing time.

7. The computation of two-sided Gr�obner bases uses an improved way of including

right variable multiples during the main Buchberger loop instead of iterating the
left Buchberger algorithm on bases given by right variable multiples of polynomials.

The plan of this chapter is as follows: In section 2 we will summarize some of the theory

and discuss some fundamental representation issues. In section 3 we will discuss the non-
commutative product algorithm, the relation table handling and some examples for the
complexity of the �-product. Section 4 will contain the reduction algorithm for polyno-

mials and sets of polynomials, section 5 the S-polynom computation and the Buchberger
algorithm for left-sided Gr�obner bases and section 6 will consist of a description of the

two-sided Gr�obner base construction. In section 7 a small example showing the usage of
the algorithms in the MAS system is discussed. In the �nal section 8 we will summarize
some computing times and draw some conclusions.

6.2 Polynomial Rings of Solvable Type

In this section we �rst summarize some of the theory of chapter 3 and 4 adapted to the

current situation.

Recall that a solvable polynomial ring is an ordinary commutative polynomial ring R =
K[X1; : : : ; Xn] equipped with a new non-commutative multiplication �. The �eld K is

assumed to be commutative and to commute with the indeterminates X1; : : : ; Xn. The

set T of terms (power-products of indeterminates) is supposed to be linearly ordered by
an admissible order <T . Recall the axioms of solvable polynomial rings 3.2.1 adapted for

the current situation:

Axioms 6.2.1 R = KfX1; : : : ; Xn;Qg denotes a polynomial ring of solvable type over a

�eld K in the variables fX1; : : : ; Xng for a �xed term order <T if the following axioms

are satis�ed:

1. (R; 0; 1;+;�; �; <) is an associative ring extendingK and with admissible term order

<.
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2. (a) For all a; b 2 K, t 2 T (X1; : : : ; Xn), a � b � t = a � (bt) = (a � b) � t = abt.

(b) For all 1 � i � n, s 2 T (X1; : : : ; Xi), t 2 T (Xi; : : : ; Xn), s � t = st.

3. For all 1 � i < j � n there exist 0 6= cij 2 K, pij 2 R such that

Xj �Xi = cjiXiXj + pij

and pij < XiXj in the quasi-order on R induced by the termorder on T . Moreover

if

4. For all 1 � i � n and all 0 6= a 2 K

Xi � a = aXi:

The notation for solvable polynomial rings will be

R = KfX1; : : : ; Xn;Qg;

where Q denotes the commutator relations of axiom 6.2.1(3). The commutator relations

Q0 of axiom 6.2.1(4) will not be written according to our earlier convention.

By the following lemmas, the determination of the �-product is extended to arbitrary
polynomials in R.

Lemma 6.2.2 (cf. 3.2.4) Let R = KfX1; : : : ; Xn; Qg be a solvable polynomial ring, let

1 � i � n and let f 2 K[X1; : : : ; Xi], g 2 K[Xi; : : : ; Xn]. Then

f � g = f � g:

Lemma 6.2.3 (cf. 3.2.5) Let R = KfX1; : : : ; Xn; Qg be a solvable polynomial ring, let

<T be a �-compatible admissible term order, and let f; g 2 R. Then there exists an h 2 R

such that

f � g = c � f � g + h

and h <T f � g. Moreover, c and h are uniquely determined by f and g.

For the proofs and further details see chapters 3 and 4

6.2.1 Implementation Considerations

The non-commutative polynomials are represented as ordinary commutative polynomi-
als. The implementation of the algorithms uses the Distributive Polynomial System

[Gebauer, Kredel 1983]. A polynomial in distributive representation is a list of so called

exponent vectors and so called base coeÆcients. Algorithm names for constructors and
selectors for distributive polynomials begin with DIP, for exponent vectors with EV, for
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base coeÆcients with RN (for rational numbers). The coeÆcient �eld K is the �eld of

rational numbers in the current implementation.

The commutator relations from 6.2.1(3) are implemented as triples of commutative poly-

nomials. More precisely a relation Xj � Xi = cijXiXj + pij for some 1 � i � j � n is

represented as triple

(Xj; Xi; cijXiXj + pij)

of distributive polynomials. Missing relations are treated as if the relationXj �Xi = XiXj

was speci�ed, i. e. as if a relation with cij = 1 and pij = 0 was de�ned.

The set of all commutator relations is stored in a list called relation table. So in order to

compute the product Xj �Xi one has to look for a triple starting with (Xj; Xi; r) and the
take the third polynomial in this triple.

We will now discuss the �-product algorithm and the relation table handling in detail.

6.3 The Non-commutative Product

In this section we will �rst sketch the product algorithm, then we discuss the Modula-2
listing of the implemented algorithm and then we proof the correctness. In a separate

subsection the relation table handling is discussed.

The product of two non-commutative polynomials is formed as the sum over the products
of the terms (power-products). The product of terms are formed as commutative prod-
uct or by looking for appropriate commutator relations and recursive application of the

(polynomial) product algorithm.

During the algorithm many products of powers of variables are formed. In order to save
computation time, these products are stored in the so called relation table. The next time
such a product is needed it can be taken from the table without being recomputed. Only

commutator relations of the form X
ej
j �X

ei
i = q are stored since the storage of arbitrary

product relations would waste to much memory.

More precisely, let u; v be two terms, and assume we want to compute u � v, with u 2

T (X1; : : : ; Xj) and v 2 T (Xi; : : : ; Xn), for 1 � i; j � n. Then we proceed as follows:

1. If by lemma 6.2.2 u � v = u � v then we are done, otherwise proceed as follows:

2. Split each term into three parts u � v = u1 � u2 � u3 � v3 � v2 � v1, where u2 � u3 =
X

ej
j ; v3 � v2 = Xei

i and u1 2 T (X1; : : : ; Xj�1), v1 2 T (Xi+1; : : : ; Xn). u3; v3 are

determined by the largest existing relation table entry for the product of powers of
variables. Let the product u3 � v3 be p.

3. Compute the product u2 � (p � v2) by two fold recursive application of the product

algorithm. Let the results be q and q0.
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4. Add the triples (u3; X
ei
i ; q) and (X

ej
j ; X

ei
i ; q

0) to the relation table. Note that during

the recursion all triples (X
lj
j ; X

li
i ; q

0) with lj < ej and li < ei are already added to

the relation table.

5. Finally form the product u1 � (q � v1) by recursion.

The Modula-2 listing of the algorithm is given in table 6.1. The step numbers (*n*)

correspond to the numbers in the description above. The algorithms starting with EV do

manipulations on terms (called exponent vectors). DINPTL and DINPTU do the relation

table lookup and update (see section 6.3.1). DIPMAD and DIPFMO selectors and constructors

for distributive polynomials. DIRPPR, DIRPRP, DIRPSM and RNPROD are polynomial and
rational number arithmetic functions. SIL denotes the empty list.

Although this algorithm seems to be quite e�ective, it is diÆcult to prove its correct-

ness. The proof of lemma 6.2.3 can not be applied directly to the algorithm, since the
usage of the induction hypothesis in the proof does not coincide with the recursive ap-
plication of the product algorithm. On the other hand, in the product algorithm in

[Kandri-Rody, Weispfenning 1988](section 2), which is designed after the proof, the prod-
ucts X

ej
j �X

ei
i are not computed, and therefore they can not be put into a relation table.

Lemma 6.3.1 Algorithm DINPPR is correct with respect to its speci�cation.

Proof: We have to show that the algorithm terminates and that it computes the �-
product of two polynomials. The proof proceeds by noetherian induction on u � v with

respect to <T . We assume the correctness of the relation table handling.

The correctness of the trivial cases (step (*a*)) is clear from the de�nition of the solvable

polynomial ring 6.2.1 and serves as induction base.

The multiplication of terms performed in the two REPEAT-loops (step (*b*)) follows di-
rectly from the distributive law of the solvable polynomial ring 6.2.1 and from the in-
duction hypothesis. The correctness of the commutative case (step (*1*)) follows from

lemma 6.2.2.

The remaining case is the determination of the �-product of terms u and v, where u 2

T (Xh; : : : ; Xj) and v 2 T (Xi; : : : ; Xk) with j > i. Let u = u0Xe
j and v = X l

iv
0, with

e � 1 and l � 1 and u0 2 T (Xh; : : : ; Xj�1) and v
0 2 T (Xi+1; : : : ; Xk). Then the product

is formed as follows:

u � v = u0Xe�1
j Xj �XiX

l�1
i v0

= u0 � ((Xe�1
j � ((Xj �Xi) �X

l�1
i )) � v0)

= u0 � ((Xe�1
j � ((cijXiXj + pij) �X

l�1
i )) � v0)

= ciju
0 � ((Xe�1

j � ((XiXj) �X
l�1
i )) � v0) + u0Xe�1

j � (pij �X
l�1
i v0)

with parenthesis indicating the sequence of computation in the algorithm.
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PROCEDURE DINPPR(T,A,B: LIST): LIST;

(*Distributive polynomial non commutative product.

A and B are distributive polynomials. T is a table

of distributive polynomials specifying the non commutative

relations. C=A*B, the non commutative product of A and B.

The table T may be modified. *)

VAR AL, AP, BL, BP, C, C1, C2, CL, CS, E1, E2, E3, E4, EL,

EL1, EL1S, EP, F1, F2, F3, FL, FL1, FL1S, FP, FS, GL, J1Y, N,

O, RL, XL, XL1, XL2: LIST;

BEGIN

(*a*) (*trivial cases. *) C:=0;

IF A = 0 THEN RETURN(C); END;

IF B = 0 THEN RETURN(C); END;

IF DIRPON(A) = 1 THEN C:=B; RETURN(C); END;

IF DIRPON(B) = 1 THEN C:=A; RETURN(C); END;

O:=RNINT(1); RL:=DIPNOV(A); N:=EVZERO(RL);

(*b*) (*loop on a and b. *) AP:=A;

REPEAT DIPMAD(AP, AL,EL,AP); BP:=B;

REPEAT DIPMAD(BP, BL,FL,BP); EP:=EVDOV(EL); EL1:=RL+1;

IF EP <> SIL THEN EL1:=FIRST(EP); END;

FP:=EVDOV(FL); FL1:=0;

IF FP <> SIL THEN FS:=CINV(FP); FL1:=FIRST(FS);

END;

FL1S:=RL+1-FL1; EL1S:=RL+1-EL1;

(*1*) IF EL1S <= FL1S THEN GL:=EVSUM(EL,FL);

(*1*) CS:=DIPFMO(O,GL);

ELSE (* e1 * e2 = el, f1 * f2 = fl.*)

(*2*) EVSU(EL,EL1,0, E1,XL1); EVSU(FL,FL1,0,F1,XL2);

(*2*) EVCADD(N,EL1,XL1, E2,XL);

(*2*) EVCADD(N,FL1,XL2, F2,XL);

(*2*) DINPTL(T,E2,F2,CS,E3,F3);

IF F3 <> SIL THEN C2:=DIPFMO(O,F3);

(*3*) CS:=DINPPR(T,CS,C2);

(*3*) IF E3 = SIL THEN E4:=E2; ELSE

(*3*) E4:=EVDIF(E2,E3); END;

(*4*) DINPTU(T,E4,F2,CS); END;

(*3*) IF E3 <> SIL THEN C1:=DIPFMO(O,E3);

(*4*) CS:=DINPPR(T,C1,CS); DINPTU(T,E2,F2,CS) END;

(*5*) C1:=DIPFMO(O,E1); C2:=DIPFMO(O,F1);

(*5*) CS:=DINPPR(T,CS,C2); CS:=DINPPR(T,C1,CS) END;

CL:=RNPROD(AL,BL); CS:=DIRPRP(CS,CL);

C:=DIRPSM(C,CS);

UNTIL BP = SIL;

UNTIL AP = SIL;

(*c*) (*finish. *) RETURN(C);

(*d*) END DINPPR;

Table 6.1: Algorithm: DINPPR
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The product Xj � Xi is determined by relation table lookup as cijXiXj + pij. Since

pij <T XiXj the product of the second summand u0Xe�1
j � (pij �X

l�1
i v0) can be handled

by twofold recursive application of the product algorithm with induction assumption.

Now for the product (XiXj) �X
l�1
i in the �rst summand the induction hypothesis may

not be ful�lled (namely if u0 = v0 = 1 and e = 1). But observe that within the recursive

application of the algorithm the product is formed as: Xi � (Xj � v
00) with v00 = X l�1

i . So

the induction hypothesis can be applied to Xj � v
00 yielding c0v00 �Xj+ rest (c0 2 K�). For

the �rst summand we have Xi � (c
0v00 �Xj) = Xi � c

0v00 �Xj since i < j (according to 6.2.2).

Since rest <T v
00 the product Xi � rest can be computed by induction hypothesis. This

shows that (XiXj) �X
l�1
i = cX l

iXj + rest with 0 6= c 2 K and rest <T X
l
iXj.

For the next product Xe�1
j � (X l

iXj) the induction hypothesis may not be ful�lled (in case
u0 = v0 = 1). But during recursive applications of the algorithm the product is formed as

Xj � (: : : (Xj| {z }
e�1 times

�X l
i) : : :)Xj

and the induction hypothesis applies to all successive products on the right side. This
yields a polynomial with commutative head term X l

iX
e
j and some rest which is smaller

than the head term.

Next the product (X l
iX

e
j )�v

0 is by recursion formed as X l
i � (X

e
j �v

0). Again the induction
hypothesis can be applied to Xe

j � v
0 yielding cXe

j � v
0 + rest, with 0 6= c 2 K and

rest <T Xe
j � v

0. Since i < j and v00 2 T (Xi+1; : : : ; Xk) we get for the �rst summand by

6.2.2 X l
i � (X

e
j � v

0) = X l
i �X

e
j � v

0.

Finally the product u0 � (X l
iX

e
j v

0) is by recursion computed as u00 � (Xo
j�1 � (X

l
iX

e
j v

0)).

Again for the right products the induction hypothesis is ful�lled in the recursion.

So we get u�v = cu �v+ rest with 0 6= c 2 K and rest <T uv. This shows the correctness
of the term product. Since <T is noetherian the algorithm terminates. This concludes
the proof. 2

We turn now to the relation table algorithms. An example for the complexity of the
�-product, is included in section 6.3.2.

6.3.1 Relation Tables

As noted in the section on the product algorithm the relation table must be maintained
through recursive applications of the �-product algorithm. Naturally we want to use all

computed relations to be accessible at any time during further recursive calls.

The relation table is implemented as a list of distributive polynomials:

T = (u1; v1; p1; : : : ; ut; vt; pt)

where the ui = Xei
ji
, vi = X li

ki
and pi = ci �X

li
ki
�Xei

ji
+ p0i. The table entries are partially

ordered with respect to divisibility of the relation heads (ui; vi).
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De�nition 6.3.2 Let T = (u1; v1; p1; : : : ; ut; vt; pt) be a relation table. Then the following

condition must hold:

for all 1 � i � t there does not exist 1 � i < j � t such that ui j uj and vi j vj.

I.e. relation heads which are `later' in the table may divide relation heads, which come

'earlier' in the table.

If T is empty at the beginning, i.e. in this case all variables commute, then no non-

commuting relation will ever be computed during DINPPR and T will remain empty.

The search for a product relation goes from left to right in the list so one �nds a relation
with maximal exponents. The search is successful, if both exponents of ui and vi divide

the exponents of the relation we look for. If no relation matches, we assume the variables
to commute, i.e. we assume c = 1 and p = 0. The Modula-2 algorithm listing is given in

table 6.2. The variables are named according to the ALDES naming convention: e = EL

= el, e0 = EP, etc.

PROCEDURE DINPTL(T,EL,FL: LIST; VAR C,EP,FP: LIST);

(*Distributive polynomial non commutative product table lookup.

e and f are exponent vectors. T is a table

of distributive polynomials specifying the non commutative

relations. C is the non-commutative product of x**es and x**fs.

ep and fp are exponent vectors with es+ep=e and fs+fp=f.

If e=es or f=fs then ep=() or fp=(). *)

VAR GL, GL1, GL2, O, PP, Q1, Q2, SL, TL: LIST;

BEGIN

(*1*) (*initialize.*) PP:=T; EP:=SIL; FP:=SIL;

(*2*) (*search polynomials in pp. *)

WHILE PP <> SIL DO ADV3(PP, Q1,Q2,C,PP);

GL1:=DIPEVL(Q1); GL2:=DIPEVL(Q2);

SL:=EVMT(EL,GL1); TL:=EVMT(FL,GL2);

IF (SL*TL = 1) THEN EP:=EVDIF(EL,GL1);

FP:=EVDIF(FL,GL2);

IF EVSIGN(EP) = 0 THEN EP:=SIL; END;

IF EVSIGN(FP) = 0 THEN FP:=SIL; END;

RETURN; END;

END;

(*3*) (*not found, use symmetric product. *)

GL:=EVSUM(EL,FL); O:=RNINT(1);

C:=DIPFMO(O,GL); RETURN;

(*6*) END DINPTL;

Table 6.2: Algorithm: DINPTL

Proposition 6.3.3 Algorithm DINPTL is correct with respect to its speci�cation.
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Proof: Given Xe and Xf (multi indices), the algorithm determines C 2 R, and e0 and

f 0 such that

Xe �Xf = Xe0 �HT (C) �Xf 0 :

In the WHILE-loop the relation table is scanned for a relation which satis�es this condition.

Therefore EVMT tests if the �rst argument is a (commutative) multiple of the second

argument.

If no relation in the table divides both e and f , then the loop is terminated by exhausting

the relation list. In this case the commutative product of the two terms is formed in step

(3) and e0 and f 0 are set to ful�l the output condition. This setting of e0 and f 0 is tested in

the product algorithm and inhibits the algorithm DINPTU from being called in this case.

In the other case, when a matching relation is found, e0 and f 0 are determined according
to the head term of C and the inputs e and f . Then the loop is exited and the algorithm
terminates. 2

The relation table update algorithm determines the correct position if the new relation

according to condition 6.3.2. Then it inserts the relation without modifying the list pointer
to the table. This is important to make the information which is stored in recursive calls

of DINPPR available to all further (top-level) calls of the product algorithm. The Modula-2
listing is given in table 6.3.

Proposition 6.3.4 Algorithm DINPTU is correct with respect to its speci�cation.

Proof: Let T = (u1; v1; p1; : : : ; ut; vt; pt), t > 0 upon entry into the algorithm. For empty
T the algorithm is never be called.

In step (3) the correct position of the new relation in the table is determined according to
condition 6.3.2. The variable TS remembers the position behind last position in T when

the table condition would be not ful�lled. Then the new relation can be entered just

before this position.

In step (4) the location of T is not modi�ed. If no position in T was found in step (3),
then the new relation is placed in front of the table. In this case it is required that T is

not empty.

The FIRST �eld of TS is modi�ed to C1 and the RED �eld of TS is modi�ed to the list

(C2; C; ui; vi; pi; : : : ; ut; vt; pt). So T becomes

(u1; v1; p1; : : : ; ui�1; vi�1; pi�1; C1; C2; C; ui; vi; pi; : : : ; ut; vt; pt)

as desired. 2

One optimization of the table implementation would be to built separate table entries for
each pair of non-commuting variables. Then the search for a relation could be restricted

to a certain sub table. However for the scope of examples which can be computed the

current table implementation suÆces.
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PROCEDURE DINPTU(T,EL,FL,C: LIST);

(*Distributive polynomial non commutative product table update.

e and f are exponent vectors. T is a table

of distributive polynomials specifying the non commutative

relations. C is a distributive rational polynomial. The relation

e * f = C is added to T. T is modified. *)

VAR C1, C2, GL1, GL2, O, PL, PP, Q1, Q2, SL, TL, TP, TS, V: LIST;

BEGIN

(*1*) (*generate polynomials corresponding to el and fl.*)

O:=RNINT(1); C1:=DIPFMO(O,EL); C2:=DIPFMO(O,FL);

(*2*) (*message. *)

IF VALIS <> SIL THEN V:=VALIS; SWRITE("NEW RELATION = ");

DIRPWR(C1,V,-1); SWRITE(" .*. "); DIRPWR(C2,V,-1);

SWRITE(" = "); DIRPWR(C,V,-1); BLINES(0); END;

(*3*) (*search position in t. *) TS:=SIL; PP:=T;

WHILE PP <> SIL DO

ADV2(PP, Q1,Q2,PP); PP:=RED(PP); GL1:=DIPEVL(Q1);

GL2:=DIPEVL(Q2); SL:=EVMT(GL1,EL); TL:=EVMT(GL2,FL);

IF (SL*TL = 1) THEN TS:=PP; END;

END;

(*4*) (*update ts. *)

IF TS = SIL THEN TS:=T; END;

ADV(TS, PL,TP); TP:=COMP3(C2,C,PL,TP);

SFIRST(TS,C1); SRED(TS,TP);

RETURN;

(*7*) END DINPTU;

Table 6.3: Algorithm: DINPTU
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6.3.2 Examples of Complexity

During the computation of a �-product of two terms many new multiplications of terms

may occur. E. g. if the commutator relations contain high degree polynomials or if the

commutator relations are dense polynomials even of low degree. So we discuss three

examples to give some impression of the complexity of the algorithm.

1. Let R = Q[x; y; z] be a ring with the commutator relations

y � x = xy + xd

z � x = xz + yd

z � y = yz + yd

where <T is the inverse lexicographical term order. Note that this ring is only a

solvable polynomial ring in case d = 0; 1. If d > 1 the ring de�ned by this relations
is not associative. However as an example for the product algorithm it may be
accepted. In this example the commutator relations are `sparse' with `high' degree.

2. Let R = Q[x; y; z] be a ring with the commutator relations

y � x = xy + x + y + z

z � x = xz + x+ y + z

z � y = yz + x + y + z

where <T is the total degree (inverse graduated) term order. The commutator

relations are `dense' of `low' degree.

3. [Apel, Klaus 1990] Let R = Q[x; y; z] be a solvable polynomial ring (a Lie algebra)
with the commutator relations

y � x = xy � z

z � x = xz + y

z � y = yz � x

where <T is the total degree (inverse graduated) term order.

We want to compute the product

zc � yc � xc

for varying parameters d and c in examples 1 and 2, and the product

(x + y + z)c

for varying parameter c in example 3.

We will observe the following output parameters:
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Example d c r p t

1 2 1 5 6 0

2 2 21 15 8

2 3 45 28 26

2 4 73 45 68

3 1 9 7 2

3 2 37 38 18
3 3 92 90 96

4 1 15 8 6

4 2 61 46 36

4 3 134 110 204
5 1 23 9 10

5 2 83 54 64
6 1 33 10 18

6 2 104 62 96
6 3 314 150 958

7 1 45 11 28

8 1 59 12 46

Table 6.4: Complexity of the � product, example 1

Example d c r p t

2 1 1 3 10 0
1 2 10 41 14

1 3 23 105 158
1 4 42 214 1412

Table 6.5: Complexity of the � product, example 2

r the number of commutator relations after the computation of the product,

p the number of terms in the product, and

t the computing time on an Atari ST.

t0 the computing time on an IBM AT 286, in example 3.

The results are summarized in tables 6.4 and 6.5. They show, that the complexity de-

pends both on the degree and density of the commutator relations. In example 1 more
commutator relations are computed compared to example 2. In example 2 at a certain

stage no new commutator relations are computed and only the relations from the relation
table are used. Example 3 in table 6.6 shows the advantage of the relation table method

compared to the method of Apel and Klaus without storing new relations.
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Example c r p t Atari ST t0 AT 286

3 3 6 17 2 2

4 10 34 8 9

5 14 52 20 29

6 18 83 50 82

7 22 113 114 222

8 26 164 228 540
9 30 214 436 {

Table 6.6: Complexity of the � product, example 3

6.4 Left Normal Form and Left Irreducible Sets

First recall the following de�nitions from 4.2.1:

Let R be a solvable polynomial ring, f; f 0; p 2 R. The reduction f �!t;p f
0 is de�ned

as follows: Let t 2 T (f) such that HT(p) divides t (in the commutative sense). Now
let a be the coeÆcient of t in f and b = HC(p) be the head coeÆcient of p (also called

`leading base coeÆcient' in ALDES / SAC-2). Furthermore let s = HT(p)

t
and c =

HC(s � HT(p))=HC(sHT(p)) then

f 0 = f �
a

bc
s � p:

Since s is multiplied from the left to p, f �!t;p f
0 is a left reduction. For a right reduction

s is multiplied from the right to p. If d = HC(s � p)=HC(sp) then f 0 can also be written

as f � a
d
s � p.

The reductions with respect to a polynomial f �!p f
0 and with respect to a set P of

polynomials f �!P f
0 are de�ned similar as in the commutative case, see also 4.2.1. If f

can not be reduced with respect to P we say that f is irreducible with respect to P or that

f is in normalform with respect to P . P is irreducible or in normalform or autoreduced,

if all f 2 P are irreducible with respect to P n ffg.

We will now turn to the algorithms which implement these reductions. Once the algo-

rithm for the non-commutative product is available, the implementation of the reduction

algorithm for polynomials and sets of polynomials are straightforward modi�cations of

the respective algorithms in the commutative case [Gebauer, Kredel 1984].

The algorithm DINLNF computes a normalform R of a polynomial S with respect to a

set (list) of polynomials P . Every term t in S (or some reduct of S) is checked if there
exists a polynomial q in P such that HT(q) divides t. If such a q exists, the a one step

reduction is carried out, otherwise the term t is irreducible and it is placed in the output
polynomial R.

The Modula-2 listing of the normalform algorithm is given in table 6.7:

Proposition 6.4.1 Algorithm DINLNF is correct with respect to its speci�cation.
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PROCEDURE DINLNF(T,P,S: LIST): LIST;

(*Distributive non-commutative polynomial left normal form.

P is a list of non zero polynomials in distributive rational

representation in r variables. S is a distributive rational

polynomial. R is a polynomial such that S is left reducible to R

modulo P and R is in normalform with respect to P.

T is a table of distributive polynomials specifying the

non-commutative relations. *)

VAR AP, APP, BL, FL, OL, PP, Q, QA, QE, QP, R, SL, SP, SPP, TA, TE:

LIST;

BEGIN

(*1*) (*s=0. *)

IF (S = 0) OR (P = SIL) THEN R:=S; RETURN(R); END;

(*2*) (*reduction step.*) R:=SIL; SP:=S; OL:=RNINT(1);

REPEAT DIPMAD(SP, TA,TE,SPP); PP:=P;

REPEAT ADV(PP, Q,PP); DIPMAD(Q, QA,QE,QP);

SL:=EVMT(TE,QE);

UNTIL (PP = SIL) OR (SL = 1);

IF SL = 0 THEN R:=DIPMCP(TE,TA,R);

IF SPP = SIL THEN SP:=0; ELSE SP:=SPP; END;

ELSE FL:=EVDIF(TE,QE); AP:=DIPFMO(OL,FL);

APP:=DINPPR(T,AP,Q); BL:=DIPLBC(APP);

BL:=RNQ(TA,BL); APP:=DIRPRP(APP,BL);

SP:=DIRPDF(SP,APP); END;

UNTIL SP = 0;

(*3*) (*finish.*)

IF R = SIL THEN R:=0; ELSE R:=INV(R); END;

(*6*) RETURN(R); END DINLNF;

Table 6.7: Algorithm: DINLNF
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Proof: As loop invariant we take S �
P
bia

0
i � qi = R0 + S 0. Here R0 denotes the polyno-

mial corresponding to R. In the inner loop we search for a polynomial q such that HT(Q)

divides HT(S 0). R0 is irreducible since no head term of polynomials in P divide any term

in R0 (for terms in R0 we have SL = 0). After each loop S 0(i) >T S 0(i+1). So partial cor-

rectness and termination follows from lemma [Kandri-Rody, Weispfenning 1988] (section

3.2) respectively 4.2.4. I.e. S 0 becomes zero at some stage so the algorithm terminates.

Upon termination we still have R0 to be irreducible, and from the loop invariant we have

R0 = S �
P
bia

0
i � qi. 2

The algorithm uses two strategies, which are not �xed by lemma 4.2.4 respectively in

section 3.2 of [Kandri-Rody, Weispfenning 1988].

1. By the outer loop always the greatest (w.r.t. <T ) remaining reducible term is re-

duced. This seems natural, to avoid unnecessary double reductions of terms in
rest(Q) introduced to S 0.

2. By the inner loop always the �rst Q which reduces HT(S 0) is chosen. So the strategy
depends on the way the polynomials appear in P . The most eÆcient way seems to

be again to order the polynomials such that the polynomial with greatest head term
(w.r.t. <T ) comes �rst in the list. This again avoids unnecessary double reductions.

The following algorithm DINLIS computes an monic irreducible set (or monic autoreduced

set) P of polynomials. The number of irreducible polynomials is initially set to zero. Then
every p in P is checked if it is in normalform with respect to P n fpg. If this is the case,
then the polynomial is counted as irreducible, otherwise the polynomial was reducible and

might now be able to reduce further polynomials in P n fpg. Therefore the number of
irreducible polynomials must be reset to zero. The algorithm terminates, if the number

of irreducible polynomials is equal to the total number of polynomials. The Modula-2
listing is given in table 6.8.

Proposition 6.4.2 Algorithm DINLIS is correct with respect to its speci�cation.

Proof: In the �rst step (*1*) the polynomials are made monic by algorithm DIRPMC and

zero polynomials are removed.

As loop invariant in the second step (*2*) we may take ideall(P ) = ideall(P
0 [ fpg).

This is true, since polynomials in P 0 are replaced by there normal form with respect to

P 0 n fpg. During each loop two cases occur:

1. a head term of a polynomial p is reduced and irr is set to zero

2. no head term is reduced and irr is increased by 1.

So termination follows from the fact, that no in�nite descending (w.r.t <T ) sequence of

terms exist. So at some stage case (1) can no more occur, and since P was �nite irr
becomes equal to length(P 0) = jP 0j.
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PROCEDURE DINLIS(T,P: LIST): LIST;

(*Distributive non-commutative polynomial list left irreducible

(autoreduced) set. P is a list of distributive rational polynomials,

PP is the result of left reducing each p element of P modulo P-(p)

until no further reductions are possible.

T is a table of distributive polynomials specifying the

non-commutative relations. *)

VAR EL, FL, IRR, LL, PL, PP, PS, RL, RP, SL: LIST;

BEGIN

(*1*) (*initialise. *) PP:=P; PS:=SIL;

WHILE PP <> SIL DO ADV(PP, PL,PP); PL:=DIRPMC(PL);

IF PL <> 0 THEN PS:=COMP(PL,PS); END;

END;

RP:=PS; PP:=INV(PS); LL:=LENGTH(PP); IRR:=0;

IF LL <= 1 THEN RETURN(PP); END;

(*2*) (*reduce until all polynomials are irreducible. *)

LOOP ADV(PP, PL,PP); EL:=DIPEVL(PL); PL:=DINLNF(T,PP,PL);

IF PL = 0 THEN LL:=LL-1;

IF LL <= 1 THEN EXIT END;

ELSE FL:=DIPEVL(PL); SL:=EVSIGN(FL);

IF SL = 0 THEN PP:=LIST1(PL); EXIT END;

SL:=EQUAL(EL,FL);

IF SL = 1 THEN IRR:=IRR+1; ELSE IRR:=0;

PL:=DIRPMC(PL); END;

PS:=LIST1(PL); SRED(RP,PS); RP:=PS; END;

IF IRR = LL THEN EXIT END;

END;

(*3*) (*finish. *) RETURN(PP);

(*6*) END DINLIS;

Table 6.8: Algorithm: DINLIS
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To prove that P 0 is autoreduced, it remains to be shown that each rest(p) is irreducible

with respect to P 0 n fpg since the head terms are irreducible by construction. Therefore

consider the stage of the loop, after the last head term was reduced. At this point we

have irr = 0. Now once again every polynomial and especially every rest of a polynomial

is reduced with respect to P 0 n fpg until irr = len. Although P 0 changes during the loop,

we know that the head terms of polynomials in P 0 change no more, so the �rst reduced

rests remain irreducible with respect to the later reduced polynomials. 2

This algorithm makes maximal use of the fact, that for reducibility of a polynomial only

the head terms of the reducing set of polynomials have any inuence. In this view the

loop consists of two stages: a �rst stage which reduces all head terms (and probably many

terms in the rests) and a second stage (in the same loop) where the (remaining) rests are
reduced in length(P 0) steps.

Upon termination the order of the polynomials in P 0 with respect to their head terms

may be disturbed.

6.5 S-Polynomials and Left Gr�obner Bases

Recall that left Gr�obner bases, are de�ned as sets of polynomials P such that the
left reduction �!�

P is conuent. It has already been shown, that it is suÆcient for

P to be a left Gr�obner base, that all left S-polynomials of polynomials f; g 2 P re-
duce to zero with respect to P . Left S-polynomials are de�ned before section 3.9 in
[Kandri-Rody, Weispfenning 1988], respectively de�nition 4.5.6 of the this work.

De�nition 6.5.1 Let f; g 2 R, w = lcm(HT(f);HT(g)), u = w

HT(f)
, v = w

HT(g)
. Fur-

thermore let a0 = coe�(w; u � f), b0 = coe�(w; v � g) and let a = 1
a0
, b = 1

b0
. Then the left

S-polynomial of f and g is de�ned as:

LSP(f; g) = au � f � bv � g:

The implementation of the S-polynomial algorithm is straightforward. Only some care is

needed to get the coeÆcients right.

Proposition 6.5.2 Algorithm DINLSP is correct with respect to its speci�cation.

Proof: Follows directly from the de�nition 6.5.1 of S-polynomials. 2

6.5.1 Buchberger Algorithm

Buchberger's algorithm for constructing Gr�obner bases is based on the following theorem.

In the commutative case it was proved in [Buchberger 1965] and [Buchberger 1985]. In
the case of enveloping algebras of Lie algebras and a total degree admissible term order

is was proved by [Apel, Lassner 1988].
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PROCEDURE DINLSP(T,A,B: LIST): LIST;

(*Distributive non-commutative polynomial left S-polynomial.

A and B are rational polynomials in distributive representation.

C is the left S-polynomial of A and B.

T is a table of distributive polynomials specifying the

non-commutative relations. *)

VAR AL, AP, APP, BL, BP, BPP, C, EL, EL1, FL, FL1, GL, OL: LIST;

BEGIN

(*1*) (*a=0 or b=0. *) C:=0;

IF (A = 0) OR (B = 0) THEN RETURN(C); END;

EL:=DIPEVL(A); FL:=DIPEVL(B); OL:=RNINT(1);

(*2*) (*least common multiple. *) GL:=EVLCM(EL,FL);

EL1:=EVDIF(GL,EL); FL1:=EVDIF(GL,FL);

(*3*) (*non-commutative products. *) APP:=DIPFMO(OL,EL1);

BPP:=DIPFMO(OL,FL1); APP:=DINPPR(T,APP,A);

BPP:=DINPPR(T,BPP,B);

(*4*) (*adjust coefficients. *) AL:=DIPLBC(APP);

BL:=DIPLBC(BPP);

APP:=DIRPRP(APP,BL); BPP:=DIRPRP(BPP,AL);

(*5*) (*difference. *) C:=DIRPDF(APP,BPP);

(*8*) RETURN(C); END DINLSP;

Table 6.9: Algorithm: DINLSP

Theorem 6.5.3 (cf. 4.6.2) Let G be a �nite set of polynomials in R. Then G is a left

Gr�obner base i� for all f; g 2 G, LSP(f; g) �!�
G 0.

The algorithm of Buchberger takes as input a �nite set of polynomials and delivers a
Gr�obner base as output. In a main loop in the algorithm for all pairs of polynomials
the S-polynomials are constructed and reduced to their normal form modulo the set of

polynomials. If the resulting polynomial is non zero, the polynomial is added to the set of

polynomials. The algorithm terminates when all S-polynomials of all pairs can be reduced
to zero. Termination is assured by Dickson's lemma and upon termination the condition

of theorem 6.5.3 shows that the output polynomial set is a Gr�obner base.

Buchberger showed also, that the construction of certain S-polynomials and their reduc-
tion could be avoided if some conditions on the head terms of the polynomials and the

sequence in which the S-polynomials are constructed are ful�lled. For the de�nitions of
this criteria see also 4.5.10 and 4.5.8.

The �rst of Buchberger's criteria states that HT(f)HT(g) = lcm(HT(f);HT(g)) =)

SP(f; g) �!�
G 0. This criterion is no more valid in the non-commutative case as the

counter example from 4.5.11 shows:

Example 6.5.4 Let R = KfX; Y ;Y �X = XY � 1g be the �rst Weyl algebra. Consider

the following ideal generated by two polynomials p = X, q = Y . Then HT(p)HT(q) =
lcm(HT(p);HT(q)) = XY , but LSP(p; q) = X � Y � Y �X = XY �XY + 1 = 1 6= 0 and

1 is irreducible wrt. fp; qg.
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The second criterion of Buchberger states that,

9h 2 G : HT(h) divides lcm(HT(f);HT(g)) and

SP(f; h) �!�
G 0 and SP(h; g) �!�

G 0: =) SP(f; g) �!�
G 0

This criterion has been proven to be correct in proposition 4.5.8 or 4.6.2(7). It is imple-

mented like in [Gebauer, Kredel 1984] and has been used in the examples following.

The implementation of the algorithm is a straight forward modi�cation of the commutative

Buchberger algorithm in [Gebauer, Kredel 1984]. The listing in Modula-2 is given in table

6.10.

In step 1 the input polynomials are made monic and some trivial checks are made if
we already have a Gr�obner base. The resulting list of polynomials is PP. In step 2 the
list of all pairs of polynomials B and an auxiliary list D are constructed in subalgorithm

DILCPL. Since it is still true, that LSP(p; q) = �LSP(q; p) it suÆces to consider only pairs
of polynomials (fi; fj) with i < j as in the commutaive case. The list D determines the

sequence in which the S-polynomials are constructed. The pairs in D are ordered such
that the pair (f; g) with the smallest (with respect to <T ) lcm(HT(f);HT(g)) is selected
�rst.

Steps 3 and 4 comprise the main Buchberger loop. In 3 some bookkeeping is done and

in 4 the condition BBEC is checked if the reduction of the S-polynomial is necessary
(program DIGBC3). If required a S-polynomial S is constructed and reduced modulo the
list PP of polynomials. Then some checks for special cases are made and if the reduced

S-polynomial H is non zero the lists B and D are updated in subalgorithm DILUPL. If D is
empty, i.e. if all S-polynomials have been considered, the algorithm proceeds with step 5.

Finally in step 5 the reduced Gr�obner base is constructed in subalgorithm DINLGM and
the algorithm terminates.

Proposition 6.5.5 Algorithm DINLGB is correct with respect to its speci�cation.

Proof: Follows directly from theorems 6.5.3 respectively 4.6.2. The correctness of DINLGM
is proved in the next section. 2

6.5.2 Left Reduced Gr�obner bases

Besides the application of the LRED in [Kandri-Rody, Weispfenning 1988] (section 2) or
our DINLIS algorithm to compute a left reduced Gr�obner base there is some cheaper way

to obtain the same result. As in the commutative case by [Buchberger 1985], one can
exploit the fact that we already have a Gr�obner base.

Lemma 6.5.6 Let G be a left GB in R and let g; h 2 G such that HT(h) divides HT(g).
Then G0 = G n fgg is still a Gr�obner base and ideall(G) = ideall(G

0).
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PROCEDURE DINLGB(T,P,TF: LIST): LIST;

(*Distributive non-commutative polynomials left Groebner basis.

P is a list of rational polynomials in distributive representation

in r variables. PP is the left Groebner basis of P. t is the

trace flag. T is a table of distributive polynomials specifying

the non-commutative relations. *)

VAR B, C, CPI, CPJ, CPP, D, DL, EL, ELI, ELJ, H, IL, K, PLI, PLIP,

PLJ, PP, PPP, PPR, PS, Q, QP, RL, S, SL, SL3, TL, TR: LIST;

BEGIN

(*1*) (*prepare input. *)

IF P = SIL THEN PP:=P; RETURN(PP); END;

PS:=P; PPR:=SIL;

WHILE PS <> SIL DO ADV(PS, PLI,PS);

IF PLI <> 0 THEN PLIP:=DIRPMC(PLI); SL:=DIRPON(PLIP);

IF SL = 1 THEN PP:=LIST1(PLIP); RETURN(PP); END;

PPR:=COMP(PLIP,PPR); END;

END;

PP:=INV(PPR);

IF (PP = SIL) OR (RED(PP) = SIL) THEN RETURN(PP); END;

(*2*) (*construct b and d. *)

PPR:=DIPLPM(PP); PP:=INV(PPR); DILCPL(PP, D,B);

(*3*) (*loop until no more pairs left. *)

LOOP IF D = SIL THEN EXIT END;

ADV(D, DL,D); FIRST3(DL, EL,CPI,CPJ); ADV(CPI, QP,C);

PLI:=FIRST(QP); PLJ:=FIRST(RED(CPJ));

CPP:=RED(RED(CPJ)); SRED(CPJ,CPP);

IF CPP = SIL THEN Q:=LAST(QP); SFIRST(C,Q); END;

(*4*) (*s-pol and reduction step. *)

LOOP SL:=DIGBC3(B,PLI,PLJ,EL); IF SL = 0 THEN EXIT END;

S:=DINLSP(T,PLI,PLJ); IF S = 0 THEN EXIT END;

H:=DINLNF(T,PP,S); IF H = 0 THEN EXIT END;

H:=DIRPMC(H); SL:=DIRPON(H);

IF SL = 1 THEN PP:=LIST1(H); RETURN(PP); END;

D:=DILUPL(H,PP,D,B);

EXIT END;

END (*3*);

(*5*) (*finish. *) PP:=DINLGM(T,PP);

(*6*) RETURN(PP); END DINLGB;

Table 6.10: Algorithm: DINLGB
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Proof: LetG be a Gr�obner base, then by de�nition�!G is a conuent reduction relation.

So lemma 4.3.2 shows that �!G0 is a conuent reduction relation and 4.4.4 shows that

ideall(G) = ideall(G
0). 2

With this lemma it is suÆcient to remove polynomials with head terms that are divided by

some other polynomials in the base. This avoids the reduction of these polynomials. For

the remaining polynomials only the reductas must be reduced to normal form to obtain a

reduced basis. This can be done by LRED or preferably DINLIS, since DINLIS needs only

one loop through the base. The listing of the resulting algorithm is given in table 6.11.

PROCEDURE DINLGM(T,P: LIST): LIST;

(*Distributive non-commutative minimal ordered left groebner basis.

P is a list of non zero rational polynomials in distributive

representation in r variables, P is a left groebner basis.

PP is the minimal normed and ordered left groebner basis.

T is a table of distributive polynomials specifying the

non-commutative relations. *)

VAR AL, EI, EJ, EL, PB, PI, PJ, PP, PS, QP, TL: LIST;

BEGIN

(*1*) (*length p le 1. *) PP:=P;

IF (P = SIL) OR (RED(P) = SIL) THEN RETURN(PP); END;

(*2*) (*search for exponent vector .*) PS:=PP; QP:=SIL;

REPEAT ADV(PS, PI,PS); PB:=PS; EI:=DIPEVL(PI); TL:=0;

WHILE (PB <> SIL) AND (TL = 0) DO ADV(PB, PJ,PB);

EJ:=DIPEVL(PJ); TL:=EVMT(EI,EJ); END;

PB:=QP;

WHILE (PB <> SIL) AND (TL = 0) DO ADV(PB, PJ,PB);

EJ:=DIPEVL(PJ); TL:=EVMT(EI,EJ); END;

IF TL = 0 THEN QP:=COMP(PI,QP); END;

UNTIL PS = SIL;

PP:=INV(QP);

IF (PP = SIL) OR (RED(PP) = SIL) THEN RETURN(PP); END;

(*3*) (*get irreducible set. *) PP:=DINLIS(T,PP);

(*4*) (*sort. *) PP:=DIPLPM(PP);

(*7*) RETURN(PP); END DINLGM;

Table 6.11: Algorithm: DINLGM

Proposition 6.5.7 Algorithm DINLGM is correct with respect to its speci�cation.

Proof: The correctness of step 2 follows from lemma 6.5.6: In the REPEAT-loop each

polynomial of the list is selected and checked if its head term is divisible. In the �rst

WHILE-loop the polynomials following in the list are used for the check and in the second

WHILE-loop the `good' polynomials before the actual polynomial are used for the check.

The correctness of step 3 follows from the correctness of algorithm DINLIS by propo-
sition 6.4.2 and proposition [Kandri-Rody, Weispfenning 1988] (proposition 4.5) respec-

tively 4.3.5. The sorting of the polynomials in step 4 is assumed to be correct. 2
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6.6 Two-sided Gr�obner Bases

Besides the left ideals and left Gr�obner bases in solvable polynomials rings, Kandri-Rody

and Weispfenning characterize also two-sided ideals and two-sided Gr�obner bases con-

structively. Their main observation is that two-sided GB's can be obtained by left GB

construction combined with taking right variable multiples of all polynomials in the base.

More precisely let idealt(G) denote the two-sided ideal generated by G � R. Then the

�nite set G of polynomials in R is a two-sided Gr�obner base if satis�es the equivalent

conditions of the theorem [Kandri-Rody, Weispfenning 1988] (theorem 5.4) respectively

4.11.6:

Theorem 6.6.1 Let G be a �nite set of polynomials in R. Then the following assertions

are equivalent:

(4) For all f 2 idealt(G), f �!
�
G 0 (left reduction).

(6) G is a left GB and for all 1 � i � r, p 2 G, p �Xi �!
�
G 0.

Based on this theorem it is easy to give an algorithm for the construction of two-sided
GB's: Iterate the computation of left GB's G and the combination with polynomials

p �Xi:
Gk+1 := Gk [ fp �Xi �!

�
G j p 2 G; 1 � i � rg

until Gk+1 = Gk.

This gives the algorithm GROEBNER in section 2 of [Kandri-Rody, Weispfenning 1988].

The algorithm given in table 6.12 is slightly di�erent: Take the algorithm for the compu-

tation of left GB's and start the algorithm with the combined set G[ fp �Xi �!
�
G j p 2

G; 1 � i � rg. At any time a S-polynomial is reduced to a polynomial h 6= 0, combine G

not only with fhg but additionally with the set fh �Xi �!
�
G j 1 � i � rg. Furthermore

modify the lists B and D as appropriate.

The listing of this algorithm, called DINCGB, is given in table 6.12. Note, that singleton
sets of polynomials may not be two-sided GB's any more. So the respective case detections

in algorithm DINLGB can not be carried over to algorithm DINCGB.

Proposition 6.6.2 Algorithm DINCGB is correct with respect to its speci�cation.

Proof: Termination is guaranteed by Dickson's lemma.

Upon termination of steps 3 and 4 PP is a left Gr�obner base since all S-polynomials

reduce to zero, either by direct veri�cation or by condition BBEC. Condition (6) of 6.6.1

is ful�lled since for any polynomial p also the normal form of p �Xj (1 � j � r) is in the
base. This shows that PP is a (non reduced) two-sided Gr�obner base.

The correctness of step 5 follows from theorem 5.4 of [Kandri-Rody, Weispfenning 1988]

respectively our theorem xreftgb.th and the correctness of algorithm DINLGM. 2

This completes the discussion of the algorithms. We turn now to a small example.
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PROCEDURE DINCGB(T,P,TF: LIST): LIST;

(*Distributive non-commutative polynomials two-sided groebner basis.

P is a list of rational polynomials in distributive representation in r

variables. PP is the groebner basis of P. t is the trace flag. T is a table

of distributive polynomials specifying the non-commutative relations. *)

VAR B, C, CPI, CPJ, CPP, CR, D, DL, EL, ELI, ELJ, F, H, IL, K, N, O, PL,

PLI, PLIP, PLJ, PP, PPP, PPR, PS, Q, QL, QP, RL, S, SL, TL, X: LIST;

BEGIN

(*1*) (*prepare input. *) IF P = SIL THEN PP:=P; RETURN(PP); END;

PS:=P; PPR:=SIL;

WHILE PS <> SIL DO ADV(PS, PLI,PS);

IF PLI <> 0 THEN PLIP:=DIRPMC(PLI); SL:=DIRPON(PLIP);

IF SL = 1 THEN PP:=LIST1(PLIP); RETURN(PP); END;

PPR:=COMP(PLIP,PPR); END; END;

PP:=INV(PPR); IF PP = SIL THEN RETURN(PP); END;

RL:=DIPNOV(FIRST(PP)); IF RL = 0 THEN RETURN(PP); END;

N:=EVZERO(RL); O:=RNINT(1); X:=SIL;

FOR IL:=1 TO RL DO EVSU(N,IL,1, EL,XL); XP:=DIPFMO(O,EL);

X:=COMP(XP,X); END;

(*2*) (*add right multiples of polynomials and single variables. *) F:=PP;

REPEAT ADV(F, PL,F); XS:=X;

REPEAT ADV(XS, XP,XS); QL:=DINPPR(T,PL,XP);

QL:=DINLNF(T,PP,QL); QL:=DIRPMC(QL);

SL:=DIRPON(QL);

IF SL = 1 THEN PP:=LIST1(QL); RETURN(PP) END;

IF QL <> 0 THEN PP:=COMP(QL,PP); END;

UNTIL XS = SIL;

UNTIL F = SIL;

PPR:=DIPLPM(PP); PP:=INV(PPR); DILCPL(PP, D,B);

(*3*) (*loop until no more pairs left. *)

LOOP IF D = SIL THEN EXIT END;

ADV(D, DL,D); FIRST3(DL, EL,CPI,CPJ); ADV(CPI, QP,C);

PLI:=FIRST(QP); PLJ:=FIRST(RED(CPJ));

CPP:=RED(RED(CPJ)); SRED(CPJ,CPP);

IF CPP = SIL THEN Q:=LAST(QP); SFIRST(C,Q); END;

(*4*) (*reduction step. *)

LOOP SL:=DIGBC3(B,PLI,PLJ,EL); IF SL = 0 THEN EXIT END;

S:=DINLSP(T,PLI,PLJ); IF S = 0 THEN EXIT END;

H:=DINLNF(T,PP,S); IF H = 0 THEN EXIT END;

H:=DIRPMC(H); SL:=DIRPON(H);

IF SL = 1 THEN PP:=LIST1(H); RETURN(PP); END;

D:=DILUPL(H,PP,D,B); XS:=X;

REPEAT ADV(XS, XP,XS); QL:=DINPPR(T,H,XP);

QL:=DINLNF(T,PP,QL);

QL:=DIRPMC(QL); SL:=DIRPON(QL);

IF SL = 1 THEN PP:=LIST1(QL); RETURN(PP) END;

IF QL <> 0 THEN D:=DILUPL(QL,PP,D,B) END;

UNTIL XS = SIL;

EXIT END;

END (*3*);

(*5*) (*finish. *) PP:=DINLGM(T,PP);

(*9*) RETURN(PP); END DINCGB;

Table 6.12: Algorithm: DINCGB
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6.7 Computation Example

So far we have discussed the non-commutative product and Buchberger algorithm. We

will now discuss an example computed with the MAS system and give some computing

times on several machines.

6.7.1 Polynomial Input and Output

Since polynomials are internally represented by lists over atoms (integers with absolute

value less than 229) we need some facilities to display or input polynomials in more natural

form.

For the display routines the standard display routines for the (commutative) distributive

rational polynomials can be used. For the input routines the non-commutative product
algorithm can be incorporated to respect the order of the variables in the polynomials.

The syntax (in EBNF) of a polynomial accepted by the input routines is given in table

6.13.

poly = ( rat | var | "(" sum ")" )

sum = term { ( "+" | "-" ) term }

term = factor { [ "*" ] factor }

factor = poly [ "**" nat ]

rat = int [ "/" int ]

Table 6.13: Polynomial Syntax in EBNF

nat denotes a positive atom, int denotes an integer, rat denotes a rational number and

var denotes a variable name de�ned in the polynomial variable list.

The speci�cation of the multiplication operator * is optional. In any case the product

is the non-commutative �-product. During input the polynomials are multiplied out to

obtain the internal canonical form of distributive rational polynomials. In the output the
polynomials are therefore represented as sums over monomials.

The listing of an example is given in table 6.14. The input of non-commutative polyno-
mials consists of two steps:

1. the input of the commutator relations together with the list of variables of the

polynomial ring and the desired term order,

2. the input of the non-commutative polynomials itself.

The commutator relations are a list of commuting polynomials which are read by the

MAS function PREAD. PREAD reads from the current input stream and returns a list of
distributive rational polynomials in internal representation. PREAD expects the following

items:
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1. The variable list: (a, x, y). A variable name may consist of a alpha-numerical

character sequence starting with a letter. All variables occurring in the polynomials

must be speci�ed.

2. The desired term order: L. The term order may be one of the following:

L for the inverse lexicographical term order

G for the inverse graduated term order

polynomial list a list of univariate (integral) polynomials in the variable T (this

name is �xed). The list length must be the same as the number of variables.

The list is interpreted as the coeÆcients of a linear form which de�nes a term
order. See [Weispfenning 1987] for details.

There is no check if the term order is compatible with the commutator relations or

if the linear form de�nes an admissible term order.

3. The commutator relations themselves: ( y ), ( x ), ( x y + a ). This relation
is interpreted as y � x = xy + a. Not speci�ed relations are interpreted as if the
variables commute. In this example a commutes both with x and y. The relations

must be given as a list (!) of polynom triples.

The second input consists of the non-commutative polynomials. NPREAD takes as input
a relation table and reads a list (!) of polynomials from the current input stream. The

output is a list of distributive rational polynomials. ** denotes exponentiation, the mul-
tiplication operator * may be omitted. I.e. x y denotes x * y. All multiplications of

variables mean the non-commutative �-product. It is possible to specify also more com-
plex polynomial expressions. See 6.13 for the accepted syntax. Be sure to include enough
parenthesis to avoid ambiguities.

6.7.2 Procedure Calling

Next three of the above discussed algorithms are called:

1. LIRRSET Left IRReducible SET, algorithm DINLIS. The input parameters are t the
relation table and p the polynomial list. The output c is the left irreducible set of

the input.

2. LGBASE Left Gr�obner BASE, algorithm DINLGB, The input parameters are t the

relation table, p the polynomial list and 1 a trace ag (0 = on trace, 1 = trace

reduced S-polynomials, >1 = trace as much as possible). The output c is the left

Gr�obner base of the input.

3. TSGBASE Two-Sided Gr�obner BASE, algorithm DINCGB. The input parameters are t

the relation table and p the polynomial list. The output c is the two-sided Gr�obner

base of the input.
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(* Commutator relations: *)

t:=PREAD().

(a,x,y) L

(

( y ), ( x ), ( x y + a ),

)

PWRITE(t).

(* Non-commutative polynomials: *)

p:=NPREAD(t).

(

( y**3 + x**2 y + x y ),

( x**2 + x )

)

PWRITE(p).

c:=LIRRSET(t,p). (* Left Normalform *)

PWRITE(c).

c:=LGBASE(t,p,1). (* Left G-base *)

PWRITE(c).

c:=TSGBASE(t,p,1). (* Two sided G-base *)

PWRITE(c).

Table 6.14: Computing example input
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Note that during the computations the number of known commutator relations is in-

creased. At the end 5 new commutator relations have been computed.

In any case the output polynomials are printed to the current output stream with the

procedure PWRITE. PWRITE prints the actual variable list, the actual term order and the

list of polynomials, each polynomials starting on a new line.

The produced output is shown in tables 6.15, 6.16 and 6.17.

Polynomial in the variables: (a,x,y)

Term ordering: inverse lexicographical.

Polynomial list:

( y**3 -2 a x - a )

( x**2 + x )

Table 6.15: Computing example left irreducible set

Polynomial in the variables: (a,x,y)

Term ordering: inverse lexicographical.

Polynomial list:

a**2

( x**2 + x )

a y**2

( y**3 -2 a x - a )

Table 6.16: Computing example left Gr�obner base

Polynomial in the variables: (a,x,y)

Term ordering: inverse lexicographical.

Polynomial list:

a

( x**2 + x )

y**3

Table 6.17: Computing example two-sided Gr�obner base

6.7.3 Summary of Computing Times

A summary of computing times for ALDES on IBM 9370/VM, for MAS on an Atari 1040
ST (8 Mhz), an PC AT/386SX (16 Mhz) and an IBM RS6000-520 (20 Mhz) are given
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in table 6.18. The timings are obtained with a fresh list of commutator relations in each

case, i. e. not in the sequence suggested by the above input listing.

`DINLGB, - irred.' means that the algorithm did not compute a reduced (irreducible)

GB. `DINLGB, + irred.' means that the algorithm computed a reduced (irreducible) GB.

`DINLGB, BBEC, + irr.' means that the algorithm computed a reduced (irreducible)

GB and used the condition `BBEC' to avoid unnecessary reductions. In the later case

22 polynomials have not been reduced according to the criterion from a total of 34 S-

polynomials.

`DIN1GB' denotes the MAS algorithm corresponding to algorithm `GROEBNER'.

`DINCGB' is superior to `DIN1GB' due to the fact, that the polynomials p � Xi are

added to the base at the beginning of the computation, so much more polynomials will
be reducible later on. `DINCGB, BBEC' means that the algorithm computed a reduced

(irreducible) two-sided GB and used the condition `BBEC' to avoid unnecessary reduc-
tions. In the later case 9 polynomials have not been reduced according to the criterion

from a total of 14 S-polynomials.

Algorithm IBM 9370/VM Atari ST PC AT/386sx IBM RS6000

ALDES/SAC-2 MAS MAS MAS

DINLIS 0.03 < 1.0 < 1.0 0.03

DINLGB, - irred. 1.47
DINLGB, + irred. 1.47 18.0 13.0 1.30

DINLGB, BBEC, + irr. 6.0 0.47
DIN1GB 1.93

DINCGB 0.58 8.0 5.0 0.45

DINCGB, BBEC 4.0 0.23
Computing time in seconds.

Table 6.18: Computing Time Summary: Gr�obner Bases

The two examples from [Apel, Lassner 1988] need 2 respectively 6 seconds for a reduced
left Gr�obner base on an Atari ST.

A more complicated example from [Stokes 1989] needs 54 seconds on an Atari ST (re-

spectively 34 seconds using condition BBEC, avoiding 9 of 33 reductions). The problem
is to compute a left Gr�obner base of the polynomials

( v5 v6 - v2 v3 )

( v4 v5 - v1 v3 )

in an exterior algebra over a vector space generated by (v1,v2,v3,v4,v5,v6). The

computation can be done by speci�cation of the commutator relations as cij = �1 and
pij = 0, (1 � i < j � n) and adding the polynomials v2i (1 � i � n) to the ideal base.

The resulting Gr�obner base is

( v4 v5 - v1 v3 )
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( v5 v6 - v2 v3 )

( v1 v3 v4 )

( v1 v3 v5 )

( v2 v3 v5 )

( v1 v3 v6 - v2 v3 v4 )

( v2 v3 v6 )

6.8 Minimal Polynomial in Ideal

In this section we present an algorithm which computes the univariate polynomials of

minimal degree in an ideal with �nite dimensional residue class vectorspace.

The algorithm takes the commutator relations `T' and a left Gr�obner base `F' as input.
Furthermore a natural number 1 � i � n to indicate the variable for which the univariate
polynomial is to bee computed.

The Modula-2 listing of the minimal polynomial in an ideal is given in table 6.19:

In step (1) the variable Xi is represented as multivariate polynomial.

In step (2) the powers Xk
i are computed by program DIPMPV and the left normal form of

the power is computed by program DINLNF. Then a system of linear equations between

the representations of the powers is constructed. With algorithm DIRLIS the system
is transformed to row echelon form. Then program DIGBZT checks if the system has a

solution. If so, the repeat-loop is terminated; otherwise the loop is continued with the
next higher power of Xi.

In step (3) �nally the univariate polynomial is constructed from the solution of the system
of linear equations.

Proposition 6.8.1 Algorithm DINLMPG is correct with respect to its speci�cation.

Proof: This follows from lemma 5.4.3 under the foregoing considerations. The termina-

tion follows form the existence of such a polynomial which in turn follows since the vector

space dimension of R=ideall(F ) is �nite. 2

6.9 Computation of the Center

We will now turn to the algorithms which implement the computation of elements in the

center of a solvable polynomial ring S. Let S be QfX1; : : : ; Xn; Qg over the rational
numbers Q with commutator relations Q.

The algorithm DINCCP takes the commutator relations and a set of terms as input. It

computes a polynomial with indeterminate coeÆcients (parametric coeÆcients) which

lies in the center of the solvable polynomial ring for any specialization to �eld elements
of the parameters.
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PROCEDURE DINLMPG(T,i,F: LIST): LIST;

(*Distributive non-commutative left rational minimal polynomial for a

G basis. F is a non-commutative left groebner basis. T is a relation

table. PP is the left minimal polynomial for the i-th variable for F. *)

VAR C, c, CLP, CP, CS, EINS, e, z, j, EVOREM, EVOCOR,

l, n, P, p, PP, r, rs, t, X, XP, YP: LIST;

ec: BOOLEAN;

BEGIN

(*1*) (*initialise. *)

IF F = SIL THEN PP:=0; RETURN(PP); END;

z:=FIRST(F); r:=DIPNOV(z); EINS:=RNINT(1); e:=SIL;

FOR j:=1 TO r DO e:=COMP(0,e); END;

X:=DIPFMO(EINS,e); l:=1; n:=r+l; PFDIP(X, rs,P);

P:=PINV(r,P,1); P:=PMPV(n,P,l,1);

(*2*) (*solve linear systems of equations to get the coefficients. *)

REPEAT XP:=DIPMPV(X,i,l); (*commut.*) l:=l+1;

XP:=DINLNF(T,F,XP); (*non-commutative*)

PFDIP(XP, rs,YP); YP:=PINV(r,YP,l); n:=r+l;

YP:=PMPV(n,YP,l,1); (*commut.*)

P:=PINV(r,P,1); P:=RPSUM(n,P,YP);

CP:=PBCLI(r,P); C:=DILFPL(l,CP); CS:=SIL;

WHILE C <> SIL DO ADV(C, c,C); c:=DIRPEM(c,EINS);

CS:=COMP(c,CS); END;

C:=INV(CS); C:=DIRLIS(C); (*commut.*) t:=DIGBZT(C);

UNTIL t = 0;

l:=l-1;

(*3*) (*constuct minimal polynomial. *) PP:=PMON(EINS,l);

WHILE C <> SIL DO ADV(C, c,C); e:=DIPEVL(c);

n:=l-FIRST(EVDOV(e)); CLP:=RNNEG(DIPTBC(c));

p:=PMON(CLP,n); PP:=RPSUM(1,PP,p); END;

PP:=DIPFP(1,PP);

(*6*) RETURN(PP); END DINLMPG;

Table 6.19: Algorithm: DINLMPG



6.9. COMPUTATION OF THE CENTER 171

There are routines, which generate sets of terms up to a desired total degree or where

the exponents are in a speci�ed range. Furthermore there is a `driver' program, which

calls DINCCP and then substitutes the values 0 and 1 into the center polynomial with

indeterminate coeÆcients to obtain generating elements of the center.

The center polynomial algorithm is constructed after the proof of proposition 3.6.4. The

Modula-2 listing of the center polynomial algorithm is given in tables 6.20 and 6.21.

The statements concerned with the correct handling of the term orders of the generated

systems of linear equations are omitted.

PROCEDURE DINCCP(T, E: LIST): LIST;

(*Distributive rational non-commutative polynomial center polynomial.

E is a list of exponent vectors. T is the relation table.

A polynomial in the center of the polynomial ring is returned. *)

VAR C, CL, CP, EINS, V, EVOREM, EVOCOR, ES, EP, EH, EB, e, ep, f, l,

n, m, a, P, PP, PE, p, pp, r, r1, r2, rp, X, Y, Z: LIST;

ec: BOOLEAN;

BEGIN

(*1*) (*initialise. *) PP:=0; IF E = SIL THEN RETURN(PP); END;

(*2*) (*build polynomials from variables. *)

e:=FIRST(E); r:=LENGTH(e); EINS:=RNINT(1);

IF r = 0 THEN PP:=DIPFMO(EINS,COMP(1,e)); RETURN(PP) END;

EP:=EVLGTD(r,1,SIL); EP:=SECOND(EP);

PE:=DILFEL(EINS,EP); PE:=INV(PE);

EH:=DILFEL(EINS,E); EH:=DIPLPM(EH);

(*3*) (*generate linear systems of equations for the coefficients. *)

EP:=PE; C:=SIL;

WHILE EP <> SIL DO ADV(EP,Z,EP); P:=0; l:=0; n:=r; ES:=EH;

REPEAT ADV(ES,X,ES); P:=PINV(r,P,1); l:=l+1; n:=r+l;

Y:=DINCCO(T,X,Z);

IF Y <> 0 THEN PFDIP(Y, rp,Y); Y:=PINV(r,Y,l);

Y:=PMPV(n,Y,l,1); P:=RPSUM(n,P,Y); END;

UNTIL ES = SIL;

CP:=PBCLI(r,P); CP:=DILFPL(l,CP); C:=CCONC(CP,C);

(*3.1*) C:=DIRLIS(C); (* evord ! *) END;

Table 6.20: Algorithm: DINCCP

In step (2) the required polynomials are generated for each variable and from the input

terms.

In step (3) the set of linear equations, according to proposition 3.6.4, are generated from

the commutators z �Xi�Xi � z for each variable Xi and each input term z. The variable

Z contains the term (as polynomial), the variable X contains the variable (as polynomial)
and the variable C contains the set of equations. The commutator is computed by algo-

rithm DINCCO. After a commutator has been computed, the augmented set of equations

is transformed to staggered form by algorithm DIRLIS. Note, that since Q is in the cen-
ter of S, the system of equations is homogeneous and therefore has always a solution.
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(*5*) (*construct center polynomial. *)

PP:=0; r1:=LENGTH(EH); r2:=LENGTH(C); rp:=r1-r2;

IF rp > 0 THEN EB:=EVLGTD(rp,1,SIL); EB:=SECOND(EB);

ELSE EB:=SIL END;

ES:=EVLINV(EB,0,r); ES:=INV(ES); (*parameters*)

m:=0; EP:=SIL;

WHILE C <> SIL DO ADV(C, CL,C); (* CL <> 0 ! *) m:=m+1;

(*5.1*) (*head term, left hand side*)

DIPMAD(CL,a,f,CL); (*a = 1 !*)

e:=EVDOV(f); n:=l-FIRST(e)+1; (*e <> () !*)

e:=LELT(EH,n); e:=DIPEVL(e); (*wg. sorted *)

e:=EVINV(e,r,rp); p:=DIPFMO(a,e);

(*5.2*) (*check for new parameters. *) EP:=INV(EP);

WHILE m < n DO ADV(ES,ep,ES); EP:=COMP(ep,EP);

e:=LELT(EH,m); e:=DIPEVL(e); (*wg. sorted *)

e:=EVINV(e,r,rp); e:=EVSUM(e,ep);

pp:=DIPFMO(EINS,e); PP:=DIRPSM(PP,pp);

m:=m+1; END;

EP:=COMP(4711,EP); EP:=INV(EP);

(*5.3*) (*get right hand side. *) pp:=SIL;

WHILE CL <> SIL DO DIPMAD(CL,a,f,CL); a:=RNNEG(a);

e:=EVDOV(f); n:=l-FIRST(e)+1; (*e <> () !*)

e:=LELT(EP,n); (*parameters*)

pp:=DIPMCP(e,a,pp); END;

pp:=INV(pp);

IF pp <> SIL THEN pp:=DIRPPR(p,pp); PP:=DIRPSM(PP,pp) END;

END;

(*5.4*) (*check for new parameters. *) EP:=INV(EP);

WHILE ES <> SIL DO ADV(ES,ep,ES); EP:=COMP(ep,EP);

e:=LELT(EH,m); e:=DIPEVL(e); (*wg. sorted *)

e:=EVINV(e,r,rp); e:=EVSUM(e,ep);

pp:=DIPFMO(EINS,e); PP:=DIRPSM(PP,pp);

m:=m+1; END;

(*7*) RETURN(PP); END DINCCP;

Table 6.21: Algorithm: DINCCP, contd.
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Some caution is required to use the correct term order both for the computations in the

polynomial ring respectively in the (commutative) coeÆcient ring.

At the beginning of step (5) the system of linear equations is in staggered form. Then the

solutions are computed as usual by bringing things to the right hand side of the equation.

With solutions the coeÆcients of the center polynomials are constructed. Independent

variables are introduced as parameters in the resulting polynomial.

Finally in step (7) the center polynomial is returned.

Proposition 6.9.1 Algorithm DINCCP is correct with respect to its speci�cation.

Proof: This follows directly from the proof of proposition 3.6.4 and the remarks about

the algorithm before. Termination follows from the �niteness of the set of input terms. 2

As can be seen from the examples, the resulting polynomial with parametric coeÆcients
is not very readable. Therefore in a post processing step we specialize some values for the
parameters. Let m be the number of parameters, denote the parameters by yi, and let

�j : fy1; : : : ; ymg �! Q be a variable assignment for 1 � j � m.

Then de�ne

�j(yi) =

(
1 if i = j

0 else

for 1 � i; j � m. In other words, we specialize values such that the resulting polynomials

form a linear independent set of solutions considered as vectors.

The listing of the specialization algorithm is not given, but in the examples both the
center polynomial and the specialized polynomials will be shown.

6.9.1 Centers of Enveloping Algebras of some Lie Algebras

We include some examples of the computation of centers of enveloping algebras of some

�nite dimensional Lie algebras over the rational numbers.

The examples are taken from [Patera et. al. 1976] and compared to their results. The
enumeration of the Lie algebras is as follows: Ai;j denotes the j-th Lie algebra of dimension

i. The examples are contained in tables 6.22, 6.23, 6.24, 6.25 and 6.26. Note that we

only present examples which have polynomial invariants. Actually there are also rational

functions and analytical functions which are invariant under the commutator product of

the Lie algebra (see example 6.22).

In the examples we list

1. the de�ning commutator relations of the enveloping algebra of a Lie algebra,

2. the statement for the generation of the terms,

3. the center polynomial with parametric coeÆcients,
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4. the specialized center polynomials,

5. the computing time on an Atari 1040 ST.

The input syntax is as described in section 6.7. CenterPol denotes the `driver' algorithm,

which calls DINCCP and then specializes the coeÆcients according to the scheme de�ned

earlier.

EVLGIL takes a list of exponents (e1; : : : ; en) and delivers a set of terms with exponents

(a1; : : : ; an) with 0 � ai � ei for 1 � i � n.

EVLGTD has inputs (n; d; E), where n is the number of variables, d is the total degree

and E is a list of already computed terms (used for internal recursion). It returns a list
(E0; : : : ; Ed) where each Ei is a list of exponents of terms in n variables and of total degree

exactly i.

The output furthermore shows the indication on the parameter variables in the coeÆcients,
then the full center polynomial with parametric coeÆcients and then the specialized poly-
nomials.

The computing times are splitted into the time for input `read =', time for evaluation

`eval =', time for output `print =' and time spend in garbage collection `gc ='. The �rst
three times do not include garbage collection times. The computing times are summarized
also in table 6.27.

(* Commutator relations: *) t:=PREAD().

(e1,e2,e3) G

(

( e3 ), ( e1 ), ( e1 e3 - e1 ),

( e3 ), ( e2 ), ( e2 e3 - e2 ),

)

(*generate terms. *) e:=EVLGIL(LIST(1,1,1)).

(*compute polynomial in the center. *) x:=CenterPol(t,e).

Parameters: (X1)

Center polynomial:

X1

Specialized center polynomials:

1

Time: read = 0, eval = 4, print = 0, gc = 0.

Table 6.22: Lie Algebra: A3;2

Note, that in example 6.22 we do not �nd a polynomial in the center. But in

[Patera et. al. 1976] it is shown that there are analytic functions, which are invariant

under the commutator product in the Lie algebra. Namely e1 exp(�
e2
e1
).
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(* Commutator relations: *) t:=PREAD().

(e1,e2,e3) G

(

( e3 ), ( e1 ), ( e1 e3 - e1 ),

( e3 ), ( e2 ), ( e2 e3 + e2 ),

)

(*generate terms. *)

e:=EVLGTD(3,2,NIL). e:=INV(e). e:=FIRST(e).

(*compute polynomial in the center. *) x:=CenterPol(t,e).

Parameters: (X1)

Center polynomial:

X1 e1 e2

Specialized center polynomials:

e1 e2

Time: read = 0, eval = 4, print = 0, gc = 0.

Table 6.23: Lie Algebra: A3;4

In example 6.23 we do not obtain the constants of Q respectively the specialized poly-

nomial 1, since we did not ask for it. We only asked for polynomials in the center of
homogeneous total degree 2.

In example 6.26 we obtain more polynomials than [Patera et. al. 1976]. But observe, that

the �rst polynomial is the product of polynomials 4 and 5 and the second polynomial is
the product of the polynomials 5 and 6. This raises the question of canonical bases for
subrings.

6.9.2 Summary of Computing Times

A summary of the computing times for MAS on an Atari 1040 ST is contained in table

6.27. We list the respective Lie algebra in column one, the dimension of the Lie algebra

in column 2, then the total degree and the exponents as input to the term generating

algorithm. The last column contains the computing times. The column entitled `polyno-
mials' contains before slash `/' the number of specialized polynomials as produced by the

algorithms and after the slash the number of polynomials as listed in [Patera et. al. 1976].

6.10 Example U (sl(2); f)

The next examples are taken from [Smith 1990]. He studies a class of algebras which are
similar to the enveloping algebra of sl(2;C) over the complex numbers C.
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(* Commutator relations: *) t:=PREAD().

(e1,e2,e3) G

(

( e2 ), ( e1 ), ( e1 e2 - e3 ),

( e3 ), ( e2 ), ( e2 e3 - e1 ),

( e3 ), ( e1 ), ( e1 e3 + e2 ),

)

(*generate terms. *) e:=EVLGIL(LIST(2,2,2)).

(*compute polynomial in the center. *) x:=CenterPol(t,e).

Parameters: (X1,X2)

Center polynomial:

( X2 e3**2 + X2 e2**2 + X2 e1**2 + X1 )

Specialized center polynomials:

( e3**2 + e2**2 + e1**2 )

1

Time: read = 0, eval = 64, print = 0, gc = 16.

Table 6.24: Lie Algebra: A3;9

(* Commutator relations: *) t:=PREAD().

(e1,e2,e3,e4) G

(

( e4 ), ( e2 ), ( e2 e4 - e1 ),

( e4 ), ( e3 ), ( e3 e4 - e2 ),

)

(*generate terms. *) e:=EVLGIL(LIST(0,1,2,1)).

(*compute polynomial in the center. *) x:=CenterPol(t,e).

Parameters: (X1,X2,X3)

Center polynomial:

( -2 X3 e1 e3 + X3 e2**2 + X2 e1 + X1 )

Specialized center polynomials:

( -2 e1 e3 + e2**2 )

e1

1

Time: read = 0, eval = 6, print = 0, gc = 8.

Table 6.25: Lie Algebra: A4;1
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(* Commutator relations: *) t:=PREAD().

(e1,e2,e3,e4,e5,e6) G

(

( e2 ), ( e1 ), ( e1 e2 - e3 ),

( e3 ), ( e1 ), ( e1 e3 - e4 ),

( e5 ), ( e1 ), ( e1 e5 - e6 ),

)

(*generate terms. *) e:=EVLGIL(INV(LIST(0,1,2,1,1,1))).

(*compute polynomial in the center. *) x:=CenterPol(t,e).

Parameters: (X1,X2,X3,X4,X5,X6,X7)

Center polynomial:

( -2 X7 e2 e4 e6 + X7 e3**2 e6 + X6 e4 e6 -

X5 e3 e6 + X5 e4 e5 -2 X4 e2 e4 + X4 e3**2 +

X3 e6 + X2 e4 + X1 )

Specialized center polynomials:

( -2 e2 e4 e6 + e3**2 e6 )

e4 e6

( - e3 e6 + e4 e5 )

( -2 e2 e4 + e3**2 )

e6

e4

1

Time: read = 0, eval = 140, print = 0, gc = 24.

Table 6.26: Lie Algebra: A6;1

Lie Algebra dim total exponents polynomials time
degree

A3;2 3 � 3 (1; 1; 1) 1/2 4
A3;4 3 = 2 1/2 4

A3;9 3 � 6 (2; 2; 2) 2/2 64

A4;1 4 � 4 (0; 1; 2; 1) 3/3 6

A6;1 6 � 6 (0; 1; 2; 1; 1; 1) 7/5 140
Computing time in seconds.

Table 6.27: Computing Time Summary: Center
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The Lie algebra sl(2) over C is generated by three elements x; y; h with Lie product

[x; y] = h; [h; x] = x; [h; y] = �y:

The enveloping algebra of sl(2) can be regarded as solvable polynomial ring with respect

to a term order h < x < y as

S = Cfh; x; y; fy � x = xy � h; x � h = hx� x; y � h = hy + ygg:

As one can see from this representation, we need not take a total degree ordering as term

order. So an inverse lexicographical term order is suitable, which suggests, that S could

be considered as some Ore extension. This is indeed shown by Smith, that

S �= U(b)[y; �; Æ];

where

1. U(b) denotes the enveloping algebra of the 2-dimensional non-abelian Lie algebra b,
generated by h and x with commutator relation [h; x] = x,

2. � is de�ned by �(x) = x and �(h) = h� 1 and

3. Æ is de�ned by Æ(x) = h and Æ(h) = 0.

Now Smith observes, that by this de�nition as Ore extension, the de�nition of Æ(x) can
be deliberately replaced by any univariate polynomial in h without loosing the property

of being an Ore extension:
Æ(x) = f(h):

The resulting algebra will be denoted by R = U(sl(2); f) or as solvable polynomial ring
by

S = Cfh; x; y; fy � x = xy � f(h); x � h = hx� x; y � h = hy + ygg:

Now Smith shows, that the center of R is generated by a unique polynomial which is
determined as expression in f


 = x � y + y � x + g(h) 2 cen(R):

Furthermore let R0 = R=idealt(
) and let I = idealt(w1; w2) in R
0 be a two-sided ideal in

R0. Then he shows, that any such two-sided ideal I, generated by w1 = xi and w2 = yj

for i � n
 and j � n
, where 0 < n
 2 N is `suÆciently' large, is uniquely determined

by 
 and hence by f .

In the following examples we took f = 3=2h(h + 1) from [Smith 1990] example 2.4. We

�rst compute 
 2 cen(S) in table 6.28 as 
 = �2xy � h3 + h. Computing times for

various sets of terms, determined by exponent vectors, are given in table 6.30.

Having 
 we compute a Gr�obner base of a two-sided ideal generated by 
 and various

other elements of the form xi, yj and products and sums of them. If i � 2 and j � 2 then

the ideals are all equal to the ideal generated by

(h2 + h); (hx); (x2); (hy + y); (xy); (y2):

Computing times for various generating sets for the ideal are also given in table 6.30.
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(* Commutator relations: *) t:=PREAD().

(h,x,y) L

(

( x ), ( h ), ( h x - x ),

( y ), ( h ), ( h y + y ),

( y ), ( x ), ( x y - 3/2 h ( h + 1 ) ),

)

(*generate terms. *) e:=EVLGIL(LIST(1,1,4)).

(*compute polynomial in the center. *) x:=CenterPol(t,e).

Parameters: (X1,X2)

Center polynomial:

( -2 X2 x y - X2 h**3 + X2 h + X1 )

Specialized center polynomials:

( -2 x y - h**3 + h )

1

Time: read = 0, eval = 50, print = 0, gc = 16.

Table 6.28: Center of U(sl(2); f)

(* Non-commutative polynomials: *) p:=NPREAD(t).

(

( -2 x y - h**3 + h ),

( x**3 ),

( y**3 ),

)

(* Two sided G-base: *) c:=TSGBASE(t,p,1).

Polynomial in the variables: (h,x,y)

Term ordering: inverse lexicographical.

Polynomial list:

( h**2 + h )

( h x )

( x**2 )

( h y + y )

( x y )

( y**2 )

Table 6.29: Two-sided Ideal in U(sl(2); f)
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6.10.1 Summary of Computing Times

A summary of the computing times of the above examples are given in table 6.30.

The �rst column denotes what has been computed: 
 in the center, or the two-sided

ideals idealt(
; w1; w2). The other generators w1; w2 are of the form xi, yj and products

and sums of them. If i � 2 and j � 2 then the generators of the ideal from table 6.29 are

computed. Otherwise the two-sided Gr�obner base of the ideal is equal to fx; yg and f1g

respectively.

The second column shows the maximal exponent vectors for the searched center polyno-

mial. So an entry (l; m; n) means, that the terms have degrees 0 � i � l in the variable

y, 0 � i � m in the variable x and 0 � i � n in the variable h.

The third column shows the computing times in seconds for MAS on an Atari 1040 ST.
As can be seen the times vary drastically by the number of terms requested for the center
polynomial and the degrees of the generating elements of the two-sided ideals.

exponents time


 (1; 1; 3) 30


 (1; 1; 4) 50

 (1; 1; 5) 76

 (1; 1; 6) 112


 (1; 1; 7) 160

 (1; 1; 8) 242


 (2; 2; 3) 144

 (2; 2; 4) 284

idealt(
; 1) 0

idealt(
; x; y) 4
idealt(
; x

2; y2) 26

idealt(
; x
3; y3) 64

idealt(
; x
4; y4) 130

idealt(
; x
5; y5) 226

idealt(
; x + y) 4

idealt(
; x
2 + y2) 24

idealt(
; x
3 + y3) 92

idealt(
; x
2) 34

idealt(
; x
3) 66

idealt(
; (x + y)3) 688
Computing time in seconds.

Table 6.30: Computing Time Summary: U(sl(2); f)
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6.11 Concluding Remarks

We have presented eÆcient algorithms for the computation in solvable polynomial rings.

The algorithms may be used for computations of ideal bases in enveloping algebras of �nite

dimensional Lie algebras, in iterated di�erential operator rings or in Cli�ord algebras.

Furthermore the algorithms may serve as a base for the implementation of further con-

structive methods such as computation of syzygies, quotient �elds, residue class rings,

etc.

There are several possible improvements to the algorithms. One important improvement

would be to incorporate an fast algorithm for the solution of systems of linear equations

for the computation of elements in the center.

An implementation of the algorithms for syzygy computations is given in [Philipp 1991].
The algorithms for parametric Gr�obner bases in the commutative case are implemented
in [Sch�onfeld 1991].



Chapter 7

Comprehensive Gr�obner Bases

In this chapter we extend the theory of comprehensive Gr�obner bases, as introduced in
[Weispfenning 1990], from commutative polynomial rings to solvable polynomial rings.
An outline of this theory was given in [Kredel, Weispfenning 1990]. In the current setting

we assume that the coeÆcients commute with the variables.

The main point of comprehensive Gr�obner bases is that the construction of a Gr�obner base
is not performed over a �eld, but over a ring (with parameters) such that the specialization
of the parameters to elements of any �eld leads to a Gr�obner base over this �eld. In this

sense such an ideal base is a comprehensive Gr�obner base. In general the property of
beeing a Gr�obner base is lost under specialization of the coeÆcients as the following

example from [Weispfenning 1990] shows. Let S = Q[U ][X; Y ] be a polynomial ring in
X; Y with parameter U and with X < Y . Let

F = fX + 1; UY +Xg;

then F is a Gr�obner base in Q[U;X; Y ] wrt. <. Let � : Q[U ] �! K be a specialization,

which embedds Q into K and with �(U) 2 K. Then �(F ) (de�ned by applying � to the

coeÆcients) is a Gr�obner base inK[X; Y ] for any � with �(U) 6= 0. But for a specialization

with �(U) = 0 we have �(F ) = fX + 1; Xg and we see that 1 2 ideal(�(F )) but 1 is

not reducible with respect to �(F ). So �(F ) can not be a Gr�obner base. To obtain a

comprehensive Gr�obner base one would consider also the case when U = 0 and under this

condition the polynomial X + 1� (UY +X) = �UY + 1 2 ideal(F ). So in this example

G = fX + 1; UY +X;�UY + 1g

would be a comprehensive Gr�obner base, since now also under the specialization �(U) = 0

we see that �(G) = fX + 1; X; 1g is a Gr�obner base.

The plan for this chapter is as follows. In the �rst section we recall some de�nitions

and we extend the � product to a parametric �-product, i.e. to a �-product in a solvable
polynomial ring over a `parameter ring'. Furthermore we present a parametric reduction

and a parametric S-polynomial. Next we give a precise statement of specializations and

182



7.1. PARAMETRIC SOLVABLE ALGEBRAS 183

give a criterion on the head terms of a Gr�obner base under specialization. Then we de�ne

comprehensive Gr�obner bases.

The construction of a comprehensive Gr�obner base is performed by the usual process of

building S-polynomials and reductions. But now the conditions under which the steps are

performed are recorded in a set of conditions. This leads �rst to a tree of ideal bases where

the nodes are labeled by the set of conditions under which the step has been performed.

This tree of ideal bases is called a Gr�obner system and a comprehensive Gr�obner base is

afterwards obtained by taking the union of all ideal bases at the leaves of the tree. A

condensed coding of the conditions applied to the coeÆcients of the polynomials under

consideration is called a colouring. A coeÆcient is coloured red if it is non-zero under the

current set of conditions, it is coloured green if it is zero under the current set of conditions,
otherwise is coloured white. A determined set of polynomials is a set of polynomials
together with a set of conditions such that the �rst non-green term of a polynomial is

coloured red. This term then serves as a head term during the following steps of the
reduction and S-polynomial construction. Using these constructions the algorithms for
the construction of left (right, two-sided) Gr�obner systems are developed.

Finally the parametric ideal member ship problem is discussed. It has important appli-

cations in the proof of the strong Nullstellensatz. We have not included a treatment of
parametric modules of syzygies and deformation of residue algebras, this will be some
future work. Applications to quanti�er elimination are discussed in chapter 8 when we

have introduced the required Nullstellen S�atze.

7.1 Parametric Solvable Algebras

Let R be a commutative Noetherian domain and let R[U1; : : : ; Um] be a polynomial ring
in the commuting variables fU1; : : : ; Umg = U . Assume furthermore, that the variables

commute with the coeÆcients. For a two-sided ideal I in R[U1; : : : ; Um] with I \R = f0g
de�ne R = R[U1; : : : ; Um]=I so that R = R[u1; : : : ; um] with ui = Ui + I for i = 1; : : : ; m.

Recall the axioms of solvable polynomial rings 3.2.1 adapted for the current situation:

Axioms 7.1.1 S = RfX1; : : : ; Xn;Qg denotes a polynomial ring of solvable type over

R in the variables fX1; : : : ; Xng for a �xed term order <T if the following axioms are

satis�ed:

1. (S; 0; 1;+;�; �; <) is an associative ring extending R and with admissible term order

<.

2. (a) For all a; b 2 R, t 2 T (X1; : : : ; Xn), a � b � t = a � (bt) = (a � b) � t = abt.

(b) For all 1 � i � n, s 2 T (X1; : : : ; Xi), t 2 T (Xi; : : : ; Xn), s � t = st.

3. For all 1 � i < j � n there exist 0 6= cij 2 cen(R), pij 2 S such that

Xj �Xi = cjiXiXj + pij
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and pij < XiXj in the quasi-order on S induced by the termorder on T . Moreover

if C is the multiplicative subset generated by the cij in R, then 0 62 C.

4. For all 1 � i � n and all 0 6= a 2 R

Xi � a = aXi:

In the special case when R is a �eld and m = 0 we obtain a solvable polynomial ring as

de�ned in axioms 3.2.1(1, 2, 3, 4) in case the cai = 1 and the pai = 0 for 1 � i � n and

a 2 R. The notation for parametic solvable polynomial rings will be

S = RfX1; : : : ; Xn;Qg;

where Q denotes the parametric commutator relations of axiom 7.1.1(3). The commutator
relations Q0 of axiom 7.1.1(4) will not be written according to our earlier convention. S

will be called the polynomial ring, R will be called the coeÆcient ring and R will be called
the base coeÆcient ring.

The next goals considered in the rest of the section are to prove a parametric product
lemma and some notes on parametric reduction and S-polynomials.

7.1.1 Parametric Product

Lemma 7.1.2 Let R be a commutative Noetherian domain, m 2 N, R = R[u1; : : : ; um].
Let S = RfX1; : : : ; Xn;Qg be a parametric solvable algebra as de�ned in 7.1.1 with respect

to a �-compatible term order <. Let C be the multiplicative subset of R generated by the

cij from the commutator relations Q. Then for 0 6= f; g 2 S one can compute 0 6= c 2 C

and p 2 S with p < f � g such that

f � g = c � f � g + p:

c and p are uniquely determined by these properties and the coeÆcients of p in R are

polynomials in the cij, the coeÆcients of all pij from the commutator relations Q and of the

coeÆcients of f; g. Furthermore these polynomials are formed uniformly, independently

of the ring R.

The proof requires some preparations. In the following let n 2 N be �xed and let < be a

�xed admissible �-compatible term order.

De�nition 7.1.3 Let S = RfX1; : : : ; Xn;Qg be a solvable polynomial ring. For 1 � i <

j � n let Tij be �nite subsets of T . Let T = fTij : 1 � i < j � ng. Then S is of type T

if all terms occurring in some commutator polynomial pij from Q are elements of Tij for

1 � i < j � n. In other words T (pij) � Tij. T is called a type for a solvable algebra if

for a given term order < on T we have t < XiXj for all t 2 Tij for 1 � i < j � n.
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The proof of the parametric product lemma is by the following two lemmas, which depend

inductively on each other.

Lemma 7.1.4 Let S = RfX1; : : : ; Xn;Qg be a parametric solvable polynomial ring with

terms T . Let T be a type of a solvable polynomial ring and let Q be the parametric

commutator relations: Q = fXj � Xi = cijXiXj +
P

e2Jij deije : Jij 2 T g. If lemma

7.1.5 holds for all #0 < #, #; #0 2 T , then for u; v 2 T with uv = # one can construct an

expression

huv# =
X
e2Juv

ze;uv#e = huv#(fcijg; fdeijg);

such that

1. Juv = J(u; v; #) and

2. the ze;uv# = ze;uv#(fcijg; fdeijg) for e 2 Juv are multivariate polynomials in the fcijg

and the fdeijg with integer coeÆcients.

3. For every ground ring K and every specialization of the cij to elements 0 6= ĉij 2 K

and of deij to elements d̂eij 2 K such that Ŝ = KfX1; : : : ; Xn;Q(fĉijg; fd̂eijg)g is a
solvable polynomial ring the following holds

u � v = huv#(fĉijg; fd̂eijg):

Moreover HT(u � v) = HT(huv#) = uv, HC(u � v) = HC(huv#) = z(uv);uv#.

Notation: Zuv# = fze;uv#ge2Juv.

Proof: The proof is by Noetherian induction on t = uv assuming that lemma 7.1.5 holds

for all products f � g with HT(f)HT(g) = #0 < t.

Case: u = 1 respectively v = 1. Then according to lemma 3.2.4(3) we have u�v = uv and

so let 1) Juv = fvg, 2) zv;uv# = 1, 3) huv# = v, respectively let 1) Juv = fug, 2) zu;uv# = 1,

3) huv# = u.

Case: t > 1 and assume the claim is true for all t0 < t and that lemma 7.1.5 holds

for all products f � g with HT(f)HT(g) < t. If u 2 T (X1; : : : ; Xi), v 2 T (Xi; : : : ; Xn)

for some 1 � i � n then again by lemma 3.2.4(3) we have u � v = uv = t and so 1)

Juv = ftg, 2) zt;uv# = 1, 3) huv# = uv and we are done. Otherwise let u 2 T (Xh; : : : ; Xj),

v 2 T (Xi; : : : ; Xk) with 1 � h � j � n, 1 � i � k � n, i < j and h; i maximal, j; k

minimal and consider the following subcases.

Subcase 1, h � i: Let u = xhu
0 with u0 2 T (Xh; : : : ; Xj), then u0 < u and u � v =

Xhu
0 � v = Xh � u

0 � v. By induction assumption u � v = Xh � hu0v# = Xh �
P

e2Ju0v
ze;u0v#e

=
P

e2Ju0v
ze;u0v#Xh � e = z(u0v);u0v#Xh � u

0v +
P

e2Ju0vnfu
0vg ze;u0v#Xh � e. Since Xh � e < uv

for all e 2 Ju0v n fu
0vg, the induction assumption can be applied to the products in the

second sum. Let Xh � e =
P

e02JXhe
ze0;Xhe#e

0 then

u � v = z(u0v);u0v#uv +
X

e002Juv

ze00;uv#e
00 (�)
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where 1) Juv = fee
0 : e 2 Ju0v; e

0 2 JXheg, 2) ze;uv# = ze;uv#(fcijg; fdkijg) for e 2 Juv, 3)

huv# as in (�).

The subcase 2, j � k is handled similarly. Subcase 3, i < h and k < j is handled as

follows: Let u = u0Xj, v = Xiv
0 with u0 2 T (Xh; : : : ; Xj), v

0 2 T (Xi; : : : ; Xk), then u
0 < u,

v < v0 and u�v = u0�Xj �Xi�v
0 = u0�(cijXiXj+pij)�v

0 = u0�(cijXiXj)�v
0+u0�(pij)�v

0.

Now since HT(u0)HT(pij)HT(p
0) < t lemma 7.1.5 can be applied (two times) to the second

summand, which gives Ju0XiXjv0 and the respecive z and h. If we can furthermore construct

J 0; z0; h0 for the �rst summand we have 1) Juv = J 0 [ Ju0XiXjv0 , 2) ze00;uv# = z0e0 + ze;uv# if

e00 = e+ e0, 3) huv# = huv#(fcijg; fdkijg) as claimed.

For the �rst summand observe that u0 � cijXi < uv and Xj � v
0 < uv. So induction

can be applied to the partial products (u0 � cijXi) � (Xj � v
0) = (zd0cijXiu

0 + h0Xiu0#
) �

(zd00v
0Xj + h0v0Xj#

), where h0 is h without headterm. Distributing � over + and applying
three times lemma 7.1.5 to the three last summands (yielding h00) we obtain u � v =

(zd0cijXiu
0) � (zd00v

0Xj) + h00Xiu0v0Xj#
. To the �rst summand by axiom 3.2.1(2) or 7.1.1(2)

the assumption of the third subcase can be applied so zd0cijXi � (u
0 � zd00 � v

0) � Xj =

zd0cijXi � (zd000u
0v0 + h0u0v0#) �Xj. Since Xi � h

0
u0v0# �Xj < uv we can expand the products

and apply lemma 7.1.5 on the second product. By assumption of subcase 3 the �rst
summand is now a commutative product zd0cijXizd000u

0v0Xj = z(uv);uv#uv. Collecting all

coeÆcients of equal terms we obtain the desired J 0, z0 = z(uv);uv# and the h0. This proves
all subcases and cases and thus proves the lemma. 2

Lemma 7.1.5 Let S = RfX1; : : : ; Xn;Qg be a parametric solvable polynomial ring with

terms T . Let T be a type of a solvable polynomial ring and let Q be the parametric

commutator relations: Q = fXj � Xi = cijXiXj +
P

e2Jij deije : Jij 2 T g. Then for

polynomials 0 6= f; g 2 S with HT(f)HT(g) = #, # 2 T , under the assumption that lemma

7.1.4 holds for #, with indeterminate coeÆcients f =
P

e2Jf
aee and g =

P
e02Jg be0e

0 one

can construct an expression

hfg# =
X
e2Jfg

ze;fg#e = hfg#(fcijg; fdeijg; fakg; fbkg);

such that

1. Jfg = J(f; g; #) and

2. the ze;fg# = ze;fg#(fcijg; fdeijg; fakg; fbkg) for e 2 Jfg are multivariate polynomials

in the coeÆcients fcijg; fdeijg; fakg; fbkg with integer coeÆcients.

3. For every ground ring K and every specialization of the cij to elements 0 6= ĉij 2 K

and of deij to elements d̂eij 2 K such that Ŝ = KfX1; : : : ; Xn;Q(fĉijg; fd̂eijg)g is a

solvable polynomial ring and of ak; bk to arbitrary elements âk; b̂k 2 K the following

holds

f � g = hfg#(fĉijg; fd̂eijg; fakg; fbkg):

Moreover HT(f � g) = HT(hfg#) = HT(f)HT(g), HC(f � g) = HC(hfg#) = z(uv);fg#,

where u = HT(f) and v = HT(g).
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Notation: Zfg# = fze;fg#ge2Jfg.

Proof: By induction on the product of the head terms of f and g and using lemma 7.1.4.

By distributivity f � g = (
P

e2Jf
aee) � (

P
e02Jg be0e

0) =
P

e2Jf

P
e02Jg aee � be0e

0. So

f � g =
X
e2Jf

X
e02Jg

aebe0e � e
0:

By lemma 7.1.4 (using also induction assumption) each parametric product of e � e0 is an

expression

hee0#(fcijg; fdkijg):

Collecting the coeÆcients of the same terms we obtain

f � g =
X
e2Jfg

ze;fg#e

where each ze;fg# is a multivariate polynomial in the fcijg; fdkijg; fakg; fbkg with integer

coeÆcients. Moreover for the head term HT(f � g) = HT(f)HT(g) = w and the head
coeÆcient of HC(f � g) is aubvzw;uv#, where HT(f) = u and HT(g) = v. 2

Proof: of Lemma 7.1.2. In lemma 7.1.5 specialize the fcijg; fdkijg; fakg; fbkg to the
coeÆcients of the polynomials f; g and to the coeÆcients of the commutator relations in

Q. Combining lemma 7.1.5 and lemma 7.1.4, we see that lemma 7.1.5 holds for all # 2 T .
Then the claim follows by lemma 7.1.5. 2

7.1.2 Parametric Reduction and S-Polynomial

Left reduction and S-polynomials in parametric solvable polynomial rings are de�ned

in a way that no divisions by elements in the coeÆcient ring are necessary. Let S =
RfX1; : : : ; Xn;Qg be a parametric solvable polynomial ring.

Left reduction: let f; f 0 2 S and let H � S. Then f �!H f 0 if there exists a polynomial

0 6= p 2 H with HT(p) = t, a term s 2 T (f) such that s = ut and

f 0 = df � d0u � p;

where d; d0 2 R with d0 = coe�(s; f), d = coe�(s; u � p). By construction we have

d � f � f 0 2 ideall(H).

S-polynomial: let f; g 2 S and let u; v 2 T such that lcm(HT(f);HT(g)) = uHT(f) =

vHT(g). Let a = coe�(t; v � g) and b = coe�(t; u � f), then

LSP(f; g) = au � f � bv � g:

Lemma 7.1.6 Let S = RfX1; : : : ; Xn;Qg be a parametric solvable polynomial ring with

commutator relations Q. Let 0 6= f; g 2 S, f 0 2 S and let H � S. Then the following

hold:
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1. If f �!H f 0 in S, then the coeÆcients of f 0 in R are polynomials in the coeÆcients

in R of the polynomials in ffg [H [Q. Moreover f 0 < f .

2. The coeÆcients in R of h = LSP(f; g) are polynomials in the coeÆcients in R of

the polynomials in ff; gg [Q.

Proof: In both cases f 0 and h are di�erences of products of parametric polynomials, so the

claim follows by the parametric product lemma 7.1.2. The product lemma shows also that

the polynomials are formed uniformly, independently of the ring R if R is commutative.

The claim f 0 < f follows from the fact, that the term s in f does no more appear in f 0,

all terms u 2 T (f) with u > s remain in T (f 0) and that only terms less than s from u � p,
0neqp 2 H are newly entered into T (f 0). 2

7.2 Specializations

Recall that R denotes an commutative domain. Furthermore assume that R and conse-

quently by the Hilbert basis theorem R = R[u1; : : : ; um] is Noetherian.

De�nition 7.2.1 A specialization of R = R[u1; : : : ; um] is a ring homomorphism � :

R �! K0, where K0 is a commutative �eld. Let S = RfX1; : : : ; Xn;Qg be a parametric

solvable algebra over R. Let S 0 = K0fX1; : : : ; Xn;Q
0g be a solvable polynomial ring over

K0 with commutator relations Q0 such that for all 1 � i < j � n there exist 0 6= c0ij 2 K
0,

p0ij 2 S
0 such that

Xj �Xi = c0jiXiXj + p0ij 2 Q0

and p0ij < XiXj. Let �� : S �! S 0 be the natural extension of � obtained by applying �

coeÆcientwise. Then � is called admissible for S and S 0 if for 1 � i < j � n

�(cij) = c0ij and ��(pij) = p0ij:

Let K0 be an extension �eld of K, then a specialization � : R �! K0 of R is called

epi specialization if K0 = Q(�(R)), the quotient �eld of �(R). Since R is assumed to
be a commutative Noetherian domain, and � is injective, then �(R) is a commutative

Noetherian domain too, so the quotient �eld Q(�(R)) always exists.

Lemma 7.2.2 Let � : R �! K0 be a specialization of R that is admissible for S =

RfX1; : : : ; Xn;Qg and S 0 = K0fX1; : : : ; Xn;Q
0g. Then �� : S �! S 0 is a ring homo-

morphism with respect to �. So whenever 0 6= f; g 2 S and f � g = c � f � g + p and

��(f) � ��(g) = c0 � ��(f) � ��(g) + p0 are as in proposition 3.2.5 then

c0 = �(c) and p0 = ��(p):

Proof: By the parametric product lemma 7.1.2. 2
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Proposition 7.2.3 Let < be a term order on T and let T be a type for a solvable al-

gebra wrt. <. Let R be a commutative Noetherian domain. Then there exists a ring

R = R[u1; : : : ; um] = R[U1; : : : ; Um]=I, I a two-sided ideal, and a parametric solv-

able algebra S = RfX1; : : : ; Xn;Qg such that for all �elds K0, all solvable algebras

S 0 = K0fX1; : : : ; Xn;Q
0g of type T and all ring homomorphisms � : R �! K0, � has

an extension to a specialization � : R �! K0 that is admissible for S and S 0. In particu-

lar if � is surjective then S 0 = �(S).

Proof: Let T = fTij : 1 � i < j � ng. For all 1 � i < j � n we let cij be

an indeterminate and pij the most general polynomial with indeterminate coeÆcients

containing all terms in Tij. Let U1; : : : ; Um be a list of all these indeterminates. For every

pair of terms s; t 2 T let cst and pst be determined by the parametric product lemma 7.1.2
in such a way that

s � t = cstst + pst with 0 6= cst 2 C
0 and pst < st (1)

in every parametric solvable algebra S = R0fX1; : : : ; Xn;Qg satisfying axioms 7.1.1, and
R0 = R[U1; : : : ; Um]. Then (1) together with 7.1.1 (2) determines the structure constants

inR0 of S with respect to the basis T of S. By proposition 3.3.6 (see also [Jacobson 1962](p
4)), there exists a set A of polynomials in these structure constants with the following

property: for u1; : : : ; um 2 R, q(u1; : : : ; um) = 0 for all q 2 A i� the algebra on the free
R-module with basis T and multiplication � de�ned by (1) is associative. Let now I be
the ideal generated by A in the polynomial ring R[U1; : : : ; Um]. Then I \R = f0g since

there exists the solvable algebra K0[X1; : : : ; Xn], where K
0 = Q(R) is the quotient �eld

of R. De�ne R = R[U1; : : : ; Um]=I = R[u1; : : : ; um], ui = Ui + I for 1 � i � m and de�ne
the R-algebra S with basis T over R by (1). Then by construction S is associative and

hence a parametric solvable polynomial ring over R satisfying 7.1.1.

Let now S 0 = K0fX1; : : : ; Xn;Q
0g be a solvable algebra of type T over a �eldK0 satisfying

for 1 � i <� n:

Xj �Xi = c0ijXiXj + p0ij 2 Q0

with 0 6= c0ij 2 K
0 and p0ij 2 S

0, p0ij < XiXj. Let v1; : : : ; vm be the m-tuple consisting of

c0ij and the coeÆcients of the p0ij listed in the same order as the m-tuple (U1; : : : ; Um) for

the cij and the coeÆcients of the pij. Let � : R �! K0 be a ring homomorphism and let
�� : R[U1; : : : ; Um] �! K0 be its canonical extension with ��(Ui) = vi. Then by de�nition

of A, ��(g(U1; : : : ; Um)) = 0 for all q 2 A. Consequently ker(��) � I and so �� induces a

specialization � : R �! K0 with ��(ui) = vi. By construction � is admissible for S and S 0

and so by lemma 7.2.2 �� : S �! S 0 is a ring homomorphism. Finally �� is surjective if �

is surjective. 2

7.2.1 Prime Spectrum

Let R be a ring, then the set of all prime ideals is called the prime spectrum of R and

is denoted by spec(R). The set of all complete prime ideals is called the complete prime
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spectrum of R and is denoted by c-spec(R). In this section we need some facts about

Noetherian integral domains and the so called Ore condition as discussed in section 8.2.2.

Although we assume the coeÆcient ring R to be commutative, and so the sets of prime

and complete prime ideals coincide, we will speak of complete prime ideals to stress this

fact.

De�nition 7.2.4 Let S = RfX1; : : : ; Xn;Qg be a parametic solvable algebra over R.

Recall that for f 2 S, T (f) denotes the set of all terms that occur in f with non vanishing

coeÆcient: T (f) = ft 2 T : coe�(t; f) 6= 0g. For � 2 c-spec(R) let T�(f) denote the set

of all terms that occur in f with coeÆcient not in �:

T�(f) = ft 2 T : coe�(t; f) 62 �g:

HT�(f) denotes the maximal element of T�(f) with respect to the given term order.

HC�(f) = coe�(HT�(f); f). If T�(f) = ; then HT�(f) and HC�(f) are unde�ned. For

F � S let HT�(F ) = fHT�(f) : f 2 Fg.

If R is an integral domain then for � = f0g note that Tf0g(f) = T (f), HTf0g(f) = HT(f)
and HCf0g(f) = HC(f).

Lemma 7.2.5 Let S = RfX1; : : : ; Xn;Qg be a parametic solvable algebra over a (com-

mutative Noetherian domain) R.

1. For every specialization � : R �! K0, where K0 is a �eld, ker(�) is a complete

prime ideal. In particular ker(�) 2 c-spec(R).

2. Let � 2 c-spec(R) be a complete prime ideal, then � determines a specialization ��
with kernel �.

Proof: (1) SinceK0 is a �eld and R is a domain ab 2 ker(�) implies 0 = �(ab) = �(a)�(b).
So �(a) = 0 or �(b) = 0 and so a 2 ker(�) or b 2 ker(�) which shows that ker(�) is a

complete prime ideal.

(2) Since � is a complete prime ideal, R=� is an (commutative) domain. So there exists
the quotient �eld K� = Q(R=�). Then the canonical homomorphism �� : R �! K� is a

specialization. 2

Lemma 7.2.6 Let S = RfX1; : : : ; Xn;Qg be a parametic solvable algebra over R. Let

Il (Ir, It) be a left (right, two-sided) ideal of S and let G be a �nite subset of S. Let

� 2 c-spec(R) be a complete prime ideal, K� = Q(R=�) and let �� : R �! K� be an epi

specialization, such that ��� is admissible for S and S 0 = K�fX1; : : : ; Xn;Qg. Then the

following are equivalent:

1. ���(G) is a left (right, two-sided) Gr�obner base of ideall( ���(Il)) (respectively

idealr( ���(Ir)) or idealt( ���(It))) in K�fX1; : : : ; Xn;Qg,
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2. for all f 2 Il (respectively Ir; It) with T�(f) 6= ;, there exists g 2 G such that

HT�(g) j HT�(f).

Proof: We verify conditions 4.6.2(5), 4.10.3(5) and 4.11.6(7) for left (right, two-sided)

Gr�obner bases.

(1) =) (2): Let f 2 Il with T�(f) 6= ;, then ���(f) 6= 0. Since ���(G) is a Gr�obner

base of ideall( ���(Il)) we have ���(f) 2 ideall( ���(G)). So there exists ���(g) 2 ���(G) with

HT�(g) = HT( ���(g)) j HT( ���(f)) = HT�(f). Similarly for f 2 Ir and f 2 It.

(2) =) (1): Let f 2 K�fX1; : : : ; Xn;Qg such that 0 6= f 2 ideall( ���(Il)). Then there

exists c 2 R n � such that there exists h 2 Il with ���(h) = cf . Since f 6= 0 we have
T�(h) 6= ;. By assumption there exists g 2 G with HT( ���(g)) = HT�(g) j HT�(h) =

HT( ���(h)) = HT( ���(f)). That is ���(G) is a left Gr�obner base as claimed. Similarly for
right and two-sided Gr�obner bases Ir and It. 2

7.3 Comprehensive Gr�obner Bases

In this section we give the de�nition of comprehensive Gr�obner bases and state the main
theorem on comprehensive Gr�obner bases, which will then be proved in the rest of the

chapter.

De�nition 7.3.1 Let S = RfX1; : : : ; Xn;Qg be a parametric solvable polynomial ring

over a ring R = R[u1; : : : ; um] over a commutative Noetherian domain R. Let I be a

left (right, two-sided) ideal in S and let G be a �nite subset of S. Then G is a com-

prehensive left (right, two-sided) Gr�obner base of I, if for all solvable polynomial rings

S 0 = K0fX1; : : : ; Xn;Qg over a �eld K0 and all specializations � : R �! K0 that are

admissible for S and S 0,

��(G) is a left (right, two-sided) Gr�obner base of the left (right, two-sided) ideal

ideall(��(I)) (idealr(��(I)), idealt(��(I))) in S
0.

Lemma 7.3.2 Let S = RfX1; : : : ; Xn;Qg be a parametic solvable polynomial ring over

a ring R = R[u1; : : : ; um] over a commutative Noetherian domain R. Let G be a �nite

subset of S. Then the following are equivalent:

1. G is a left (right, two-sided) comprehensive Gr�obner base with respect to <T ,

2. for all epi specializations � : R �! K0, that are admissible for S and S 0 =

K0fX1; : : : ; Xn;Qg, ��(G) is a left (right, two-sided) Gr�obner base in S 0.

Proof: (1) =) (2): admissible epi specializations are in particular admissible specializa-
tions.
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(2) =) (1): Let � : R �! K0 be a specialization that is admissible for S and S 0. Let

K00 = Q(�(R)) be the quotient �eld of �(R). By the universal property of quotient

�elds we may assume K00 � K0, that is K0 can be considered as an extension �eld of

K00. Now de�ne an epi specialization by �0 : R �! K00 and extend it to an admissible

specialization ��0 : S �! S 00 = K00fX1; : : : ; Xn;Qg setting ��0(Xi) = ��(Xi), (i = 1; : : : ; n).

By assumption ��0(G) is a left (right, two-sided) Gr�obner base in S 00. Since Gr�obner bases

are stable under �eld extensions by 5.2.1, ��0(G) is a left (right, two-sided) Gr�obner base

in S 0 = K0fX1; : : : ; Xn;Qg. Furthermore �� extends ��0 so that ��(G) is a Gr�obner base in

S 0. 2

Proposition 7.3.3 Let S = RfX1; : : : ; Xn;Qg be a parametic solvable polynomial ring

over a ring R = R[u1; : : : ; um] over a commutative Noetherian domain R. Let G be a

�nite subset of S. Then the following are equivalent:

1. G is a left (right, two-sided) comprehensive Gr�obner base with respect to <T ,

2. for all � 2 c-spec(R) (i.e. � complete prime) and all t 2 HT�(ideall(G)) (respectively

t 2 HT�(idealr(G)), t 2 HT�(idealt(G))) there exists g 2 G with HT�(g) j t.

Proof: (1) () for all admissible epi specializations � : R �! K0, �(G) is a left (right,
two-sided) Gr�obner base (by lemma 7.3.2) () (2) by proposition 7.2.6. 2

Our next goal is the proof of the following central theorem:

Theorem 7.3.4 (Comprehensive Gr�obner Base) Let S = RfX1; : : : ; Xn;Qg be a

parametic solvable polynomial ring over a ring R = R[u1; : : : ; um] over a commutative

Noetherian domain R. Let F be a �nite subset of S. Then one can construct a compre-

hensive left (right, two-sided) Gr�obner base of ideall(F ) (idealr(F ), ideal(F )) in S. The

construction is algorithmic relative to the term order < on T and computations in the

ground ring R.

To prove the theorem we need several preparations, which we will introduce in the next

sections on conditions, reductions and Gr�obner systems.

7.4 Conditions and Colourings

De�nition 7.4.1 Let R = R[u1; : : : ; um] be a ring over a commutative Noetherian do-

main R. A condition  = f�1; : : : ; �ig is a �nite set of polynomial equations and poly-

nomial inequations

�i :

(
g(u1; : : : ; um) = 0; or
g(u1; : : : ; um) 6= 0:

Any condition determines a constructible subset c-spec of c-spec(R):

c-spec = f� 2 c-spec(R) : g 2 � for (g = 0) 2  and g0 62 � for (g0 6= 0) 2 g:
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Notice that c-spec may be empty, e.g.

1. if 1 2 ideal(g1; : : : ; g), where gi(u1; : : : ; um) = 0 are polynomial equations in , or

2. if for some g both g(u1; : : : ; um) = 0 and g(u1; : : : ; um) 6= 0 are in .

De�nition 7.4.2 A �nite set � of conditions is a case distinction, if for all ; 0 2 �,

 6= 0 =) c-spec \ c-spec0 = ;:

� is a cover of a condition Æ, if � is a case distinction and[
2�

c-spec = c-specÆ:

� is a cover of a case distinction �, if � is of the form

� =
[
Æ2�

�Æ

where each �Æ is a cover of Æ.

� is a complete case distinction (ccd), if � is a cover of the empty condition.

In particular � = f;g is a complete case distinction since c-spec; = c-spec(R).

De�nition 7.4.3 Let g 2 R and let � be a set of conditions. Let

�1 = f [ fg(u1; : : : ; um) = 0g :  2 �g

�2 = f [ fg(u1; : : : ; um) 6= 0g :  2 �g:

If � is a complete case distinction, then �1 [�2 is a complete case distinction that re�nes

�. If � is a cover of a condition Æ (or of a case distinction �) then �1[�2 is a cover of a

condition Æ (or of a case distinction �) that re�nes �. The conditions [fg(u1; : : : ; um) =

0g and  [ fg(u1; : : : ; um) 6= 0g are called successors of the condition .

Thus we can consider the set of all conditions as a tree under the set inclusion relation

and the empty condition ; as root.

De�nition 7.4.4 Let R = R[u1; : : : ; um] be a ring over a commutative Noetherian do-

main R. Let F be the set of all R-terms with variables u1; : : : ; um and operations +;�; �.
So every a 2 F corresponds to an a0 2 R. A colouring of F is a map

col : F �! fwhite; green; redg

such that col(a) = green if a is equal to 0 and col(a) = red if a is a non-zero element of

R. A condition  determines a colouring of F by

col : F �! fwhite; green; redg
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where again col(a) = green if a is equal to 0 and col(a) = red if a is a non-zero element

of R. Furthermore

col(a) = green; if (a(u1; : : : ; um) = 0) 2  and

col(a) = red; if (a(u1; : : : ; um) 6= 0) 2 :

And by recursion let

col(�a) = col(a);

col(a � b) =

8><
>:
red if col(a) = red and col(b) = red;

green if col(a) = green or col(b) = green;

white in all other cases,

col(a+ b) =

8>>><
>>>:
red if col(a) = red and col(b) = green;

red if col(a) = green and col(b) = red;

green if col(a) = green and col(b) = green;

white in all other cases.

So a is coloured green by  if (a = 0) can be deduced, by the recursive rules given above,
from the conditions in  and a is coloured red by  if (a 6= 0) can be deduced, by the
recursive rules given above, from the conditions in . If neither (a = 0) nor (a 6= 0) can

be deduced from  by these rules, then a is coloured white.

7.5 Determining Polynomials

De�nition 7.5.1 For any f 2 S a colouring of R with respect to a condition  induces

a colouring of T (f) by

col(t) = col(coe�(t; f)):

De�nition 7.5.2 Let c 2 fgreen; red; whiteg then de�ne

Tc;(f) = ft 2 T (f) : col(t) = cg:

Furthermore de�ne

TR;(f) = ft 2 Tred;(f) : for all t0 2 T (f); if t0 > t; then col(t
0) = greeng

and

TW;(f) = ft 2 Twhite;(f) : for all t0 2 T (f); if t0 > t; then col(t
0) = greeng:

Lemma 7.5.3 Both TR;(f) and TW;(f) are either empty or consist of exactly one ele-

ment. More precisely:

1. If T (f) = Tgreen;(f) then TR;(f) = TW;(f) = ;.
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2. If T (f) 6= Tgreen;(f) then either

(a) TR;(f) 6= ; and TW;(f) = ;, or

(b) TR;(f) = ; and TW;(f) 6= ;.

Proof: (1) if there are only green terms, then obviously there are no red and no white

terms. (2) The highest non green term must be either red or white. 2

De�nition 7.5.4 For f 2 S and a condition , such that TR;(f) 6= ;, we de�ne the

-head term of f :

HT(f) = t;where t 2 TR;(f):

So HT(f) may be unde�ned for certain f and . If HT(f) is de�ned then the leading 

coeÆcient is HC(f) = coe�(HT(f); f).

De�nition 7.5.5 Let F be a �nite set of polynomials in S. A condition  determines F ,
if for every f 2 F , HT(f) is de�ned or T (f) = Tgreen;(f). A �nite set of conditions �
determines F , if for every  2 �,  determines F .

Lemma 7.5.6 For any condition  and any �nite subset F = ff1; : : : ; fkg of S one can

construct a cover � of , such that � determines F . Moreover j�j �
Qk
i=1(jT (fi)j+ 1).

Proof: We give an algorithm which computes � in table 7.1.

Partial correctness follows from the properties of TW;(fi): as long as there exist white

head terms in fi with respect to  its coeÆcient is either coloured red and the condition
fHC(fi) 6= 0g[ is placed in � or it is coloured green and  is extended by the condition
HC(fi) = 0. Termination follows, since F is �nite, for every f 2 F , T (f) is �nite and � is

�nite in each loop. The bound follows from the fact, that the inner while loop produces

at most jT (fi)j new conditions and after their termination one more condition is added.

2

7.6 Reduction and Normal Form

In this section we de�ne polynomial reductions relative to conditions and relate them to

reductions under specializations.

De�nition 7.6.1 Left reduction relative to : Let f; f 0; p 2 S and let  be a condition.

Then

f �!p f
0 []

i� TR;(p) 6= ;, say t 2 TR;(p), and there exists s 2 Tred;(f)[Twhite;(f) and u 2 T such

that s = ut and

f 0 = c � f � d � s � p:
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Algorithm: DETER(; F )

Input: A condition  and F = ff1; : : : ; fkg � S.

Output: A cover � of  that determines F .

begin � fg. i 0.

while i < k do i i + 1.

�0  �. � ;.

while �0 6= ; do Let  2 �0.

�0  �0 n fg. 0  .

while TW;0(fi) 6= ; do Let t 2 TW;0(fi).

a coe�(t; fi).
� � [ f0 [ f(a 6= 0)gg.

0  0 [ f(a = 0)g.
end.

� � [ f0g.
end.

end.

return(�).
end DETER.

Table 7.1: Algorithm: DETER

where d = coe�(s; f) and c = HC(s � p). In this case we say f left reduces to f 0 modulo

p relative to .

For P � S de�ne f �!P f 0 [] if there exists p 2 P such that f �!p f
0[]. Iterated

reductions etc. are de�ned as usual.

Right reductions are de�ned similarly.

Remark: If  � Æ then f �!p f
0[] implies f �!p f

0[Æ].

De�nition 7.6.2 S-polynomial relative to : Let f; g 2 S and let  be a condition.

Assume TR;(f) 6= ; and TR;(g) 6= ;. Let u; v 2 T such that lcm(HT(f);HT(g)) =

uHT(f) = vHT(g). Furthermore let b = coe�(t; u � f), a = coe�(t; v � g), then

LSP(; f; g) = a � u � f � b � v � g:

Lemma 7.6.3 Let P � S, f; f 0; g 2 S. Let  be a condition such that c-spec 6= ;, let

� 2 c-spec and let �� be the corresponding specialization. Then

f �!P f
0 [] =) ��(f) �!��(P ) ��(f

0) or ��(f
0) = c��(f)

for some 0 6= c 2 K0 and

LSP(; f; g) = LSP(��(f); ��(g)):
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Proof: Follows from HT(p) = HT(��(p)) for all involved polynomials, since HT(p) is

coloured red under  which means that coe�(HT(p); p) 62 �. 2

Notice that f �!p f
0[] does not imply f 0 < f (in S).

For a polynomial g 2 S and a condition  de�ne the essential part of g with respect to 

as ge; 2 S, where ge; is obtained from g by deleting all green coeÆcients and all green

terms with respect to .

Lemma 7.6.4 Let f; f 0; p 2 S and let  be a condition. If f �!p f
0[] then

f 0e; < fe; (in S):

Proof: Let f 0 = c � f � d � s � p. By de�nition a non-green term t is removed from f in
f 0. Furthermore all terms t0 2 T (s � p) with t0 > t are coloured green. By the product

proposition 3.2.5 and the properties of colourings, all non-green terms of s � p are smaller
than t. Since di�erences of green monomials gives green monomials, this shows, that all
new non-green terms in f 0 are smaller than t. 2

Lemma 7.6.5 For any �nite F � S, any condition  that determines F and any f 2 S

one can compute a tuple (g; c) such that

1. c 2 R, g 2 S and  colours c red.

2. f �!�
F g[] and cf � g 2 ideall(F ) (idealr(F ), idealt(F )).

3. g is irreducible modulo F relative to .

Proof: We give an algorithm which computes (g; c) in table 7.2.

Partial correctness follows from the de�nition of reduction.

Termination: Let fgigi=0;1;::: be the sequence of reduction polynomials with g0 = g. Let

gi+1 = ci � gi � di � si � pi be one step reduct of gi. Then we have for the essential parts

gi+1;e; < gi;e;. Since < is a well-founded quasi-order on S the reduction sequence must
be �nite fgigi=0;1;:::;k. 2

To distinguish left and right reduction we will denote NORMALFORM by LNF (for

left reduction) and RNF (for right reduction).

7.7 Gr�obner System

In this section we discuss `trees with pairs of a condition and an ideal base at the nodes',

such that the `leaves consist of (preimages of) Gr�obner bases'. The `leaves' constitute

the so called Gr�obner system and the union over all ideal bases in a Gr�obner system is a
comprehensive Gr�obner base. In this section let S = RfX1; : : : ; Xn;Qg be a parametric
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Algorithm: NORMALFORM(; f; F )

Input: A condition , f 2 S and F = ff1; : : : ; fkg � S

such that  determines F .

Output: A tuple (g; c) satisfying the conditions (1) { (3) of the lemma.

begin D  HT(F ). c 1. g  f .

while 9s 2 D with s j t for some t 2 T (ge;) do

Let p 2 F with HT(p) = s. Let u 2 T with t = su.

c0  coe�(t; u � p). d coe�(t; g).

g  c0 � g � d � u � p.

c c0c. end.
return((g; c)).

end NORMALFORM .

Table 7.2: Algorithm: NORMALFORM

solvable polynomial ring over a ring R = R[u1; : : : ; um] over a commutative Noetherian
domain R.

Recall that R = R[u1; : : : ; um] arises from a ring R0 = R[U1; : : : ; Um] in the indeterminates
U1; : : : ; Um such that uj = Uj+I, 1 � j � m, where I is a two-sided ideal inR[U1; : : : ; Um]

such that R = R0=I. In the algorithms the computations in R will actually be performed
in R0. So S 0 = R0fX1; : : : ; Xn;Qg is possibly not an associative ring, but we know,
that if we specialize the U 's to the u's or to some elements of a �eld K, such that

S = KfX1; : : : ; Xn;Qg is a solvable polynomial ring, then all parametric computations
are justi�ed.

De�nition 7.7.1 Let � be a case distinction. A left (right, two-sided) Gr�obner system

GS of an left (right, two-sided) ideal I of S for � is a �nite set of pairs (;G) such that:

1.  is a condition and G is a �nite subset of I determined by .

2. � = f : (;G) 2 GSg is a cover of �.

3. For every � 2 c-spec, ��(G) is a left (right, two-sided) Gr�obner base of ideall(��(I))

( idealr(��(I)), idealt(��(I)) ) of K�fX1; : : : ; Xn;Qg.

De�nition 7.7.2 Let � be a case distinction. A comprehensive left (right, two-sided)

Gr�obner base G of a left (right, two-sided) ideal I for � is a �nite subset of I such that

for all � 2
S
Æ2� c-specÆ, ��(G) is a left (right, two-sided) Gr�obner base of the left (right,

two-sided) ideal ideall;r;t(��(I)). In particular for � = ;, G is a comprehensive left (right,

two-sided) Gr�obner base of I. GS is then called a left (right, two-sided) Gr�obner system

of I.
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Proposition 7.7.3 Any left (right, two-sided) Gr�obner system GS of a left (right, two-

sided) ideal I of S for � determines a comprehensive left (right, two-sided) Gr�obner base

G of I for � and vice versa in the following sense.

1. Let GS be a left (right, two-sided) Gr�obner system of I for �. Let

G0 =
[
fG : (Æ; G) 2 GSg:

Then G0 is a comprehensive left (right, two-sided) Gr�obner base of I for �

2. Let G be a comprehensive left (right, two-sided) Gr�obner base of I for �. Let

� =
[
Æ2�

DETER(Æ; G); GS = f(;G) :  2 �g:

Then GS is a left (right, two-sided) Gr�obner system of I for �. Moreover for any

further left (right, two-sided) Gr�obner system GS 0 of I for �, such that (Æ; G0) 2 GS 0

implies G0 = G, there exists (;G) 2 GS with c-specÆ � c-spec.

Proof: (1) Let � = f : (;G) 2 GSg. Then � is a cover of � so
S
fc-spec :  2 �g =S

fc-specÆ : Æ 2 �g = c-spec�. Now G0 � G is an extension of G so for any � 2 c-spec�
also

��(G) � ��(G
0) � ideall;r;t(��(G)):

Since any extension of a Gr�obner base is again a Gr�obner base, ��(G
0) is as desired.

(2) The �rst claim follows from the fact that � is by construction a cover of �. Let GS 0

be a further Gr�obner system. Let (Æ; G) 2 GS 0 and let � 2 c-specÆ. Let (;G) 2 GS

with � 2 c-spec . Then both Æ and  determine G and so by de�nition of � we have

c-specÆ � c-spec. 2

Using a comprehensive Gr�obner base of an ideal I one can compute the equivalence

relation �I on c-spec(R), which is de�ned by � �I �
0 i� HT�(I) = HT�0(I).

Corollary 7.7.4 Let G be a comprehensive Gr�obner base for an ideal I � S (that is

� = ;) and let GS be a Gr�obner system for G with case distinction �. Then for �; �0 2

c-spec(R): � �I �
0 i� there exist ; Æ 2 � such that

1. mult(HT(G)) = mult(HTÆ(G)) and

2. � 2 c-spec, �
0 2 c-specÆ.

Proof: For any  2 � and � 2 c-spec , HT�(I) = mult(HT(G)) holds. 2

Theorem 7.7.5 (Construction of Gr�obner systems) For any �nite F � S and any

case distinction � one can construct a left (right, two-sided) Gr�obner system GS of

ideall(F ) (idealr(F ), idealt(F )) for �.
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Algorithm: LGSY STEM(�; F )

Input: A case distinction � and F = ff1; : : : ; fkg � S.
Output: A left Gr�obner system GS of ideall(F ) for �.
begin � 

S
fDETER(Æ; F ) : Æ 2 �g.

GS  f(; F ) :  2 �g.
P  f(; F; f; g) :  2 �; f; g 2 F; f 6= gg.
while P 6= ; do Let (;G; f; g) 2 P .

P  P n f(;G; f; g)g. GS  GS n f(;G)g.
h LSP(; f; g).

(p; c) LNF(; h;G).
N  f(�; p; c) : � 2 DETER(; fpg)g.
while N 6= ; do Let (�; p; c) 2 N .

N  N n f(�; p; c)g.
if Tgreen;�(p) 6= T (p)

then P  P [ f(�;G [ fpg; f 0; p) : f 0 2 Gg.
GS  GS [ f(�;G [ fpg)g

else GS  GS [ f(�;G)g end.

end.
end.

GS 0  GS.

GS  f(;G) : exists G00 and maximal ; with (;G00) 2 GS 0;

and G =
S
fG0 : (�;G0) 2 GS 0; � � gg.

return(GS).

end LGSY STEM .

Table 7.3: Algorithm: LGSYSTEM
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Proof: We give algorithms which compute a left (right) GS and a two-sided GS. Note,

that the computations on the coeÆcients take place in R[U1; : : : ; Um]. Table 7.3 shows

an algorithm for the computation of a left (right) GS.

Correctness: Upon termination for every pair (;G) 2 GS we have G � ideall;r(F )

and the conditions 1 and 2 of the de�nition 7.7.1 of a Gr�obner system hold. To show

condition 3, let (;G) 2 GS with G =
S
fG0 : (�;G0) 2 GS 0; � � g. Then observe that

for f; g 2 G with f 6= g, for p 2 S and for  with � 2 c-spec with

LSP(; f; g) �!�
G p[]:

By construction of the left normal form, there exists 0 6= c 2 R such that (p; c) =

LNF(;LSP(; f; g); G). The if condition in the algorithm assures that T (p) = Tgreen;(p).
So for every � 2 c-spec by lemma 7.6.3

LSP(��(f); ��(g)) �!
�
��(G)

0:

So by theorem 4.6.2(6) ��(G) is a left (right) Gr�obner base of

ideall(��(ideall(F )) ( idealr(��(idealr(F )) )

and condition 3 holds.

Termination: The set of all pairs (;G) produced by the algorithm forms a tree. The
successor of a pair (;G) is a pair (Æ; G0), where Æ is a successor of the condition  and
G0 = G or G0 = G [ fpg, with (p; c) = LNF(;G; f; g) for some f; g 2 G, f 6= g. Since

DETER(; fpg) is �nite, the tree of the pairs (;G) is �nitely branching. If in a branch
B a successor (Æ; G0) is equal to (Æ; G), that is when no polynomial was added to G0, then

the corresponding set of pairs P has decreased. So there exists no in�nite branch with the
same G. If in a branch B a successor (Æ; G0) is equal to (Æ; G[fpg), then the Æ head term
t = HTÆ(p) is irreducible with respect to the Æ head terms of G. Since Æ is a successor of 

we have HTÆ(G) = HT(G). So if a branch B is in�nite, there exists an in�nite sequence

of head terms fti : ti 2 HT(G); (;G) 2 Bg, such that ti 6 jtj for i < j. Such a sequence

contradicts Dickson's lemma. So in the tree each branch is �nite and since the tree is

�nitely branching the tree is �nite by K�onig's tree lemma.

Table 7.4 shows an algorithm for the computation of a two-sided GS.

Correctness: Upon termination for every pair (;G) 2 GS we have G � idealt(F ) and the

conditions 1 and 2 of the de�nition 7.7.1 of a two-sided Gr�obner system hold. To show

condition 3, let (;G) 2 GS with G =
S
fG0 : (�;G0) 2 GS 0; � � g. Then observe that

for f; g 2 G with f 6= g, for p 2 S and for  with � 2 c-spec with

LSP(; f; g) �!�
G p[]:

By construction of the left normal form, there exists 0 6= c 2 R such that (p; c) =

LNF(;LSP(; f; g); G). The (second) if condition in the algorithm assures that T (p) =
Tgreen;(p). So for every � 2 c-spec by lemma 7.6.3

LSP(��(f); ��(g)) �!
�
��(G)

0:
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Algorithm: TSGSY STEM(�; F )

Input: A case distinction � and F = ff1; : : : ; fkg � S = RfX1; : : : ; Xn;Qg.

Output: A two-sided Gr�obner system GS of idealt(F ) for �.

begin � 
S
fDETER(Æ; F ) : Æ 2 �g. GS  f(; F ) :  2 �g.

P  f(; F; f; g) :  2 �; f; g 2 F; f 6= gg.

M  f(; f �Xi) :  2 �; f 2 F; 1 � i � ng.

while M 6= ; do Let (; h) 2 M . M  M n f(; h)g.

(p; c) LNF(; h;G). N  f(�; p; c) : � 2 DETER(; fpg)g.

while N 6= ; do Let (�; p; c) 2 N . N  N n f(�; p; c)g.

if Tgreen;�(p) 6= T (p)
then P  P [ f(�;G [ fpg; f 0; p) : f 0 2 Gg.

GS  GS [ f(�;G [ fpg)g
else GS  GS [ f(�;G)g end.

end.
end.

while P 6= ; do Let (;G; f; g) 2 P .

P  P n f(;G; f; g)g. GS  GS n f(;G)g.
h LSP(; f; g). (p; c) LNF(; h;G).
N  f(�; p; c) : � 2 DETER(; fpg)g.

while N 6= ; do Let (�; p; c) 2 N . N  N n f(�; p; c)g.
if Tgreen;�(p) 6= T (p)

then G0  G [ fpg. P  P [ f(�;G0; f; p) : f 2 Gg.
GS  GS [ f(�;G0)g. i 0.
while i < n do i i+ 1.

(q; c0) LNF(�; p �Xi; G
0).

N 0  f(�; q; c0) : � 2 DETER(�; fqg)g.
while N 0 6= ; do Let (�; q; c0) 2 N 0. N 0  N 0 n f(�; q; c0)g.

if Tgreen;�(q) 6= T (q)
then P  P [ f(�;G0 [ fqg; f; q) : f 2 G0g.

GS  GS [ f(�;G0 [ fqg)g
else GS  GS [ f(�;G0)g end.

end.

end.
else GS  GS [ f(�;G)g end.

end.
end.

GS 0  GS.

GS  f(;G) : exists G00 and maximal ; with (;G00) 2 GS 0;
and G =

S
fG0 : (�;G0) 2 GS 0; � � gg.

return(GS).

end TSGSY STEM .

Table 7.4: Algorithm: TSGSYSTEM
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Furthermore we have for any p 2 G, 1 � i � n and for h 2 S with

p �Xi �!
�
G h[]:

The (�rst and third) if conditions in the algorithm assure that T (h) = Tgreen;(h). So for

every � 2 c-spec by lemma 7.6.3

��(p �Xi) �!
�
��(G)

0:

This shows by theorems 4.6.2(6) and 4.11.6(6) that ��(G) is a two-sided Gr�obner base of

idealt(��(idealt(F )) and condition 3 holds.

Termination: The set of all pairs (;G) produced by the algorithm forms a tree. The
successor of a pair (;G) is a pair (Æ; G0), where Æ is a successor of the condition  and

G0 = G or G0 = G [ fpg, with (p; c) = LNF(;LSP(; f; g); G) for some f; g 2 G,
f 6= g or (p; c) = LNF(; f � Xi; G) for some f 2 G, 1 � i � n. Since in either case

DETER(; fpg) is �nite, the tree of the pairs (;G) is �nitely branching. If in a branch
B a successor (Æ; G0) is equal to (Æ; G), that is when no polynomial was added to G0, then
the corresponding set of pairs P has decreased. So there exists no in�nite branch with the

same G. If in a branch B a successor (Æ; G0) is equal to (Æ; G[fpg), then the Æ head term
t = HTÆ(p) is irreducible with respect to the Æ head terms of G. Since Æ is a successor of 

we have HTÆ(G) = HT(G). So if a branch B is in�nite, there exists an in�nite sequence
of head terms fti : ti 2 HT(G); (;G) 2 Bg, such that ti 6 jtj for i < j. Such a sequence
contradicts Dickson's lemma. So in the tree each branch is �nite and since the tree is

�nitely branching the tree is �nite by K�onig's tree lemma. This completes the proof in
all cases. 2

Note that the last assignments in the algorithms LGSY STEM and TSGSY STEM can
be omitted in case one is interested in a comprehensive Gr�obner base only and not in the

Gr�obner system.

7.8 Parametric Ideal Membership

In this section let S = RfX1; : : : ; Xn;Qg be a solvable polynomial ring over a ring R =

R[u1; : : : ; um] over a commutative Noetherian domain R. For a subset F in S, a 2 Rm

let F (a; X1; : : : ; Xn) = ff(a; X1; : : : ; Xn) : f 2 Fg.

Theorem 7.8.1 (Parametric Ideal Membership) Let S = RfX1; : : : ; Xn;Qg be a

parametric solvable polynomial ring over a ring R = R[U1; : : : ; Um] over a commutative

Noetherian domain R. Let F be a �nite subset of S and let p 2 S. Then one can construct

a formula  F;p, such that for all extension �elds K0 of R and all a 2 K0m:

K0 j=  F;p(a)() p(a; X1; : : : ; Xn) 2 ideall;r;t(F (a; X1; : : : ; Xn)):

Here ideall;r;t(F (a; X1; : : : ; Xn)) is taken in S 0 = K0fX1; : : : ; Xn;Qg.
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Proof: By theorem 7.7.5 there exists a comprehensive left (right, two-sided) Gr�obner

base Gl;r;t of ideall;r;t(F ). Collect all conditions under which p reduces to `zero mod G',

that means all conditions under which the normalform p0 of p consists only of green terms.

Let � = DETER(;; G) and let

�G;p = f : (p0; c) = LNF(; p; G); T (p0) = Tgreen;(p
0);  2 �g:

For a condition Æ de�ne the conjunction of all its equalities and inequalities �Æ :
V
'2Æ '.

Then de�ne

 F;p(U1; : : : ; Um) =
_

Æ2�G;p

�Æ(U1; : : : ; Um):

We claim, that  F;p has the desired properties. Let � be the specialization of R, that

maps Ui to ai for 1 � i � m, and let a = (a1; : : : ; am).

\=)" Assume K0 j=  F;p(a), then K0 j= 'Æ(a) for some Æ 2 �G;p. So p �!�
G p0 [Æ] for

some p0 2 S with T (p0) = Tgreen;Æ(p
0). Let � 2 c-specÆ such that � extends ��, then

��(p0) = ���(p
0) = 0. This shows ��(p) 2 ideall;r;t(�(G)) = ideall;r;t(�(F )) as claimed.

\(=" Assume ��(p) 2 ideall;r;t(�(F )). Let  2 � and let (p0; c) = LNF(; p; G) (=

RNF(; p; G)) such that there exists � 2 c-spec such that � extends ��. Then ��(p0) 2
ideall;r;t(�(F )) since cp� p

0 2 ideall;r;t(�(F )) and �(c) 6= 0. Now T (p0) = Tgreen;(p
0) and

so  2 �G;p. This shows �(a1; : : : ; am) holds in K0 and consequently  F;p(a1; : : : ; am)

holds in K0 as claimed. 2

The proof shows moreover, that for any a 2 K0m, such that for a �xed condition Æ, �Æ(a)
holds in K0,

c p(a; X) =
X
f2F

gf(a; X)f(a; X)hf(a; X)

(where hf = 1 for p 2 ideall(F ) and gf = 1 for p 2 idealr(F )) uniformly in the coeÆcients

of the polynomials if R is commutative. The linear combination can be obtained from
the left (right) reduction p �!�

G p0 [Æ] and from the representation of the g 2 G by the

f 2 F .

The special case p = 1 is recorded in the following corollary.

Corollary 7.8.2 (Proper Ideal Test) Let S = RfX1; : : : ; Xn;Qg be a parametric solv-

able polynomial ring over a ring R = R[U1; : : : ; Um] over a commutative Noetherian do-

main R. Let F be a �nite subset of S. Then one can construct a formula  F , such that

for all extension �elds K0 of R and all a 2 K0m:

K0 j=  F (a)() 1 2 ideall;r;t(F (a; X1; : : : ; Xn)):

Where ideall;r;t(F (a; X1; : : : ; Xn)) is taken in S 0 = K0fX1; : : : ; Xn;Qg.



Chapter 8

Nullstellens�atze

In this chapter we discuss roots (or zeroes) of polynomials of a solvable polynomial ring. In
contrast to the commutative case, a problem arises here, since the substitution of arbitrary
elements for the variables of a polynomial will in general no more be a homomorphism

of a solvable polynomial ring to a �eld. Tuples of elements, such that the substitution
is a homomorphism are called places and are de�ned in the �rst section. Furthermore

we summarize some of the important facts about Ore extensions and quotient �elds of
Ore extensions. It was shown by Dixmier, Lorenz and others that certain rings have
the property that every prime ideal is completely prime. In particular there exist solvable

polynomial rings with this property. Using these completely prime ideals we state a `weak'
theorem on roots based on the theory of Ore extensions over the rational numbers.

In the next part of the chapter we summarize the results of Cohn on free products of
(skew) �elds. Then we introduce some model theory: existentially complete structures,

model complete structures, substructure complete structures, the amalgamation property,

axiomatizability and quanti�er elimination. Using this background and the results on

comprehensive Gr�obner bases we obtain `stronger' theorems on roots. Finally we discuss
existential varieties and close with some remarks on the `Rabinowich trick'.

In this chapter let R = K[U1; : : : ; Uk] be a (non-commutative Noetherian) domain over a
(skew) �eld K. Let S = RfX1; : : : ; Xn;Q;Q

0g be a solvable polynomial ring over R in the

variables X1; : : : ; Xn with commutator relations Q and Q0. Note, that two-sided ideals
are some times only denoted by ideal(P ) instead of idealt(P ) since we consider mostly

two-sided ideals in this chapter. Furthermore recall that Q denotes the rational numbers.

The characteristic of all �elds we consider will be zero unless otherwise stated. So all
�elds are extensions of Q, i.e. they are Q-algebras.

8.1 Roots of Solvable Polynomials

In this section we de�ne places and roots of polynomials of solvable polynomial rings.

205
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De�nition 8.1.1 Let S = KfX1; : : : ; Xn;Q;Q
0g be a solvable polynomial ring over a

�eld K with commutator relations Q and Q0. Let L be an extension �eld of K. A place

a = (a1; : : : ; an) 2 L
n is a n-tuple of �eld elements ai 2 L, i = 1; : : : ; n, which satisfy the

following conditions:

ajai � cijaiaj � pij(a1; : : : ; an) = 0; 1 � i � j � n

aib� cbibai � pbi(a1; : : : ; an) = 0; 1 � i � n; 0 6= b 2 K:

Where the cij and the pij, 1 � i � j � n are from the commutator relations Q of S and

where the cbi and the pbi, 1 � i � n, 0 6= b 2 K are from the commutator relations Q0 of

S.

Lemma 8.1.2 Let S = KfX1; : : : ; Xn;Q;Q
0g be a solvable polynomial ring over a �eld

K with commutator relations Q and Q0. The mapping �a : S �! L, Xi 7! ai, 1 � i � n

with �jK = idK is a homomorphism if and only if a = (a1; : : : ; an) is a place.

Proof: \=)" Let �a be a homomorphism. Then for 1 � i � j � n we have

�a(XjXi) = �a(Xj)�a(Xi) = ajai

�a(XjXi) = �a(cijXiXj + pij) = cij�a(XiXj) + �a(pij)

= cijaiaj + pij(a1; : : : ; an)

and for 0 6= b 2 K we have

�a(Xib) = �a(Xj)�a(b) = aib

�a(Xib) = �a(cbibXi + pbi) = cbi�a(bXi) + �a(pbi)

= cbibai + pbi(a1; : : : ; an):

This shows ajai � cijaiaj � pij(a1; : : : ; an) = 0 and aib� cbibai � pbi(a1; : : : ; an) = 0, so a

is a place.

\(=" Let (a1; : : : ; an) be a place. Let Ŝ = K�Y1; : : : ; Yn� be a free associative polyno-

mial ring generated by K and the Y 's. De�ne homomorphisms  : Ŝ �! S with Yi 7! Xi

and  jK = idjK and  0 : Ŝ �! L with Yi 7! ai and  
0
jK = idjK.

 

Ŝ �! S

& # �a
 0 L

Since a is a place and  0 is a homomorphism we have  0(YjYi�cijYiYj�pij(Y1; : : : ; Yn)) =
ajai � cijaiaj � pij(a1; : : : ; an) = 0 and for 0 6= b 2 K  0(Yib� cbibYi � pbi(Y1; : : : ; Yn)) =

aib � cbibai � pbi(a1; : : : ; an) = 0. Since  (YjYi � cijYiYj � pij(Y1; : : : ; Yn)) = XjXi �

cijXiXj � pij(X1; : : : ; Xn) = 0 and for 0 6= b 2 K  0(Yib � cbibYi � pbi(Y1; : : : ; Yn)) =
Xib�cbibXi�pbi(X1; : : : ; Xn) = 0 we see, that the Q and Q0 in the variables Y , are in the
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kernel of  . Since  is a homomorphism we can apply theorem 3.4.20, which shows that

Q[Q0 (in the Y 's) satis�es hypothesis (NoCg) from 3.4.18 and that ker( ) = idealt(Q[Q
0).

Together we obtain that ker( ) � ker( 0). By the factor theorem for ring homomorphisms

there exists a unique � (which will be denoted by �a) with �a Æ  =  0 and �a : S �! L.

By construction of  and  0 we must have �a : Xi 7! ai, 1 � i � n and �ajK = idK.

Which proves the lemma. 2

A place is de�ned relative to a given polynomial ring of solvable type S with commutator

relations Q and Q0. �a is called `evaluation morphism'. For f 2 S and a place a 2 Ln we

denote �a(f) by f(a).

De�nition 8.1.3 Let L be an extension �eld of K and let S be a polynomial ring of

solvable type. A root of a polynomial f 2 S is a place a = (a1; : : : ; an) 2 L
n for which:

f(a) = 0:

A root of a subset I � S is a place a = (a1; : : : ; an) 2 L
n for which:

f(a) = 0 for all f 2 I:

With NL(I) we denote the set of roots of I in the extension �eld L of K. If L is clear

from the context we denote NL(I) by N(I).

Lemma 8.1.4 Let I = ideal(F ) be a two-sided ideal in S generated by F = ff1; : : : ; fmg.

Let a 2 Ln be a place such that fi(a) = 0 for all fi 2 F then a is a root of the ideal I.

Proof: Since I is generated by F every polynomial f 2 I has a representation
f =

Pk
i=1 gifihi, with gi; hi 2 S for i = 1; : : : ; k. So f(a) = �a(

Pk
i=1 gifihi) =Pk

i=1 �a(gi)fi(a)�a(hi) =
Pk

i=1 �a(gi)0�a(hi) = 0 since a is a place, �a is a homomorphism

and a is a root of each fi, i = 1; : : : ; k. That is, a is a root of I. 2

Lemma 8.1.5 Let I; J � S be two-sided ideals. If I � J then N(J) � N(I).

Proof: Since I is contained in J any f 2 I has a representation with respect to J :

f =
Pk

i=1 gifihi, with fi 2 J and gi; hi 2 S for i = 1; : : : ; k. So f(a) = 0 since a is a place,

�a is a homomorphism and a is a root of J whence of each fi, i = 1; : : : ; k. That is, any

root a of J is a root of I. 2

Remarks:

1. Not every a = (0; : : : ; 0; ai; 0; : : : ; 0) 2 L
n is a place. Let S = QfX1; X2; fX2X1 =

X1X2 + 1gg. Then for a = (0; a2) 2 Q
2 we have a20� 0a2 � 1 = 1 6= 0. This shows

that a is not a place.
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2. Not every univariate polynomial need to have a root in some extension �eld. Let

S = QfX1; X2; fX2X1 = X1X2 + 1gg and let X1 = f(X1) 2 S. Assume a =

(a1; a2) 2 L2, where L is an extension �eld of Q, is a root of f . Then we have

f(a) = �a(f) = �a(X1) = 0 and consequently a2a1� a1a2� 1 = �a(X2X1�X1X2�

1) = �a(X2)�a(X1)� �a(X1)�a(X2)� �a(1) = �a(X2)0� 0�a(X2)� �a(1) = 1 6= 0.

Thus a cannot be a place.

Lemma 8.1.6 Let S = KfX1; : : : ; Xn;Q;Q
0g be a solvable polynomial ring. Let a 2 L �

K be a root of the univariate polynomial 0 6= f(Xi) 2 S and let S 0 = LfX1; : : : ; Xn;Q; Q̂0g

be a solvable polynomial ring which extends S. Then f is left divisible by the linear

polynomial (Xi � a), i.e. there exists 0 6= q 2 L[Xi] such that f = q � (Xi � a).

Proof: By left reduction with P = fXi � ag let r 2 S
0 with f �!�

P r. Then we have

f =
X

j=1;:::;k

qj � (Xi � a) + r = q � (Xi � a) + r;

with qj; q 2 S 0 for j = 1; : : : ; k. Moreover q; r 2 L[Xi] by lemma 3.2.4. Now HT(r) is
irreducible wrt. HT(Xi � a) = HT(Xi) and consequently r 2 L. Since a is a root of f
we have 0 = �a(f) = �a(q)�a(Xi � a) + �a(r) = �a(q)0 + �a(r) = �a(r). Since r 2 L it

follows from �a(r) = 0 that r = 0. This shows that f is divisible by (Xi � a). 2

Lemma 8.1.7 Let S = KfX1; : : : ; Xn;Q;Q
0g be a solvable polynomial ring over a �eld

K and let f 2 S be an univariate polynomial of degree d. If f can be written as product

of d0 linear polynomials and a polynomial q, such that q has no root in K, then d0 � d.

Proof: By comparing the head terms of the product of the linear polynomials and the

head term of f . 2

Corollary 8.1.8 Let S = KfX1; : : : ; Xn;Q;Q
0g be a solvable polynomial ring over a �eld

K. If 0 6= f 2 S is an univariate polynomial of degree d, then f has at most d roots in

some extension �eld L of K such that LfX1; : : : ; Xn;Q; Q̂0g is a solvable polynomial ring

which extends S.

Proof: For each root a 2 L of 0 6= f 2 K[Xi] the linear polynomial Xi � a divides f .
Since the degree of f is d, there can be at most d linear factors dividing f . 2

Lemma 8.1.9 Let S = KfX1; : : : ; Xn;Q;Q
0g be a solvable polynomial ring over a �eld

K. Let I be a two-sided ideal in S which contains an univariate polynomial pi(Xi) for

each variable Xi, i = 1; : : : ; n. Then ideal I has only �nitely many roots in K.

Proof: Each pi has only �nitely many roots by the previous lemma. Since the ideal
generated by the pi is contained in I, the roots of I are among the common roots of the

pi. 2
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8.2 Existence of Roots of Solvable Polynomials

In this section we will �rst discuss the construction of quotient �elds for iterated Ore

extensions. Then we show the existence of extension �elds, in which proper (two-sided)

ideal have roots. Finally we prove a `weak' form of the Hilbert Nullstellensatz.

8.2.1 Quotient Fields

The main obstacle in non-commutative extension �eld theory is that prime ideals may

not be completely prime ideals. This has the consequence that dividing a ring by a prime

ideal does not lead to a ring without zero divisors. But a necessary condition for a ring
to be embeddable in a �eld is that it has no zero divisors (i.e. it is a domain). To see that

in general prime ideals need not be completely prime, consider the following example.

Example 8.2.1 Let R = F[X;Y ; @=@X ] be the Weyl algebra over a �eld F of charac-

teristic p > 0. Let G = fXp � 1; Y p � 1g and let I = idealt(G). Then one can show

that I is a maximal ideal and so I is a prime ideal. But I is not completely prime, since

(X � 1)p = Xp � 1 2 I, but (X � 1) 62 I.

SuÆcient conditions for a domain to be embeddable in a (skew) �eld have been obtained
by Ore. To state his results we need some preparations.

De�nition 8.2.2 (Ore condition) For a domain R the right (left) Ore condition holds,

if for all nonzero a; b 2 R there exist r; s 2 R such that 0 6= ar = bs (0 6= ra = sb) hold.

In other words each pair of nonzero elements of R has a nonzero right (left) common

multiple.

R is called a right (left) Ore domain if it is a domain and the right (left) Ore condition

holds. R is called an Ore domain, if R is both a right and a left Ore domain.

Lemma 8.2.3 (Goldie, Lesieur-Croisot) Let S be a (left / right) Noetherian domain.

Then S is a (left / right) Ore domain.

Proof: See [Goodearl, War�eld 1989](p 94). 2 For the computation of left common

multiples see 5.5.1.

Lemma 8.2.4 Every solvable polynomial ring S = KfX1; : : : ; Xn;Q;Q
0g over a �eld K

is a (left / right) Ore domain. Moreover every solvable polynomial ring over a (left / right)

Noetherian domain, which satis�es the extended axioms is a (left / right) Ore domain.

Proof: First by the consequences of the product lemma 3.2.5 S is a domain. Since K

is a �eld or S satis�es the extended axioms, by the Hilbert basis theorem 3.5.12 S is a

(left / right) Noetherian ring. Then by the preceding lemma 8.2.3 S is a (left / right) Ore
domain. 2
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De�nition 8.2.5 A subset X in a ring R is called a strong multiplicative set if 1 2 X

and X is a multiplicative set.

Let X be a strong multiplicative set in R. A ring L together with a homomorphism

� : R �! L is called a right ring of fractions for R with respect to X if

1. �(x) is a unit of L for all x 2 X,

2. Each element of L has the form �(r)�(x)�1 for some r 2 R and some x 2 X.

3. ker(�) = fr 2 R : rx = 0 for some x 2 Xg.

If ker(�) = f0g, i.e. if there are no zero divisors in R, then � is an embedding. In

particular if R is a domain, then X = R n f0g is a strong multiplicative set. Then the

right ring of fractions for R with respect to X is called a quotient �eld of R. The quotient
�eld of R (if it exists) is denoted by Q(R).

If the right ring of fractions (L; �) exists, then it is `universal' and consequently it is
unique up to isomorphism.

Theorem 8.2.6 Let S be a (left / right) Ore domain. Then there exists a (unique) (left

/ right) quotient �eld Q(S) of S.

Proof: See [Goodearl, War�eld 1989](p 148). 2

Theorem 8.2.7 Let S be an Noetherian domain. Let I be a complete prime ideal in S.

Then there exists the quotient �eld Q(S=I) of S=I.

Proof: Since S is a domain and I is completely prime, then S=I is a domain. Since S is

Noetherian, also S=I is Noetherian, so the Ore condition also holds in S=I. Thus S=I is
an Ore domain and therefore has a quotient �eld. 2

The next proposition records the achievements which have been obtained so far to show
under which conditions prime ideals are completely prime, and there is not much hope to
improve the theorem. For counter examples see [Lorenz 1981].

Theorem 8.2.8 (Lie, Dixmier, Gabriel, Lorenz, Sigurdsson) Let R be a commu-

tative Noetherian Q-algebra and S = R[X1; Æ1] : : : [Xn; Æn] be an iterated di�erential oper-

ator ring. Then every prime ideal of S is completely prime.

Proof: See [Goodearl, War�eld 1989](p 160). 2

As the example 8.2.1 of Weyl algebras over �elds of positive characteristic shows, the

theorem is false if Q being replaced by a �eld of characteristic p > 0.

Moreover the condition, that R is a commutative Noetherian Q-algebra can not be re-
placed by the condition that R is a ring in which every prime ideal is completely prime.
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The condition required on R is that in every extension �eld of R every prime ideal is

completely prime, which is true only if R is an iterated di�erential operator ring over a

commutative Noetherian Q-algebra.

It is furthermore known that the theorem does not hold for an Ore extension R[X;�; Æ]

where the automorphism � is arbitrary. It is required that � is the identity on R, that is

R[X; Æ] is an di�erential operator ring.

8.2.2 Extension Fields

As a consequence of theorem 8.2.8 we see that there exist solvable polynomial rings, such

that every prime ideal is completely prime.

Lemma 8.2.9 There exist a �eld K and commutator relations Q and Q0, such that

1. S = KfX1; : : : ; Xn;Q;Q
0g is a solvable polynomial ring

2. and every prime ideal of S is completely prime.

In other words, the class of solvable polynomial rings in which every prime ideal is com-

pletely prime is non-empty.

Proof: By theorem 8.2.8 for K = Q = R the iterated di�erential operator ring S 0 =
Q[X1; Æ1] : : : [Xn; Æn] has the property that every prime ideal is completely prime. By

theorem 3.4.6 there exists a solvable polynomial ring S = KfX1; : : : ; Xn;Q;Q
0g of strictly

monic lexicographical type which corresponds to S 0. Furthermore an ideal in S is prime

respectively completely prime if and only if the corresponding ideal in S 0 is so. 2

Moreover we have a suÆcient `syntactic' criterion of solvable polynomial rings where prime

ideals are completely prime:

Lemma 8.2.10 Let Q � K be a commutative �eld of characteristic zero. Let Q be a

set of strictly monic lexicographical commutator relations and let Q0 be a set of coeÆcient

commutator relations, such that S = KfX1; : : : ; Xn;Q;Q
0g is a solvable polynomial ring

of strictly monic lexicographical type, then every prime ideal of S is completely prime.

Proof: Under this assumptions there exists by theorem 3.4.7 a corresponding iterated

Ore extension S 0 of Q. Since the assumptions of theorem 8.2.8 are ful�lled, every prime

ideal of S 0 is completely prime. Consequently every prime ideal of S is completely prime.

2

The next proposition shows that ideals I in solvable polynomial rings (where prime ideals

are completely prime) have roots in some extension (skew) �eld of K if an only if I is
proper.
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Proposition 8.2.11 (Nullstellensatz) Let S = KfX1; : : : ; Xn;Q;Qg be a solvable

polynomial ring of strictly monic lexicographical type.

1. For every proper ideal I in S there exists a (skew) �eld extension L of K such that

the set of roots NL(I) is not empty.

2. Let I be an ideal in S such that there exists a (skew) �eld extension L of K such

that NL(I) 6= ; then 1 62 I.

Proof: (1) Let I be proper and let J be a prime ideal in S which contains I: I � J . J

exists, since by lemma 2.2.4 every ideal is contained in a maximal ideal and by lemma

2.2.5 every maximal ideal is prime. Under the assumptions on Q, by lemma 8.2.10 every

prime ideal of S is completely prime. Furthermore by lemma 8.2.4 S is an Ore domain,
there exists a quotient �eld L = Q(S=J). Let ai = Xi + J for 1 � i � n and a =
(a1; : : : ; an) 2 L

n. Then a is a place since the commutator relations are inherited from S.

Furthermore for every f 2 J we have

f(a) = �a(f) = f(X + J) = f(X) + J = J

that is, f(a) = 0 in Ln. This shows that a is a root of J and so of I, and thus proves (1).

(2) Let a 2 N(I), a 2 Ln. Assume 1 2 I then there exist fi 2 I and gi; hi 2 S for
(1 � i � k) for some k 2 N such that 1 =

Pk
i=1 gifihi: Since a is a root (in particular a

place) the evaluation morphism yields:

1 = �a(1) = �a(
kX
i=1

gifihi) =
kX
i=1

�a(gi)0�a(hi) = 0:

This is a contradiction and thus the assumption 1 2 I must have been wrong. So 1 62 I,

which proves (2). 2

8.2.3 Roots and Radical Ideals

Using the separation lemma of prime ideals and multiplicatively closed sets we obtain the

following improved propositions.

Proposition 8.2.12 Let S = KfX1; : : : ; Xn;Q;Q
0g be a solvable polynomial ring. Let L

be an extension (skew) �eld of K. Let I be an ideal in S and let a 2 Ln be a root of I.

Let f 2 S such that f(a) 6= 0 then fk 62 I for all 0 < k 2 N.

Proof: Assume for a contradiction that there exists 0 < k 2 N such that fk 2 I. Let I

be generated by ff1; : : : ; fmg, then there exist gi; hi 2 S for i = 1; : : :m such that

fk =
mX
i=1

gifihi:

Since a is a root, whence a place, the evaluation morphism yields: �a(f
k) = �a(

Pm
i=1 gifihi)

=
Pm

i=1 �a(gi)0�a(hi) = 0. Since L is a �eld it follows that �a(f) = f(a) = 0. This

contradicts our assumption f(a) 6= 0 and thus proves the proposition. 2
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Proposition 8.2.13 Let S = KfX1; : : : ; Xn;Q;Q
0g be a solvable polynomial ring of

strictly monic lexicographical type. Let I be a proper ideal in S. Let f 2 S such that

fk 62 I for all 0 < k 2 N. Then there exists an extension (skew) �eld L of K and a root

a 2 Ln of I such that f(a) 6= 0.

Proof: Under the assumptions onQ, by lemma 8.2.10 every prime ideal of S is completely

prime. Let M = ffk : 0 < k 2 Ng, then M is multiplicatively closed. By assumption

M \ I = ; holds. So by the separation lemma 2.2.12 there exists a prime ideal J with

I � J and M \ J = ;. Again by assumption J is completely prime and so S=J is an Ore

domain and there exists a quotient �eld L = Q(S=J). Let ai = Xi+J 2 L for i = 1; : : : ; n

and let a = (a1; : : : ; an) 2 L
n. Then a is a root of I since �a(fj) = fj(a) = fj(X + J) =

fj(X) + J = J . But 0 6= �a(f) = f(a) = f(X + J) = f(X) + J 6= J since f 62 I. That is
a is not a root of f and this proves the proposition. 2

Combining this results with the characterization of radical ideals in rings where prime
ideals are completely prime we obtain

Theorem 8.2.14 (Weak Hilbert Nullstellensatz) Let S = KfX1; : : : ; Xn;Q;Q
0g be

a solvable polynomial ring of strictly monic lexicographical type.

1. Let I be a proper (two-sided) ideal in S. Let f 2 S such that f 62 rad(I). Then there

exists an extension (skew) �eld L of K and a root a 2 Ln of I such that f(a) 6= 0.

2. Let L be an extension (skew) �eld of K. Let I be an ideal in S and let a 2 Ln be a

root of I. Let f 2 S such that f(a) 6= 0 then f 62 rad(I).

Proof: (1) From f 62 rad(I) it follows by lemma 2.2.16 that for all 0 < k 2 N, fk 62 I
holds. Then the claim follows by the preceding proposition 8.2.12.

(2) From f 2 rad(I) it follows from lemma 2.2.15 that there exists 0 < k 2 N such that

fk 2 I. But by the preceding proposition 8.2.13 it follows from f(a) 6= 0 that fk 62 I for

all 0 < k 2 N. So f 2 rad(I) cannot hold. 2

8.3 Coproducts and Free Products

In this section we will mainly record the results obtained by P. M. Cohn about so called
free products of �elds. To this end we need some preparations. Recall the de�nition of a

category by its objects and morphisms.

De�nition 8.3.1 A category is a class C of objects such that

1. for every pair of objects X; Y of C there is a set

MorC(X; Y );

called the set of morphisms from X to Y , with MorC(X; Y ) and MorC(X
0; Y 0) dis-

joint unless X = X 0 and Y = Y 0 in which case they coincide;
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2. for any three objects X; Y; Z of C there is a mapping

MorC(X; Y )�MorC(Y; Z) �! MorC(X;Z);

described by (f; g) 7! f Æ g, with the following properties:

(a) for every object X there is a morphism

idX 2 MorC(X;X)

which is the right identity under Æ for the elements of MorC(X; Y ) and a left

identity under Æ for the elements of MorC(Y;X);

(b) Æ is `associative' in the sense, that when the composites

h Æ (g Æ f) and (h Æ g) Æ f

are de�ned they are equal.

De�nition 8.3.2 An object U of a category C is said to be an initial object if, for every
object X of C, the set of morphisms MorC(U;X) is a singleton.

Dually, an object U of a category C is said to be a terminal object if, for every object X

of C, the set of morphisms MorC(X;U) is a singleton.

De�nition 8.3.3 Let fAigi2I be a family of objects in a category C. De�ne a category

D as follows:

1. for the objects of D take the pairs e = (E; ffigi2I) consisting of an object E of C

and a family ffigi2I of morphisms fi : Ai �! E, and

2. for the set of morphisms of D e 7! e0 take those morphisms Æ : E 0 �! E of C such

that the diagram
E  �fi Ai

-Æ #f 0i
E 0

is commutative for every i 2 I.

An initial object (Q; fqigi2I) in the category D (if it exists) is called a coproduct of the

family fAigi2I. In abuse of notation we also refer to Q itself as the coproduct of the

fAigi2I and we write

Q =i2IAi:
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Theorem 8.3.4 Since initial objects are unique up to composition by an isomorphism, the

coproduct is unique in the sense that is has the following universal property. If (P; fpigi2I)

and (Q; fqigi2I) are both coproducts of the family fAigi2I, then there exists a unique

isomorphism Æ : Q �! P such that each of the diagrams

P  �pi Ai

-Æ #qi
Q

is commutative.

Proof: See [Blyth 1986](p 28). 2

In other words if we have a situation with morphisms fi : Ai �! X for some X in the
category C, then there exist unique pi : Ai �! i2IAi and a unique Æ : i2IAi �! X,
such that Æ Æ pi = fi for each i 2 I.

In the sequel we will restrict our attention to the case I = f1; 2g. Then we have the

following diagram
A1 A2

%p1 -p2

A1 #Æ A2:

&f1 .f2

X

De�nition 8.3.5 Let C now be the category with coproducts. We consider the situation

A1 A2

%p1 -p2

A1 A2

-f1 %f2

A

where A;A1; A2 are some objects.

1. The coproduct A1  A2 is called faithful if, whenever the f1; f2 are injective then

also p1; p2 are injective.

2. The coproduct A1 A2 is called separating if,

p1(f1(A)) = p1(A1) \ p2(A2) = p2(f2(A))

Theorem 8.3.6 (Cohn) The coproduct of (skew) �elds A1, A2 over a common sub �eld

A exists and is faithful and separating. It is called free product and is denoted by C =

A1A A2.

Proof: See [Cohn 1971], [Cohn 1977](p 98). 2
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8.4 Some Model Theory

In this section we recall some de�nitions from model theory and �x the notations used in

the sequel.

8.4.1 Deduction and Models

Let L be a (�rst order) language. LetM denote a class of L-structures. Recall that for A

`2'M and a L-formula � we say A is a model for � if A j= �. Let � be a formula and let

� be a set of formulas, then we denote by � j= � that for all L-structures A, with A j= �

also A j= �. In this case we say that � is a semantic consequence of �.

Let L be a language. Let �;  be formulas and let � be a set of formulas. Recall, that �
is deducible from  ,  ` �, if � can be produced from  by syntactic manipulations on  

according to a set of certain rules. The rules used in classical �rst order logic are called
Hilbert type calculus. � ` � denotes that � is deducible from a set of formulas �. � is

called consistent if falsity (false) cannot be deduced from �.

Let �;  be formulas and let � be a set of formulas. For Hilbert type calculus in �rst
order logic the following theorems of G�odel hold.

Correctness: if � ` � then � j= �,

Completeness: if � j= � then � ` �.

And for sentences �;  and a set of sentences �,

Deduction: if � [ f g ` � then � ` ( �! �).

Note that `�!' here denotes `implies' and not `reduction'; but it should always be clear
from the context what is meant. Using the completeness theorem or more generally using

ultraproducts one can derive the compactness theorem.

Theorem 8.4.1 (Compactness) Let � be a set of formulas. � has a model if and only

if every �nite subset of � has a model.

Let L be a language. Let � be a formula and let � be a set of formulas. A theory T is a

deductively closed subset of formulas of L, that is: T ` � =) � 2 T : � is an axiom set

for T if T = f� : � ` �g:

Let L be a language. Let � be a formula and let � be a set of formulas. Let A be a
L-structure.

M = Mod(�) = fA : A j= �; for all � 2 � g

denotes the class of all L-structures A which are models of �.

T = Thy(M) = f� : A j= �; for all A 2 M g

denotes the set of all L-formulas � which hold in every A 2 M.
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De�nition 8.4.2 Let L be a language and letM be a class of L-structures. ThenM is

axiomatizable in L if there exists a set of L-formulas � such that

M = Mod(�):

The elements of � are called axioms. If there exists a �nite set � of axioms for M, we

sayM is elementary in L or �nitely axiomatizable in L.

8.4.2 Classes of Structures with Completeness Properties

There are several notations of classes of structures with completeness properties:

1. complete classes,

2. model complete classes,

3. model companionable classes,

4. substructure complete classes,

5. existentially complete classes.

Complete classes occur `rarely'. Only if the corresponding theory T is maximal in the
sense, that for every L-sentence � either T ` � or T ` :� then the class of structures is

complete. Model complete classes occur more `frequently', e.g. the class of algebraically
closed �elds. We will not de�ne model companionable classes, since in our cases of in-
terest, the classes of structures have the amalgamation property, in which case this class

has further properties. Classes of structures which are substructure complete occur for
model complete classes of structures for which the class of substructures has moreover the
amalgamation property. The class of these structures then allows elimination of quanti-

�ers. Existentially complete classes of structures exists whenever the respective class is

inductive (that is it is closed under unions of chains). The relevant de�nitions will be

made more precise in the sequel.

De�nition 8.4.3 A classM of L-structures is complete if for all L-sentences � and all

A 2 M

either A j= � or A j= :�.

A theory T is complete if Mod(T ) is complete.

For the further de�nitions we need to introduce the notion of elementary equivalent struc-

tures.

De�nition 8.4.4 Two L-structures A and B are called elementary equivalent (notation

A � B) if for all L-sentences �
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A j= � if and only if B j= �.

Two L-structures A and B are called elementary equivalent wrt. a common substructure

C (notation A �C B) if for all L-formulas �(X1; : : : ; Xn) and c1; : : : ; cn 2 C

A j= �(c1; : : : ; cn) if and only if B j= �(c1; : : : ; cn).

Consequently, a classM of L-structures is complete if and only if for any A;B 2 M, A

and B are elementary equivalent.

De�nition 8.4.5 Let A and B be two L-structures. Then A is called elementary sub-
structure of B (and B is called elementary extension of A) (notation A � B) if A v B

and for a1; : : : ; an 2 A, and for all L-formulas �(X1; : : : ; Xn)

A j= �(a1; : : : ; an) if and only if B j= �(a1; : : : ; an).

Model complete classes are de�ned by the property that every substructure of a structure
of the class is an elementary substructure.

De�nition 8.4.6 A class M of L-structures is model complete if for A, B 2 M with

A v B then

A � B.

A theory T is called model complete if Mod(T ) is model complete.

De�nition 8.4.7 A classM of L-structures is substructure complete if for A, B 2 M

with a common substructure C

A �C B.

A theory T is called substructure complete if Mod(T ) is substructure complete.

Lemma 8.4.8 If a class of L-structures M is substructure complete, then M is model

complete.

Proof: Let A;B 2 M with A v B. Then A is a common substructure of A and B and

sinceM is substructure complete A �A B. That is A � B, which shows A � B. 2

We will later de�ne existentially complete �elds, here is �rst the general de�nition of
existentially complete structures. Let �9 denote existential L-formulas, that is �9 has the

form 9X1 : : :9Xk (X1; : : : ; Xk) with  quanti�er free.
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De�nition 8.4.9 Let A v B be L-structures. A is called existentially complete in B if

for all existential formulas �9(Y1; : : : ; Yl), a1; : : : ; al 2 A

whenever B j= �9(a1; : : : ; al) then also A j= �9(a1; : : : ; al).

If M is a class of L-structures, and A 2 M is existentially complete in every B 2 M,

with A v B, then A is existentially complete inM.

De�nition 8.4.10 Call a totally ordered (sub-)set a chain. Then a class M of L-

structures is called inductive if it is closed under unions of chains. That means, that

for every chain A1 v A2 v : : : of structures Ai 2 M

A =
[
Ai 2 M:

Proposition 8.4.11 Let M be an inductive class of L-structures, then each A 2 M is

contained in some existentially complete structure E 2 M.

Proof: See [Cohn 1981](p 327) or [Hirschfeld, Wheeler 1975]. 2

We denote by EC(M) the class of existentially complete structures ofM. (So EC(M) �

M.) For a theory let EC(T ) = EC(Mod(T )). Note that even for a theory T ,
Thy(EC(T )) need not be non-empty.

8.4.3 Amalgamation Property

De�nition 8.4.12 LetM be a class of L-structures. M has the amalgamation property

if for any B1, B2 2 M with a common substructure A 2 M there exists C 2 M and

embeddings g1; g2 of B1; B2 into C,

C

%g1 -g2

B1 B2

-f1 %f2

A

such that g1(a) = g2(a) for all a 2 A. C is called an amalgam of B1 and B2. A theory T

has the amalgamation property if Mod(T ) has the amalgamation property.

Theorem 8.4.13 (Cohn) The class of (skew) �elds has the amalgamation property.

More precisely for any (skew) �elds B1 and B2 the free product over A

C = B1A B1

is an amalgam of B1 and B2.
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Proof: Let C = B1 A B1 be the free product of B1 and B2 over A. Let A be a

common substructure of the Bi and let fi : A �! Bi be the embeddings of A into

Bi (i = 1; 2). Since the free product is faithful the homomorphisms gi : Bi �! C

are embeddings of Bi into C (i = 1; 2). Since the free product is separating we have

g1(f1(A)) = g1(B1) \ g2(B2) = g2(f2(A)). So if we identify A with fi(A) in Bi we have

g1(a) = g2(a) for all a 2 A. This shows that the free product C is an amalgam of B1 and

B2 over A. 2

The relation between model completeness and substructure completeness is as follows

Theorem 8.4.14 An axiomatizable class of L-structures M is substructure complete, if

and only ifM is model complete and the class of substructures ofM has the amalgamation

property.

Proof: AssumeM is model complete and has the amalgamation property. Let A;B;C 2
M such that C is a common substructure of A and B. By the amalgamation property

there existsD inM which is a common extension of A and B. SinceM is model complete,
we have A � D and B � D. By this we have for c1; : : : ; cn 2 C and for all �

A j= �(c1; : : : ; cn) () D j= �(c1; : : : ; cn) () B j= �(c1; : : : ; cn):

This shows A �C B andM is substructure complete.

AssumeM is substructure complete, then we have already shown, thatM is model com-
plete. Let A;B;C 2 M, such that C is a common substructure of A and B. The existence

of a common extension of A and B follows then by arguments involving Robinsons `model
consistency lemma' [Robinson 1974](p. 112) on so called `diagrams' of A and B over C
and by compactness, which we will not present here. 2

For existentially complete structures with amalgamation property we note:

Lemma 8.4.15 (Lefschetz Principle) Let M be an inductive class of L-structures

which has the amalgamation property. Let A;B1; B2 2 M with B1; B2 2 EC(M) and

let a1; : : : ; an 2 A. Then for all existential formulas �9(Y1; : : : ; Yl),

B1 j= �9(a1; : : : ; al) if and only if B2 j= �9(a1; : : : ; al).

Proof: By the amalgamation property let C 2 M be a common extension of B1 and B2.
Then since B1 � C we have C j= �9(a1; : : : ; al). Now B2 � C and B2 is existentially com-

plete and since �9(a1; : : : ; al) is de�ned over A and holds in C we have B2 j= �9(a1; : : : ; al).

2

8.4.4 Quanti�er Elimination

De�nition 8.4.16 Let M be a class of L-structures. Then M allows quanti�er elim-

ination if for every formula  (Y1; : : : ; Yl) there exists a formula �(Y1; : : : ; Yl) which is

quanti�er free (or equal to true or false if L does not contain constants) and
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M j=  (Y1; : : : ; Yl)  ! �(Y1; : : : ; Yl).

Theorem 8.4.17 Let M be an axiomatizable class of L-structures. Then M allows

quanti�er elimination, if and only ifM is substructure complete.

Proof: See [Weispfenning 1983] theorem 2.6. 2

LetM be a class of L-structures. If the class EC(M) is closed under substructures and is

axiomatizable and has the amalgamation property then EC(M) is substructure complete.

In case of the classM of (skew) �elds L which are K-algebras it is known, that EC(M)

is not axiomatizable, see e.g. [Hirschfeld, Wheeler 1975] (p 133).

8.4.5 Polynomials as Terms

Let R be a ring, let V be a set of variables and let LR be the language LR =
(;; f+;�; �g; �; R [ f0; 1g; V ). Let X � V be a distinguished set of variables. Then

every polynomial of the polynomial ring RhXi corresponds to a term from Tm(LR; X).
On the other hand, if we identify terms with the same `meaning', every equivalence class

of terms corresponds to a polynomial.

In this sense we will identify polynomials with terms and we will consider polynomials as

constituents of �rst order LR formulas. If  is an LR formula for some ring (or structure)
R, then we say that  is de�ned over R.

8.4.6 Notes on the Nullstellens�atze

There are many avours of Nullstellens�atze in the literature. In order to make the notation

of `weak', `normal' and `strong' Nullstellens�atze more precise we consider the following

cases:

1. `pure' existence of roots in some extension �eld if the considered ideal is proper,

2. existence of roots in existentially complete �elds, for proper ideals in polynomial
rings over an existentially complete �eld,

3. existence of roots of proper ideals in one existentially complete �eld implies the

existence of roots in all existentially complete �elds,

4. given a bound on the degrees of the generating polynomials (and their number) then

there exist degree bounds on the polynomials required to represent 1 as element of

the ideal.

Additionally a similar case distinction can be considered for the question of roots of ideals,

which are not roots of some other polynomial.
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To solve 1) above one requires information on the class of algebraic structures consid-

ered, e.g. primeness of ideals, embeddability conditions into �elds. To solve 2) the only

important thing to know is that the considered class of algebraic structures, is induc-

tive. And this in turn is true, whenever the class can be axiomatized by 89 formulas.

To solve 3) it must be known whether the subclass of existentially complete structures

has the amalgamation property or not. To solve 4) one must even know that the sub-

class of existentially complete structures allows quanti�er elimination. This together with

compactness arguments establishes the degree bounds.

There are many criterions to establish the respective requirements. To establish these

results for the class of Q-complete �elds we use Gr�obner bases and comprehensive Gr�obner

base methods in the proofs.

8.5 Existentially Complete Fields

In this section we summarize the results of Cohn, Hirschfeld and Wheeler about exis-
tentially complete `free' skew �elds. The �rst result states the existence of existentially
complete �elds and the second result states a Nullstellensatz relative to the existence of

d-radicals. The problem is that such d-radicals are hard to characterize and diÆcult to
�nd. Furthermore, since the free non-commutative polynomial ring P = KhX1; : : : ; Xni

over a �eld K is non Noetherian, ideals may not be �nitely generated. Even worse, by

a result of [Hirschfeld, Wheeler 1975], the class of existentially complete skew �elds is
not axiomatizable. The de�nition of consistence of a formula and existentially complete

structures adapted for (skew) �elds reads as follows:

De�nition 8.5.1 Let K be a (skew) �eld. Let 9X1 : : :9Xk (X1; : : : ; Xk) denote exis-

tential formulas which are de�ned over K (that is  2 LK) and  quanti�er free. The

formula  is said to be consistent if there exists a �eld L, K � L and a 2 Lk with

L j=  (a). K is called existentially complete if

for all extension �elds E of K and a 2 Ek with E j=  (a) follows that there

exists b 2 Kk with K j=  (b).

Theorem 8.5.2 (Cohn) Let K be a skew �eld. Then there exists an existentially com-

plete �eld E, which contains K and in which every consistent existential formula over K

is valid in E.

Proof: See [Cohn 1977](p 133). 2

De�nition 8.5.3 (Hirschfeld, Wheeler) Let R be an algebra over K. An ideal I in

R is called a d-prime ideal if R=I can be embedded into a skew �eld extension of K by
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an algebra homomorphism. The d-radical of an ideal I is the intersection of all d-prime

ideals which contain I. The d-radical is denoted by

d-rad(I) =
\
I�Ji

Ji

with Ji d-prime ideals.

Theorem 8.5.4 (Hirschfeld, Wheeler) Let E be an existentially complete skew �eld

over K. Let P = EhX1; : : : ; Xni be a non-commutative polynomial ring over E. Let I be

an ideal in P and let f 2 P .

1. If f shares all roots of I in every skew �eld extension of E then f is in the d-radical

of I. Moreover if I is �nitely generated then if f shares all roots of I in E then f

is in the d-radical of I.

2. Conversely if f is in the d-radical of I, then every root of I in E is also a root of f .

Proof: See [Hirschfeld, Wheeler 1975](p 225). Let d-rad(I) denote the d-radical of an
ideal I.

(1) Assume f is not d-rad(I). Then there exists a d-prime ideal J which includes I but
not f . Since J is d-prime, P=J can be embedded into a quotient �eld Q(P=J). Let

� : P=J �! E0 = Q(P=J) denote the embedding homomorphism. Now E is isomorphic
to �(E) and therefore E0 can be regarded as an extension �eld of E. Since f 62 J we have

�(f) 6= 0 in E0 but for every f 2 J we have �(f) = 0 in E0. That is, there exists a root
in E0n of I which is not a root of f , contradicting our assumption. This proves the �rst
claim.

If I is �nitely generated by ff1; : : : ; flg then E
0 satis�es

9X1 : : :9Xn

0
@( ^

1�i�l

fi(X1; : : : ; Xn) = 0) ^ :(f(X1; : : : ; Xn) = 0)

1
A :

Since E was existentially complete, E must satisfy this sentence also. This proves that
there is a root of I in En which is not a root of f .

(2) Assume f 2 d-rad(I). Let E0 be a (skew) �eld extension of K which extends E, and

let a 2 E0n be a root of I. Let �a : P �! E0 be the evaluation morphism. Because E0 is a
domain, the kernel of �a is a d-prime ideal in P which contains I. Since f 2 d-rad(I), f

is in the kernel of �a. This shows 0 = �a(f) = f(a) and a is therefore also a root of f . 2

8.6 Q-existentially complete �elds

In this section we consider a variant of existentially complete �elds that arise from the
study of zeroes of polynomials from solvable polynomial rings. Note that from now on
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we assume that for a solvable polynomial ring S = KfX1; : : : ; Xn;Q;Q
0g the variables

commute with the coeÆcients. As usual we indicate this by omittingQ0 from the de�nition

of S = KfX1; : : : ; Xn;Qg. Furthermore we assume the �eld K to be a commutative Q-

algebra. This restriction is necessary, since we have to de�ne �nite formulas, which state,

that some elements are a place in an extension �eld.

De�nition 8.6.1 Let K be a commutative �eld or a commutative Noetherian domain

(compare de�nition 8.7.1). Let S = KfX1; : : : ; Xn;Qg be a solvable polynomial ring. Let

9X1 : : :9Xn (X1; : : : ; Xn) be an existential formula with  de�ned over K (that is  2

LK) and  quanti�er free. From the polynomials of Q de�ne a formula placeQ(X1; : : : ; Xn)

by:

^
1�i�j�n

XjXi = cijXiXj + pij(X1; : : : ; Xn)

^ 8Y

0
@inK(Y ) �!

^
1�i�n

Y Xi = XiY

1
A

where inK(Y ) is a new unary predicate which is interpreted by the set K. An Q-

existential formula over K is an existential formula of the form

9X1 : : :9Xn

�
 (X1; : : : ; Xn) ^ placeQ(X1; : : : ; Xn)

�

with  quanti�er free. We denote Q-existential formulas by

9X1 : : :9Xn Q(X1; : : : ; Xn):

An Q-existential formula is called Q-algebraic formula over K, if  contains no negated

atomic formulas.

We also speak of Q-formulas when we mean Q-algebraic or Q-existential formulas.

De�nition 8.6.2 Let K be a commutative �eld. K � E a skew �eld extension. Let

S = KfX1; : : : ; Xn;Qg be a solvable polynomial ring with commutator relations Q. Let

L be a commutative extension �eld of K such that E is an extension �eld of L and

S 0 = LfX1; : : : ; Xn;Qg is an extension ring of S. Let 9X1 : : :9Xk Q(X1; : : : ; Xk) denote

Q-existential (Q-algebraic) formulas which are de�ned over L.

Then (E;L) is called Q-existentially (Q-algebraically) complete if for all Q-existential

(Q-algebraic) formulas which are de�ned over L the following holds

whenever E � E0 is an extension skew �eld of E and a 2 E0k with E0 j=  Q(a)
then there exists b 2 Ek with E j=  Q(b).

Note, that an Q-existentially complete �eld is Q-algebraically complete. We also speak
of Q-complete �elds when we mean Q-algebraically or Q-existentially complete �elds.
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Lemma 8.6.3 Let K � E and let E be existentially complete and let Q be a set of

commutator relations of a solvable polynomial ring S = KfX1; : : : ; Xn;Qg. Then (E;K)

is Q-existentially complete. Hence there exist Q-existentially complete extension �elds of

K for every Q.

Proof: Every Q-existential formula  Q de�ned over K is in particular an existential

formula over K. So  Q is de�ned over E and since E is existentially complete, by theorem

8.5.2, every consistent existential formula is valid in E. This shows that (E;K) is also

Q-existentially complete. 2

Of course one may obtain Q-existentially complete extension �elds also directly as follows.

Proposition 8.6.4 Let K be a commutative �eld and let E be a skew �eld exten-

sion of K. Let Q be a set of commutator relations of a solvable polynomial ring

S = KfX1; : : : ; Xn;Qg.

1. Then there exists an Q-existentially (Q-algebraically) complete �eld (E0;L), which is
an extension of E and in which every consistent Q-existential (Q-algebraic) formula

de�ned over L with K � L � E is valid in E0.

2. Whenever (E0;L) is an Q-existentially (Q-algebraically) complete extension �eld of

E, then every consistent Q-existential (Q-algebraic) formula de�ned over L with

K � L � E is valid in E0.

Proof: (1) Let fC�g�2� be the family of all consistent Q-existential (Q-algebraic) for-
mulas de�ned over a �xed commutative extension �eld L � E of K. For every � let E�

be a skew �eld extension of E in which C� is valid. Let H =KE� be the free product
of the �elds E�. Then every consistent Q-existential (Q-algebraic) formula de�ned over

L is valid in H and by the properties of the free product L is a sub�eld of H and H is
an extension of E. This shows that (H;L) is a Q-existentially (Q-algebraically) complete
extension �eld of E.

(2) Let �Q be a consistent Q-existential (Q-algebraic) formula de�ned over the commuta-

tive extension �eld L of K and let E be a skew �eld extension of K and L. Then there
exists a skew �eld extension H0 of E and L, such that �Q is valid in H0. Let (E0;L) be an

Q-existentially (Q-algebraically) complete extension �eld of E and L. Let H = E0LH
00,

then �Q is also valid inH and sinceH is an extension �eld of E0, which was Q-existentially
(Q-algebraically) complete it is also valid in E0. 2

Theorem 8.6.5 (Hilbert Nullstellensatz) Let K � L be a commutative extension

�eld of K. Let S 0 = KfX1; : : : ; Xn;Qg be a solvable polynomial ring, with commutator

relations Q, of strictly monic lexicographical type. Let S = LfX1; : : : ; Xn;Qg be a solvable

polynomial ring extension of S 0. Let I be an ideal in S and let f 2 S.

1. If f shares all roots of I in some Q-existentially complete extension �eld (E;L) then

f is in the complete prime radical of I.
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2. Conversely if f is in the complete prime radical of I, then every root of I in every

(Q-existentially complete) extension �eld (E;L) is also a root of f .

Proof: (1) Assume f is not in the complete prime radical of I. Then 1 62 I and there

exists a prime ideal J of S, which includes I but not f . Under the assumptions on Q, by

lemma 8.2.10 every prime ideal of S and S 0 is completely prime, so J is a complete prime

ideal. Since S is Noetherian, S=J is an Ore domain and since 1 62 J it can be embedded

into a quotient �eld Q(S=J). Let � : S=J �! E0 = Q(S=J) denote the embedding

homomorphism. Now L is isomorphic to �(L) and therefore E0 can be regarded as an

extension �eld of L. Since f 62 J we have �(f) 6= 0 in E0 but for every f 2 J we have

�(f) = 0 in E0. Since S is Noetherian, every ideal is �nitely generated, let I be generated

by ff1; : : : ; flg, say. Then E
0 satis�es

9X1 : : : 9Xn

 � ^
1�i�l

fi(X1; : : : ; Xn) = 0

�

^ :(f(X1; : : : ; Xn) = 0)

^ placeQ(X1; : : : ; Xn)

!
:

Since (E;L) was Q-existentially complete, E must satisfy this sentence also. This proves

that there is a root of I in En which is not a root of f .

(2) Assume f 2 c-rad(I). Let (E;L) be a (Q-existentially complete) extension �eld and

let a 2 En be a root of I. Let �a : S �! E be the evaluation morphism. Because E is a
domain, the kernel of �a is a complete prime ideal J in S. Furthermore J contains I and
since f 2 c-rad(I), f is in J . This shows 0 = �a(f) = f(a) and a is therefore also a root

of f . 2

8.7 Comprehensive Gr�obner Bases and Q-complete

Fields

We are now going to show, that the class of Q-algebraically complete �elds is axiomatizable

and allows elimination of existential quanti�ers. To prove this we have to �nd a formula  ,

to express the fact that another formula � is consistent. Such formulas can be constructed
by means of the parametric ideal membership test 7.8.2 using comprehensive Gr�obner

bases.

Recall some notation from chapter 7. Let S = RfX1; : : : ; Xn;Qg be a parametric solvable

polynomial ring over a ring R = R[u1; : : : ; um] over a commutative Noetherian domain

R.

R = R[u1; : : : ; um] (�)

arises from a ring R0 = R[U1; : : : ; Um] in the indeterminates U1; : : : ; Um such that uj =

Uj + I, 1 � j � m, where I is a two-sided ideal in R[U1; : : : ; Um] such that R = R0=I.
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So S 0 = R0fX1; : : : ; Xn;Qg is possibly not an associative ring, but we know, that if

we specialize the U 's to the u's in R or to some elements of a �eld K, such that S =

RfX1; : : : ; Xn;Qg respectively S = KfX1; : : : ; Xn;Qg is a solvable polynomial ring, then

all arguments are justi�ed.

Let F = ff1; : : : ; fmg � S be a set of polynomials with coeÆcients in U1; : : : ; Uk.

To indicate the dependence on the parameters the polynomials are also denoted by

f(U1; : : : ; Uk; X1; : : : ; Xn) respectively by F (U1; : : : ; Uk; X1; : : : ; Xn). For a specialization

of the Ui 7! ai, where the ai's are from commutative extension �eld of K we denote by

f(a1; : : : ; ak; X1; : : : ; Xn) respectively by F (a1; : : : ; ak; X1; : : : ; Xn) the polynomials under

this specialization.

In this section let K = Q the �eld of rational numbers.

De�nition 8.7.1 Let R = K[u1; : : : ; uk] be as in (�) and let S = RfX1; : : : ; Xn;Qg be a

solvable polynomial ring with commutator relations Q. Let F = ff1; : : : ; fmg � S, m 2 N,

be a �nite subset of S and let f 2 S. Let

9X1 : : :9Xn (U1; : : : ; Uk; X1 : : : ; Xn)

be an Q-algebraic formula with  quanti�er free.  is a boolean combination (without

negations) of polynomial equations and a placeQ condition. Taking the disjunctive normal

form and moving the existential quanti�ers inside the disjunction we may assume that

 =  FQ is de�ned by a single conjunction of polynomial equations

placeQ(X1; : : : ; Xn) ^
^

1�i�m

fi(X1; : : : ; Xn) = 0:

Let

9X1 : : :9Xn (U1; : : : ; Uk; X1 : : : ; Xn)

be an Q-existential formula with  quanti�er free.  is a boolean combination (including

negations) of polynomial equations and a placeQ condition. Taking the disjunctive normal

form and moving the existential quanti�ers inside the disjunction we may assume that  =

 FfQ is de�ned by a single conjunction of polynomial equations and a single polynomial

inequality (by forming the product over all polynomials of the conjunction of inequalities)

placeQ(X1; : : : ; Xn) ^

0
@ ^
1�i�m

fi(X1; : : : ; Xn) = 0

1
A ^ :(f(X1; : : : ; Xn) = 0):

Let G = fg1; : : : ; glg, l 2 N be a comprehensive Gr�obner base of idealt(F ). By the

parametric ideal membership proposition 7.8.1 there exists a quanti�er free formula in

U1; : : : ; Uk which holds under all specializations of the Ui's if f 2 idealt(F ) under the

same specializations. This quanti�er free formula

�FfQ(U1; : : : ; Uk)
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is de�ned by _
Æ2�G;f

�Æ(U1; : : : ; Uk)

where �Æ is
V
'2Æ ' in the notation of the parametric ideal membership proposition 7.8.1.

Furthermore de�ne the (in�nite) formula

��FfQ(U1; : : : ; Uk)

by _
`2N

�Ff`Q(U1; : : : ; Uk):

Theorem 8.7.2 Let R = K[u1; : : : ; uk] be as (�) and let S = RfX1; : : : ; Xn;Qg be a

solvable polynomial ring with commutator relations Q of strictly monic lexicographical

type. Let F = ff1; : : : ; fmg � S be a �nite set of polynomials and let f 2 S.

For F and Q let 9X1 : : :9Xn FQ(U1; : : : ; Uk; X1 : : :Xn) be an Q-algebraic formula and let

�F1Q(U1; : : : ; Uk) be the quanti�er free formula as de�ned before in 8.7.1. Then for all

Q-algebraically complete extensions �elds (E;L) of K and specializations of the Ui's in L

E j= :�F1Q  ! 9X1 : : :9Xn FQ

For F , f and Q let 9X1 : : :9Xn FfQ(U1; : : : ; Uk; X1 : : :Xn) be an Q-existential formula

and let ��FfQ(U1; : : : ; Uk) be the in�nite quanti�er free formula as de�ned before in 8.7.1.

Then for all Q-existentially complete extensions �elds (E;L) of K and specializations of

the Ui's in L

E j= :��FfQ  ! 9X1 : : :9Xn FfQ

Proof: Let a1; : : : ; ak 2 L. Under the assumptions on the commutator rela-
tions Q, by the Nullstellensatz 8.6.5, 1 62 idealt(F (a1; : : : ; ak; X1 : : :Xn)) () E j=

9X1 : : :9Xn FQ(a1; : : : ; ak; X1 : : :Xn). Then by the parametric proper ideal test 7.8.2

1 62 idealt(F (a1; : : : ; ak; X1 : : :Xn)) () E j= :�F1Q(a1; : : : ; ak).

And similarly for the existential case: Again under the assumptions on the commutator
relations Q, by the Nullstellensatz 8.6.5, f 62 c-rad(idealt(F (a1; : : : ; ak; X1 : : :Xn))) ()

E j= 9X1 : : :9Xn FfQ(a1; : : : ; ak; X1 : : :Xn). Then by the parametric ideal membership

test 7.8.1 f 62 c-rad(idealt(F (a1; : : : ; ak; X1 : : :Xn))) () ff(a1; : : : ; ak; X1 : : :Xn)
` : ` 2

Ng \ idealt(F (a1; : : : ; ak; X1 : : :Xn)) = ; () E j=
V
`2N :�Ff`Q(a1; : : : ; ak) () E j=

:��FfQ(a1; : : : ; ak). 2

Another consequence of the parametric ideal membership test 7.8.2 is the existence of

bounds on the (total) degrees of polynomials hi; gi representing f in the ideal generated

by F , f =
P
hi � fi � gi. In particular, there exists such bounds for the polynomial f = 1.
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Theorem 8.7.3 Let d;m; d0; n 2 N. Then there exists a bound D 2 N

D = D(d;m; d0; n)

such that for all solvable polynomial rings S = LfX1; : : : ; Xn;Qg over L, where K � L

is a commutative extension �eld of K with commutator relations Q of strictly monic

lexicographical type, such that for every commutator polynomial pij in Q deg(pij) � d0,

for 1 � i < j � n and every �nite subset F = ff1; : : : ; fmg of S, with deg(fi) � d, for

1 � i � m and every polynomial f 2 S with deg(f) � d the following holds

f 2 idealt(F )

if and only if there exist polynomials gi; hi 2 S, with deg(gi � fi � hi) � D for 1 � i � m,

with

f =
X

1�i�m

gi � fi � hi:

Proof: Let k be a bound for the number of coeÆcients ofm+1 polynomials in n variables
of degree � d (e.g. (m + 1)(d + 1)n) and the number of coeÆcients of the commutator

polynomials of strictly monic lexicographical type such that for pij in Q deg(pij) � d0,
for 1 � i < j � n. Let R = K[u1; : : : ; uk] be as (�) and let S = RfX1; : : : ; Xn;Qg be
a solvable polynomial ring with commutator relations Q of strictly monic lexicographical

type. Let Fdm = ff1; : : : ; fmg together with f be the general system of polynomials of
degree d with indeterminate coeÆcients U1; : : : ; Uk in some arbitrary but �xed order.

The claim that there exist polynomials hi; gi with total degrees less than or equal to

some constant c 2 N can be formulated as existential sentence 'c(c1; : : : ; ck), where
c1; : : : ; ck 2 L are the coeÆcients of Fdm and f

9b1; : : : ; bk; d1; : : : ; dk�c(b1; : : : ; bk; c1; : : : ; ck; d1; : : : ; dk);

over the coeÆcients bj, cj, dj, (1 � j � k), of the polynomials hi, fi, f and gi respectively.
Where �c can be determined (using the parametric product lemma 7.1.2) by comparing

the coeÆcients of the monomials in the equation f =
Pm

i=1 hi �fi �gi. Furthermore by the

ideal membership test 7.8.1 there exists a quanti�er free formula �FfQ = �FfQdm, such
that for all extension �elds E of L and all coeÆcients cj 2 L, E j= �FfQdm(c1; : : : ; ck)()

f 2 idealt(F (c1; : : : ; ck; X1; : : : ; Xn)). Assume that for all c 2 N, 'c(c1; : : : ; ck) does not
hold, then

�FfQdm(c1; : : : ; ck) ^
^
c2N

:'c(c1; : : : ; ck);

is contradictory. By a corollary to the compactness theorem this holds if and only if it
holds for a �nite set of 'c's �FfQdm(c1; : : : ; ck)^

V
0�c�c0 :'c(c1; : : : ; ck). So it follows that

�F j= �FfQdm(c1; : : : ; ck) �!
_

0�c�c0

'c(c1; : : : ; ck):

holds, where �F denotes the axioms for commutative �elds. If 'c�(c1; : : : ; ck) holds for

0 � c� � c0, then f 2 I and 'c00(c1; : : : ; ck) also holds for all c� � c00 2 N. Finally we
observe, that the constant c0 does not depend on the particular L but it depends only on

n, m, d0 and d, so we let D(d;m; d0; n) = c0 and end the proof. 2
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Corollary 8.7.4 Let E be an extension �eld of Q, and let Q be a �xed set of com-

mutator relations of strictly monic lexicographical type of a solvable polynomial ring

S = KfX1; : : : ; Xn;Qg. For d;m 2 N let 9X1 : : :9Xn FQdm be the general Q-algebraic

formula for a set of general polynomials with degrees � d in indeterminate coeÆcients

U1; : : : ; Uk and let 	Qdm be the formula

8U1; : : : ; 8Uk(d)

 � ^
1�i�k(d)

inL(Ui)

�
�!

�
:�F1Qdm(U1; : : : ; Uk) �!

9X1 : : : 9Xn FQdm(U1; : : : ; Uk; X1; : : : ; Xn)

�!
:

Then (E;L) is algebraically Q-complete if and only if for all d;m 2 N

E j= 	Qdm:

Proof: Assume (E;L) is Q-algebraically complete and let a1; : : : ak 2 E. Then the

condition
V
1�i�k(d) inL(Ui) ensures that the whole formula is de�ned over the commutative

extension �eld L of K. Now if :�F1Qdm(a1; : : : ; ak) holds, it implies the consistence of the

formula 9X1 : : : 9Xn FQdm(a1; : : : ; ak; X1; : : : ; Xn). So 9X1 : : :9Xn FQdm is a consistent
Q-algebraic formula de�ned over L � E which extends Q. Since (E;L) is Q-algebraically
complete 	Qdm is valid in E for all d;m 2 N.

Assume E j= 	Qdm for all d;m 2 N. Let Q � L � E. Let a1; : : : ; al 2 L and let

9X1 : : :9Xn 
0
Q(a1; : : : ; al; X1; : : : ; Xn) be a consistent Q-algebraic formula de�ned over L,

such that all elements of L in  0Q are among a1; : : : ; al, which is a conjunction of polynomial
equations and a placeQ condition. Let d;m 2 N and k 2 N with l � k such that F is

the general system of polynomials in indeterminate coeÆcients U1; : : : ; Uk such that the
formula  0Q(a1; : : : ; al; X1; : : : ; Xn) is equal to  FQdm(a1; : : : ; ak; X1; : : : ; Xn). Since  0Q
is consistent :�F1Qdm(a1; : : : ; ak) implies 9X1 : : :9Xn FQdm(a1; : : : ; ak; X1; : : : ; Xn). Now
by assumption E j= 	Qdm which shows, that E j= 9X1 : : :9Xn 

0
Q(a1; : : : ; ak; X1; : : : ; Xn),

i.e. (E;L) is Q-algebraically complete. 2

8.8 Axiomatizability and Quanti�er Elimination

We are now ready to state that the class of Q-algebraically complete �elds is axiomatizable.

Corollary 8.8.1 Let L = (0; 1;+;�; �; �) be the language of solvable polynomial rings.

Let Q be a �xed set of commutator relations of strictly monic lexicographical type of a

solvable polynomial ring over Q. Then the class S of Q-algebraically complete �elds is

axiomatizable in L.
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Proof: Let �F be the axioms of commutative �elds of characteristic zero with a �xed

commutative extension �eld L described by the predicate `inL'. Let Q be the commutator

relations of a solvable polynomial ring as de�ned in 3.2.1. For each d;m 2 N let 	dm =

	Qdm be the formula as de�ned in the previous proposition 8.7.4. Let � = f	dm : d;m 2

Ng. Then �� = �F [� is an (enumerable) set of axioms. Now by theorem 8.7.4 we have

(E;L) 2 S () E j= ��. This shows that S is axiomatizable by ��. 2

We proved actually more than was needed for axiomatizability. The comprehensive

Gr�obner bases provide moreover a means for quanti�er elimination.

Corollary 8.8.2 Let L = (0; 1;+;�; �; �) be the language of solvable polynomial rings.

Let Q be a �xed set of commutator relations of strictly monic lexicographical type of a

solvable polynomial ring over Q. Then the class S of Q-algebraically complete �elds

allows elimination of existential quanti�ers in Q-algebraic formulas.

Proof: Let 9X1 : : :9Xn FQ be an Q-algebraic formula with  FQ quanti�er free. Let

�F1Q be the corresponding quanti�er free formula as de�ned before in 8.7.1. Then by
theorem 8.7.2 in an Q-algebraically complete �eld (E;L) we have

E j= 9X1 : : :9Xn FQ  ! �F1Q:

This shows that S allows elimination of existential quanti�ers. 2

The case of universal quanti�ers would require that 8X� ! :9X:� can be used. This
however introduces negations in the formulas. In the theory of (skew) �elds for formulas

(polynomials) f : :(f = 0) ! 9X(fX � 1 = 0) holds, so negation can be reformulated
by an existential formula. In our setting it would be necessary to de�ne some commutator

relation for X. Since X is intended to be an inverse of f : f�1. So we must have

X �Xi = XiX + (f(X1; : : : ; Xn)
�1 �Xi � f(X1; : : : ; Xn)

�1 �Xi)

for 1 � i � n. But it is in general not true, that this de�nes commutator relations for a

solvable polynomial ring (see also section 8.11). The general case could then be handled

by induction on the number of alternating quanti�er blocks.

8.9 Strong Theorems on Roots

In this section, we state some stronger versions on theorems on roots using the Lefschetz

principle, which is a consequence of the amalgamation property. Then we summarize the

theorems on roots.

Theorem 8.9.1 (Strong Algebraic Nullstellensatz) Let S = KfX1; : : : ; Xn;Qg be

a solvable polynomial ring of strictly monic lexicographical type. Let I be a proper two-

sided ideal in S. Then the following are equivalent
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1. There exists some Q-algebraically complete �eld (E;L) over K and there exist

a1; : : : ; an 2 E such that (a1; : : : ; an) is a root of I.

2. In all Q-algebraically complete �elds (E;L) over K there exist a1; : : : ; an 2 E such

that (a1; : : : ; an) is a root of I.

Proof: It suÆces to show (1) ) (2): Let (E;L) be some Q-algebraically com-

plete �eld over K and let a1; : : : ; an 2 E such that (a1; : : : ; an) is a root of I. Let

I = idealt(f1; : : : ; fm). Let b1; : : : ; bk 2 L be the coeÆcients of the polynomials f1; : : : ; fm
in L � E of K. Replace the b1; : : : ; bk by new indeterminates U1; : : : ; Uk and let the

resulting Q-algebraic formula 	FQ(U1; : : : ; Uk) be

9X1 : : :9Xn FQ(U1; : : : ; Uk; X1; : : : ; Xn):

Now by assumption E j= 	FQ(b1; : : : ; bk). Let (E
0;L) be another Q-algebraically complete

�eld over K. Then by the Lefschetz principle also E0 j= 	FQ(b1; : : : ; bk). This shows that
there exist a1; : : : ; an 2 E

0 such that (a1; : : : ; an) is a root of I. 2

Theorem 8.9.2 (Strong Existential Nullstellensatz) Let S = KfX1; : : : ; Xn;Qg be
a solvable polynomial ring of strictly monic lexicographical type. Let I be a proper two-

sided ideal in S and let 0 6= f 2 S. Then the following are equivalent

1. There exists some Q-existentially complete �eld (E;L) over K such that all roots

(a1; : : : ; an) of I in En are not roots of f .

2. In all Q-existentially complete �elds (E;L) over K all roots (a1; : : : ; an) of I in En

are not roots of f .

Proof: It suÆces to show (1) ) (2): Let (E;L) be some Q-existentially complete �eld
over K and let a1; : : : ; an 2 E such that (a1; : : : ; an) is a root of I which is not a root of

f . Let I = idealt(f1; : : : ; fm). Let b1; : : : ; bk 2 L be the coeÆcients of the polynomials

f; f1; : : : ; fm in L � E of K. Replace the b1; : : : ; bk by new indeterminates U1; : : : ; Uk and
let the resulting Q-existential formula 	FfQ(U1; : : : ; Uk), containing :(f = 0), be

9X1 : : :9Xn FfQ(U1; : : : ; Uk; X1; : : : ; Xn):

By assumption E j= 	FfQ(b1; : : : ; bk). Let (E0;L) be another Q-existentially complete

�eld over K. Then by the Lefschetz principle also E0 j= 	FfQ(b1; : : : ; bk). This shows
that all roots (a1; : : : ; an) of I in E

0n are not roots of f . 2

The last two theorems summarize the results on the Hilbert Nullstellensatz in algebraic

and existential extension �elds compatible with solvable polynomial rings with commuta-

tor relations Q.

Theorem 8.9.3 Let S = KfX1; : : : ; Xn;Qg be a solvable polynomial ring over K = Q,

with �xed commutator relations Q of strictly monic lexicographical type. Let F be a �nite

subset of S. Then the following are equivalent
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1. 1 62 idealt(F ).

2. idealt(F ) has a common zero in some extension �eld of K.

3. idealt(F ) has a common zero in all Q-algebraically complete extension �elds of K.

4. idealt(F ) has a common zero in some Q-algebraically complete extension �eld of K.

Proof: The equivalence between 1 and 2 follows by proposition 8.2.11. The equivalence

between 1 and 3 follows by theorem 8.6.5. The equivalence between 3 and 4 follows by

theorem 8.9.1. 2

Theorem 8.9.4 Let S = KfX1; : : : ; Xn;Qg be a solvable polynomial ring over K = Q,

with �xed commutator relations Q of strictly monic lexicographical type. Let F be a �nite

subset of S and let f 2 S. Then the following are equivalent

1. f 62 c-rad(idealt(F )).

2. idealt(F ) has a common zero in some extension �eld of K, which is not a zero of f .

3. idealt(F ) has a common zero in all Q-existentially complete extension �elds of K,

which is not a zero of f .

4. idealt(F ) has a common zero in some Q-existentially complete extension �eld of K,

which is not a zero of f .

Proof: The equivalence between 1 and 2 follows by proposition 8.2.14. The equivalence

between 1 and 3 follows by theorem 8.6.5. The equivalence between 3 and 4 follows by
theorem 8.9.2. 2

8.10 Q-existential Varieties

In this section we discuss the relation between semiprime ideals (radical ideals, cf. 2.2.13)

and varieties of roots of these ideals. Using this results it makes sense to de�ne a topology

(the so called Zariski topology) on the set of complete prime ideals c-spec(S). The radical

ideals form the closed sets and correspond one to one to the varieties of roots of ideals.

De�nition 8.10.1 Let S = KfX1; : : : ; Xn;Qg be a solvable polynomial ring with com-

mutator relations Q of strictly monic lexicographical type. Let E be an extension �eld of

K and let L be a �xed commutative extension �eld of K with K � L � E. For a subset

A of S de�ne a subset V of En by

V = V(A;E; Q) = f(a1; : : : ; an) = a 2 En : f(a) = 0 for all f 2 A and placeQ(a)g

V(A;E; Q) is called the Q-variety of A over (E;L). If V 0 = V(A;E; Q) for some subset

V 0 of En and some subset A of S then V 0 is called a variety. If E and Q is clear from

the context we will simply write V(A) for V(A;E; Q).
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De�nition 8.10.2 Let S = KfX1; : : : ; Xn;Qg be a solvable polynomial ring with com-

mutator relations Q of strictly monic lexicographical type. Let E be an extension �eld of

K and let L be a �xed commutative extension �eld of K with K � L � E.

For a subset V of Q-places of En de�ne a subset A of S by

A = ff 2 S : f(a) = 0 for all a 2 V g:

Then A is an ideal in S and it is denoted by A = ideal(V ).

Proof: Since the elements of V are Q-places, the evaluation �a for a 2 V is a homomor-

phism. For all a 2 V and for f; g 2 A and h 2 S we have �a(f � g) = �a(f)� �a(g) = 0

and �a(hf) = �a(h)�a(f) = 0. This shows that f � g 2 A and hf 2 A and A is indeed
an ideal. 2

In analogy to Hirschfeld and Wheeler we get:

Theorem 8.10.3 Let S = KfX1; : : : ; Xn;Qg be a solvable polynomial ring with commu-

tator relations Q of strictly monic lexicographical type. Let (E;L) be an Q-existentially

complete extension �eld of K where L be a �xed commutative extension �eld of K with

K � L � E.

1. Two semiprime ideals in S are distinct if and only if they have di�erent Q-varieties

in En.

2. If V is a Q-variety in En then ideal(V ) is semiprime in S.

Proof: (1) \=)" Let I and J be two distinct semiprime ideals in S. Without loss of

generality assume that there exists f 2 I which is not in J . Since J is semiprime and
f 62 J = c-rad(J) by theorem 8.6.5 there exists a root a of J in En which is not a root of

f . That is a 2 V(J) and a 62 V(I) which proves one direction.

\(=" Let V(J) and V(I) be distinct varieties. Without loss of generality assume that

there exists a 2 V(J) and a 62 V(I). Let f 2 I, then f(a) 6= 0. By theorem 8.6.5 we have

f 62 c-rad(J) and since J = c-rad(J) we have f 62 J which proves the other direction.

(2) Let V be a variety in En and let A = ideal(V ), A � S. Assume there is a polynomial
f 2 S such that f 62 A. Then there exists a place a 2 En such that a 2 V but f(a) 6= 0.

Since f(a) 6= 0 we have by theorem 8.6.5 that f 62 c-rad(A). This shows A = c-rad(A)

and proves the claim. 2

8.11 Rabinowitch Trick

Let R be a commutative polynomial ring and let I be an ideal in R and let f 2 R. Then

the so called Rabinowitch trick, known form commutative ideal theory, states that
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there exists k 2 N such that fk 2 ideal(I)

() f 2 rad(I)

() 1 2 ideal(f1� Zfg [ I),

where Z is a new variable and k 2 N. This trick has the great advantage, that the

test whether some power of a polynomial f lies in the ideal I, can be reduced to the

question whether 1 is in the ideal generated by I and the polynomial 1� Zf . Although

for practical purposes a new variable must be adjoined to the ring and the proper ideal

test `computation' must be done in this bigger ring. But also for theoretical reasons this

trick is fortunate, since it allows the elimination of negated formulas. These aspects are

discussed in the next two subsections.

8.11.1 Existential and Algebraic Completeness

In commutative and in free non-commutative �eld theory some element a 6= 0 if and only
if a is invertible. So negated atomic formulas are logically equivalent to an existential

formula introducing a new variable and a positive atomic formula:

:(�1(X) = �2(X))() 9U (�1(X)U = �2(X)U + 1);

where �1; �2 denote terms in the language of �elds. By this equivalence it is clear that
existentially completeness is the same as algebraically completeness.

However in case of the solvable polynomial rings this equivalence seems not to hold in
general. To see the problems let �2(X) be 0 and let �1(X) be the polynomial f(X).

Consider
:(f(X) = 0)

?
() 9U (f(X)U = 1) ^ placeQ1(X;U):

In the theory of solvable polynomial rings we must specify commutator relations for the

new variable U . In the quotient �eld of S (S is a Noetherian domain) they can be de�ned

as:

U �Xi = XiU + (f(X)�1 �Xi �Xi � f(X)�1)

U �Xi = XiU + gi(X)

for gi 2 Q(S) for i = 1; : : : ; n. In Q(S) the elements gi are quotients of polynomials from

S: gi(X) = pi(X)
qi(X)

, where the qi are left fractions. Using syzygy construction (e.g. using

Gr�obner bases) the gi(X) = f(X)�1 �Xi�Xi � f(X)�1 can be constructed together with

the pi(X) and the qi(X). So placeQ1(X;U) takes the form

placeQ(X) ^ 9U1; : : : ; Un

� ^
i=1;:::;n

(qi(X)Ui = pi(X)

^U �Xi = XiU + Ui)

^placeQ2(U1; : : : ; Un)

�
:
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But here again we need to specify commutator relations for the Ui:

Ui �Xj = XjUi + (gi(X)�1 �Xj �Xj � gi(X)�1)

Ui �Xj = XjUi + gji(X)

for gji 2 Q(S) for j; i = 1; : : : ; n. Let gji(X) =
pji(X)

qji(X)
, then we have for placeQ2(U1; : : : ; Un)

9U11; : : : ; Unn (
^

i;j=1;:::;n

(qji(X)Uji = pji(X) ^ Uj �Xi = XiUj + Uji) ^ placeQ3(Uij)):

At this point it is clear that the construction of such a formula is in general an in�nite

process. Thus for solvable polynomial rings we have proved a weaker form of the the
general results from [Bacsich 1973] (where only �nitely many quanti�ers are required) in
the following proposition.

Proposition 8.11.1 Let S = KfX1; : : : ; Xn;Qg be a solvable polynomial ring over a �eld

K with commutator relations Q. Let f 2 S, then one can construct an in�nite positive

formula 	, with in�nitely many quanti�eres, such that

9X1 : : :9Xn:(f(X1; : : : ; Xn) = 0)() 9X1 : : :9Xn	(X1; : : : ; Xn):

	(X1; : : : ; Xn) is de�ned as

9U; U1; : : : ; Un; U11; : : : ; Unn; : : : (f(X1; : : : ; Xn)U = 1) ^ placeQ(X1; : : : ; Xn) ^� ^
i=1;:::;n

(qi(X1; : : : ; Xn)Ui = pi(X1; : : : ; Xn)

^U �Xi = XiU + Ui) ^

(
^

i;j=1;:::;n

(qji(X1; : : : ; Xn)Uji = pji(X1; : : : ; Xn)

^Uj �Xi = XiUj + Uji) ^ : : : )

�
:

8.11.2 Using the Quotient Field

Another possibility to exploit the Rabinowich trick could be to determine 1 2 I+(1�Zf)

not in S but in the in the quotient �eld Q(S) of S.

Proposition 8.11.2 Let S = KfX1; : : : ; Xn;Qg be a solvable polynomial ring over a

commutative �eld K with commutator relations Q of strictly monic lexicographical type.

Let L be an extension �eld of K. Let I be a two-sided ideal in S generated by f1; : : : ; fk
and let 0 6= f 2 S. Let f 0 = f�1 be the inverse of f in Q(S) (that is f 0f = 1). Let Z be

a new variable and de�ne an Ore extension of Q(S) by

S 0 = Q(S)fZ; fZXi = XiZ + (f 0Xi �Xif
0); i = 1; : : : ; ngg:

Then the following conditions are equivalent



8.11. RABINOWITCH TRICK 237

1. there exists a root a 2 Ln of I which is not a root of f ,

2. 1 62 J = I + (1� Zf), where J is an ideal in S 0.

Proof: 1 =) 2: Assume 1 2 J , then we have 1 =
Pk

i=1 gifihi + g(1 � Zf)h; where

gi; hi; g; h 2 S
0. Let a be a root of I, that is of every fi such that f(a) 6= 0. Then also

f 0(a) 6= 0 and so de�ne a0 = (a1; : : : ; an; f
0(a)). By construction of S 0 we have that a0 is a

place and the evaluation morphism yields: �a0(1� Zf) = 1� f 0(a)f(a) = 1� 1 = 0. So

we get 1 = �a0(
Pk

i=1 gifihi+ g(1�Zf)h) = 0+�a0(g)0�a0(h) = 0; a contradiction. So the

assumption must have been false, which proves 1 62 J .

2 =) 1: Let 1 62 J and let a 2 Ln be a root of J . Under the assumptions on Q and the

extended Q, by lemma 8.2.10 every prime ideal of S 0 is completely prime. So there exists
a root a0 2 Ln+1 of J . Let a0 = (a1; : : : ; an; an+1) = (a; an+1). So fi(a

0) = 0 since the fi do

not depend on Z. Now a0 is also a root of 1�Zf , that is 0 = �a0(1�Zf) = 1��a0(Z)�a0(f).
That is �a0(f) is invertible in L and so it is nonzero. This proves f(a0) 6= 0 and so the
proposition. 2



Appendix A

Generalizations of Solvable Rings

In this chapter we discuss the requirements for more general solvable polynomial rings,
where the condition that the head term of the polynomials under the �-product is equal
to the head term of the commutative product is released. Prominent structures in this

class are Grassmann (exterior) algebras. However not much positive results have been
achieved with this concept.

In the �rst section the generalized axioms are presented and it is shown, that the �-product
of two polynomials is again a polynomial which is smaller or equal to the respective

commutative product. Next some implications for the associativity of the �-product and
the example of exterior algebra is discussed. Finally we try to de�ne a suitable (left)

reduction relation for this rings. To ensure, that enough head terms for reduction are
present, we de�ne so called saturated polynomial sets. However the saturation process
is in general in�nite. Only if the set of terms is �nite or the commutator relations have

certain shape the saturation is �nite.

A.1 Generalized Axioms

In this section we �rst state the axioms of the �-product for elements of T and K and

then we extent the �-product to arbitrary elements of R. Note, that the notation of the

commutator relations is slightly di�erent: in 3.2.1 we write Xi � a = caiaXi+ pai but here

in A.1.1 we write Xi � a = caiXi + pai. So e.g. the condition cai = 1 is here expressed as

cai = a.

Axioms A.1.1 For a �xed term order <T , (R; �) is called a solvable polynomial ring if

the following axioms for � are satis�ed:

1. (R; 0; 1;+;�; �; <) is an associative ring with 1 and with admissible term order <.

2. (a) For all a; b 2 K, t 2 T (X1; : : : ; Xn), a � b � t = abt.

(b) For all 1 � i < n, s 2 T (X1; : : : ; Xi), t 2 T (Xi+1; : : : ; Xn), s � t = st.

238
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3. For all 1 � i � j � n there exist cij 2 K and pij 2 R, pij <T XiXj with pii = 0 if

cii 6= 0, such that

Xj �Xi = cijXiXj + pij:

4. For all 1 � i � n and all a 2 K there exist cai 2 K and pai 2 K, with c0i = 0,

c1i = 1, p0i = 0, p1i = 0, such that

Xi � a = caiXi + pai:

5. For all 1 � i � n, all 0 � e; d 2 N such that cii 6= 0, there exist 0 6= cied 2 K, such

that

Xe
i �X

d
i = ciedX

e+d
i :

Any admissible order satisfying condition (3) will be called �-compatible. � will denote

the new multiplication, the (non-commutative) multiplication in K and the commutative
multiplication inK[X1; : : : ; Xn] will be denoted by � or juxtaposition of elements. Solvable
polynomial rings will be denoted by R = KfX1; : : : ; Xng, or if Q denotes the set of

commutator relations of axiom A.1.1(3), and if Q0 denotes the set of commutator relations
of axiom A.1.1(4), by KfX1; : : : ; Xn;Q;Q

0g.

In the following lemma properties of univariate polynomials are considered.

Lemma A.1.2 Let R = KfX1; : : : ; Xng be a solvable polynomial ring. Let cii 6= 0, for
some 1 � i � n, let f 2 K[Xi], let t 2 T (X1; : : : ; Xi), t = t0Xe

i , s 2 T (Xi; : : : ; Xn),
s = Xd

i s
0.

1. For 0 � m 2 N there exist 0 6= c; c0 2 K such that Xm
i = cXi �X

m�1
i = c0Xm�1

i �Xi.

2. f �Xi 2 K[Xi] and HT(f �Xi) = HT(fXi).

3. For e � 1, d � 1 there exists 0 6= c; c0 2 K such that s = cXi � (X
d�1
i s0) = cXi � v

and t = (t0c0Xe�1
i ) �Xi = u �Xi.

Proof: (1) By axiom A.1.1(5) there exists 0 6= ci;1;m�1 2 K such that Xi � X
m�1
i =

ci;1;m�1X
m
i . Let 0 6= c 2 K such that cci;1;m�1 = 1 then Xm

i = cXi � X
m�1
i as claimed.

To prove the second equation let also by axiom A.1.1(5) 0 6= ci;m�1;1 2 K such that

Xm�1
i �Xi = ci;m�1;1X

m
i . Let 0 6= c0 2 K such that c0ci;m�1;1 = 1 then Xm

i = cXm�1
i �Xi

as desired.

(2) By induction on degree f . Let f = b 2 K, then by A.1.1(2,a) b � Xi = bXi. Let

f = bXe
i + f 0, then f � Xi = (bXe

i + f 0) � Xi = b(Xe
i � Xi) + f 0 � Xi. By induction

assumption h0 = f 0 � Xi 2 K[Xi] and by axiom A.1.1(5) Xe
i � Xi = ci;e;1X

e+1
i . So

f � Xi = bci;e;1X
e+1
i + h0 as claimed. Furthermore bci;e;1 6= 0 since K is a �eld, i. e.

HT(f �Xi) = Xe+1
i = HT(fXi).

(3) By (1) we have s = Xe
i s

0 = (cXi �X
e�1
i )s0 = cXi � (X

e�1
i s0) = cXi � v. Again by (1)

we have t = t0Xe
i = t0(c0Xe�1

i �Xi) = (t0c0Xe�1
i ) �Xi = u �Xi. 2
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The next lemma deals with products of polynomials and elements of the coeÆcient ring.

Note: The statement of the following two lemmas is somewhat unlucky, since the proofs

seem to be cyclic. However the proof of A.1.3(2) relies only on A.1.4(1), which does not

depend on A.1.3.

Lemma A.1.3 Let R = KfX1; : : : ; Xng be a solvable polynomial ring, let <T be a �-

compatible admissible term order, let f 2 K[Xi; : : : ; Xj], for 1 � i � j � n and let

a 2 K.

1. Then a � f = af .

2. If cak 6= 0, when a 6= 0, for 1 � k � n and a 2 K, then there exists c 2 K (c 6= 0 i�

a 6= 0) and h 2 K[Xi; : : : ; Xj], h < f such that f � a = cf + h.

3. In any case f � a 2 K[Xi; : : : ; Xj] and HT(f � a) � HT(f).

Proof: By Noetherian induction on f with respect to the quasiorder < on R induced by
< on T .

(1) Let f = b 2 K, then by A.1.1(2,a) a � b = ab. For f = bt + f 0, bt = HM(f) we get

a � f = a � (bt+ f 0) = a � bt+ a � f 0. By induction assumption and A.1.1(2,a) this is equal
to abt + af 0 = af .

(2) Let f = b 2 K, then by A.1.1(2,a) b�a = ba and if a 6= 0 then let c0 2 K with c0b = ba

and let h = 0. For f = bt + f 0, bt = HM(f) we get f � a = (bt + f 0) � a = bt � a + f 0 � a.
By induction assumption f 0 � a = c0f 0 + h0.

For the �rst term let 1 � k � j maximal such that e � 0 and let t = t0Xe+1
k = u �

Xk = t0c0X
e
k � Xk by lemma A.1.2(3) (eventually c = 1 and e = 0). By A.1.1(4) for

Xk � a = cakXk + pak we have bt � a = b(u �Xk) � a = bu � (Xk � a) = bu � (cakXk + pak)
= b(u � cak)Xk + b(u � pak) = bt0c0(X

e
k � cak)Xk + bt0c0(X

e
k � pak).

By twofold application of the induction assumption to Xe
k �cak = c1X

e
k+p1 and X

e
k �pak =

c2X
e
k + p2 we get bt � a = b(t0 � c0c1X

e
k + t0c0p1)Xk + b(t0 � c0c2X

e
k + t0c0p2). Taking c

0
1; c

0
2

such that c01c0 = c0c1 and c
0
2 = c0c2 we obtain bt�a = b(t0 � c01)c0X

e
k �Xk+ bt

0 � c0p1 �Xk+

b(t0 � c02)X
e
k + bt0 � c0p2.

Using c0X
e
k �Xk = Xe+1

k , induction assumption on t0 � c01 = c3t
0+ p3 and t

0 � c02 = c4t
0+ p4,

furthermore taking into account that since p1 2 K[Xk] and by induction assumption
g1 = bt0 � c0p1 2 K[Xi; : : : ; Xk] we have by lemma A.1.2(2) g1 � Xk 2 K[Xi; : : : ; Xk].

By the same arguments since p2 2 K[Xk], g2 = bt0 � c0p2 2 K[Xi; : : : ; Xk]. So the
second and fourth summand can be combined to h1 = g1 �Xk + g2, and we get bt � a =

b(c3t
0 + p3)X

e+1
k + b(c4t

0 + p4)X
e
k + h1.

Now t0 � Xe+1
k = t0Xe+1

k = t and t0 � Xe
k = t0Xe

k by A.1.1(2,b), and again bp3 2

K[Xi; : : : ; Xk�1], bp4 2 K[Xi; : : : ; Xk�1] and using lemma A.1.4(1) on bp3 � X
e+1
k and

bp4 � X
e
k the head term becomes bt � a = bc3t + h2, where h2 denotes the sum of the

remaining parts. Finally taking c 2 K such that cb = bc3 and with h = h2+h
0+(c0�c)f 0,

we arrive at f � a = bt � a + c0f 0 + h0 = cbt + h2 + c0f 0 + h0 = cf + h:
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(3) In the proof of (2) it may happen, that for some 1 � i � n and some a 2 K, cai = 0

and so in the product Xi � a = 0 + pai the head term vanishes. As a consequence some

terms in f �a (probably the head term) may vanish, but the remaining terms are still less

than the head term of f and are still in K[Xi; : : : ; Xj]. 2

The next lemma considers products of polynomials and terms from disjoint sets of vari-

ables.

Lemma A.1.4 Let R = KfX1; : : : ; Xng be a solvable polynomial ring, let <T be a �-

compatible admissible term order, let 0 � i � n � 1 and let f 2 K[X1; : : : ; Xi], Xj 2 R

for (1 � j � n), t 2 T (Xi+1; : : : ; Xn), g 2 K[Xi+1; : : : ; Xn].

1. Then f � t = ft.

2. If caj = a, paj = 0, for 1 � j � n and a 2 K, then

f � g = fg:

3. If cak 6= 0 when a 6= 0, for 1 � k � n and a 2 K, then there exists c 2 K (c 6= 0 i�

g 6= 0) and h 2 K[X1; : : : ; Xi], h < HT(fg), such that

f � g = cfg + h:

4. In any case f � g 2 K[X1; : : : ; Xn] and HT(f � g) � HT(fg).

Proof: (1) follows by Noetherian induction on f using axioms A.1.1(2,a,b). Let f =

b 2 K, then by A.1.1(2,a) f � t = a � t = at. Let f = bt0 + f 0, bt0 = HM(f), then
f � t = (bt0 + f 0) � t = bt0 � t + f 0 � t. Then by A.1.1(2,b) we have t0 � t = t0t. So
f � t = bt0t + f 0 � t = bt0t + f 0t = ft by induction assumption on f 0 � t.

(2) follows by Noetherian induction on g: Let g = a 2 K, then by lemma A.1.3(2)
f � g = f � a = af under the assumptions of (2). Let g = at+ g0, with at = HM(g), then
f � g = f � (at+ g0) = f � at+ f � g0. By (1), the assumptions of (2) and lemma A.1.3(2),

the �rst product gives f � at = af � t = aft. f � g0 is handled by induction assumption,

so we have f � g = aft+ fg0 = fg.

We prove (3) by Noetherian induction on g. Let g = b 2 K, then by lemma A.1.3(2):

f � b = cf + h. Let g = bt+ g0, bt = HM(g), then f � g = f � (bt+ g0) = (f � b) � t+ f � g0.
Again by lemma A.1.3(2): f � b = c0f + h0, where h0 2 K[X1; : : : ; Xi], and we obtain
(c0f + h0) � t + f � g0 = c0f � t + h0 � t + f � g0. Now by (1): f � t = ft, h0 � t = h0t and

f � g0 = c00fg0+ h00 by induction assumption. So f � g = c0ft+ h0t+ c00fg0+ h00 = cfg+ h.

(4) In the proof of (3) it may happen, that for some f and some b 2 K, f � b < HT(f) by
A.1.3(3). As a consequence some terms in f �g (probably the head term) may vanish, but

the remaining terms are still less than the head term of ft and are still in K[X1; : : : ; Xn].
2

The following lemma treats products of polynomials under the condition that the product

of the head terms does not vanish. But this is condition is not used for the proof, that no

product vanishes is only the worst case that can happen. See also the following proposition

A.1.6.
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Proposition A.1.5 Let R = KfX1; : : : ; Xng be a solvable polynomial ring, let <T be a

�-compatible admissible term order, and let f; g 2 R. Furthermore let caj 6= 0 when a 6= 0,

for 1 � j � n and a 2 K and let cij 6= 0, 1 � i � j � n. Then there exists an h 2 R and

c 2 K, (c 6= 0 i� g 6= 0), such that

f � g = c � f � g + h

and h <T HT(fg). Moreover, c and h are uniquely determined by f and g.

Proof: The proof is adapted from [Kandri-Rody, Weispfenning 1988] lemma 1.4. Unique-

ness: Let f � g = cfg+ h = c0fg+ h0. Since h; h0 < HT(fg), HT(fg) cannot be cancelled
by some term in h or h0, so c = c0 and from this follows h = h0.

Existence: Follows by Noetherian induction on fg with respect to <. Let f = a 2 K,
then by lemma A.1.3(1): a � g = ag + 0. Let g = b 2 K, then by lemma A.1.3(2):

f � b = cbf + h.

For the general case let f = as+ f 0, g = bt+ g0 with as = HM(f), bt = HM(g). Then by
distributivity of � and 3 times induction assumption we get

f � g = as � bt + as � g0 + f 0 � bt + f 0 � g0 = as � bt + d1asg
0 + d2f

0bt + d3f
0g0 + h0;

where d1; d2; d3 2 K, h0 2 R, h0 < st = HT(fg). When we have proved that

as � bt = cabst + h00; (A.1)

with c 2 K and h00 < st = HT(fg), we can set d0i = di � c, h = h00 + d01asg
0 + d02f

0bt +
d03f

0g0 + h0 and the claim f � g = cfg + h follows.

It remains to show, that equation (A.1) holds. Assume, that s 2 T (Xh; : : : ; Xj) and

t 2 T (Xi; : : : ; Xk) with h; i maximal and j; k minimal with 1 � h � j � n, 1 � i � k � n.

We distinguish 4 cases:

Case j � i: If j < i we can apply lemma A.1.4(3) to obtain as � bt = cabst + h00, with
h00 2 K[Xh; : : : ; Xj].

If i = j let s = s0Xe
i , t = Xd

i t
0, with e > 0 and d > 0. Lemma A.1.3(2) applied to

s � b gives c3bs + h1, h1 < s. Then as � bt = a(c3bs + h1) � t = ac3bs � t + h1 � t =
ac3bs

0(Xe
i �X

d
i )t

0 + h2. Where by induction assumption on h1 � t = h2 < st.

By axiom A.1.1(5) under the assumptions of the lemma we have Xe
i �X

d
i = c4X

e+d
i ,

c4 6= 0 and by lemma A.1.3(2) we have s0 � c4 = c5s
0 + h3, h3 < s0 so as � bt =

ac3b(s
0 � c4)X

e+d
i � t0 + h2 = ac3b(c5s

0 + h3)X
e+d
i � t0 + h2 = ac3bc5s

0 � Xe+d
i � t0 +

ac3bh3 �X
e+d
i � t0 + h2 = cabs0 �Xe+d

i � t0 + h00. Where c 2 K such that cab = ac3bc5
and by induction assumption h00 = ac3bh3 �X

e+d
i � t0 + h2, h

00 < st.

Now axiom A.1.1(2,b) can be applied to both products in s0 �Xe+d
i � t0 = st, and so

as � bt = cabst + h00.
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Case h � i: Let s = Xe+1
h s00 = c1Xh �X

e
hs

00 = c1Xh � s
0 by lemma A.1.2(3) with e � 0

(eventually c1 = 1 and e = 0).

Now s0 < s and by induction assumption let s0 � bt = c2bs
0t + h2. We get as � bt =

ac1Xh�(s
0�bt) = ac1Xh�(c2bs

0t+h2) = ac1(Xh�c2b)s
0t+ac1Xh�h2. Since h2 < s0t,

induction assumption can be applied to the last summand giving ac1Xh � h2 = h3
with h3 < Xhs

0t = st.

By axiom A.1.1(4) there exist c3; p3 2 K with Xhc2b = c3Xh + p3. Let c4 2 K

such that c4ab = ac1c3 and let p4 = ac1p3 then as � bt = a(c1c3Xh + c1p3)s
0t + h3 =

c4ab(Xh�s
0t)+p4�s

0t+h3 = c4abXh�(X
e+d
h s00t0)+p4s

0t+h3 = c4ab(Xh�X
e+d
h )�s00t0+

h00 = c4abc5(X
e+1+d
h � s00t0) + h00 = cabst + h00: Using axiom A.1.1(2,a) for products

with coeÆcients, c1Xh � s
0 = s, c 2 K with ca = ac4 and h

00 = p4s
0t+ h3 < st.

Furthermore using that the (commutative) term s0t can be written as Xe+d
h s00t0 =

Xe+d
h � s00t0 by axiom A.1.1(2,b), (d � 0 the degree of Xk in t) and using that by

axiom A.1.1(5) Xh�X
e+d
h = c5X

e+1+d
h and again by axiom A.1.1(2,b) Xe+1+d

h �s00t0 =
Xe+1+d
h s00t0 = st. Finally taking c 2 K such that cab = c4abc5.

Case j � k: Let t = t0Xe+1
k = u � Xk = t0c1X

e
k � Xk by lemma A.1.2(3) with e � 0

(eventually c1 = 1 and e = 0).

Now t0 < t and by induction assumption let s � bt0 = c2bst
0 + h2. We get as � bt =

a(s�bt0)c1X
e
k �Xk = a(c2bst

0+h2)c1X
e
k �Xk = a(c2bst

0 �c1X
e
k)�Xk+(h2 �c1X

e
k)�Xk

Since h2 < st0 we can apply induction assumption on both products in the second

summand yielding h4 = (h2 � c1X
e
k)�Xk < st0Xe+1

h = st. Furthermore we can apply
induction assumption to st0 � c1X

e
k = c3c1st

0Xe
k + h3, since st

0Xe
k < st.

This gives as � bt = ac2b(c3c1st
0Xe

k + h3) �Xk + h4 = ac2bc3c1(st
0Xe

k) �Xk + ac2bh3 �

Xk + h4 Again the second summand can be handled by induction assumption since

h3 < st0Xe
k < st, let h5 = ac2bh3 �Xk + h4 < st.

Now use, that the (commutative) term st0Xe
k can be written as s

0t0Xe+d
k = s0t0�Xe+d

k

by axiom A.1.1(2,b), (d � 0 the degree of Xk in s). Furthermore by axiom A.1.1(5)
we have Xe+d

k �Xk = c4X
e+1+d
k thus as�bt = ac2bc3c1s

0t0�c4X
e+1+d
k +h5 = c5ab(s

0t0�

c4)X
e+1+d
k + h5, using c5ab = ac2bc3c1.

With lemma A.1.3(2) s0t0 � c4 = c6c4s
0t0 + h6, where h6 is a polynomial in the

same variables as s0t0, and h6 < s0t0, we get as � bt = c5ab(c6c4s
0t0 + h6)X

e+1+d
k +

h5 = c5abc6c4s
0t0 �Xe+1+d

k + h6 �X
e+1+d
k + h5, By axiom A.1.1(2,b) s0t0 �Xe+1+d

k =
s0t0Xe+1+d

k = st and by lemma A.1.4(3) h6 � X
e+1+d
k = h6X

e+1+d
k = h7 < st. With

cab = c5abc6c4 we get as � bt = cabst + h7 + h5 = cabst + h00, where h00 = h7 + h5.

Case i < h & k < j: We use again lemma A.1.2(3) to split s and t: s = s00Xe+1
j =

u �Xj = s00c1X
e
j �Xj, t = Xd+1

i t00 = c2Xi �X
e
i t
00 = c2Xi � t

0, with e � 0 and d � 0.

Lemma A.1.3(2) applied to s � bc2 gives c3bs+ h1, h1 < s. We obtain as � bt = a(s �

bc2)Xi�t
0 = a(c3bs+h1)�Xi�t

0 = c4ab(s�Xi)�t
0+ah1�Xi�t

0 = c4ab(s
00c1X

e
j )�(Xj �

Xi)�t
0+h2. Where we used two times induction assumption on ah1�Xi�t

0 = h2 < st

and c4 2 K with c4ab = ac3b.
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By axiom A.1.1(3) let Xj � Xi = cijXiXj + pij so the �rst summand becomes

as � bt = c4ab(s
00c1X

e
j ) � (cijXiXj + pij) � t

0 + h2 = c4abs
00c1(X

e
j � cij) �XiXj � t

0 +

c4ab(s
00c1X

e
j ) � pij � t

0 + h2.

For the �rst summand A.1.3(2) can be used to obtain Xe
j �cij = c5X

e
j +h3, h3 < Xe

j .

The second summand can be handled by induction assumption and combined with

h2 to form h4 = c4ab(s
00c1X

e
j ) � pij � t

0 + h2 < st, so: as � bt = c4abs
00c1(c5X

e
j + h3) �

XiXj � t
0 + h4 = c4ab(s

00c1c5)X
e
j �XiXj � t

0 + c4abs
00c1 � h3 �XiXj � t

0 + h4.

Using A.1.3(2) for s00c1c5 = c6s
00 + h5, h5 < s00 and application of 3 times induction

assumption to the second summand and combination with h4 giving h6 = c4abs
00c1 �

h3 �XiXj � t
0 + h4 < st, we obtain as � bt = c4ab(c6s

00 + h5)X
e
j � XiXj � t

0 + h6 =

c4abc6(s
00Xe

j �Xi) � (Xj � t
0) + c4abh5X

e
j �XiXj � t

0 + h6.

From now on let s00Xe
j = s0 by axiom A.1.1(2,b). Since s0Xi < s0XjXi � st and

Xjt
0 < XjXit

0 � st induction assumption can be applied to the �rst and last product
of the �rst summand: s0 � Xi = c8Xis

0 + h8, h8 < s0Xi and Xj � t
0 = c9t

0Xj + h9,
h9 < Xjt

0. For the second summand we use again induction assumption h7 =

c4abh5X
e
j �XiXj�t

0+h6 < st. So we get as�bt = c7ab(c8Xis
0+h8)�(c9t

0Xj+h9)+h7 =
c7ab(c8(Xis

0�c9)t
0Xj+c8Xis

0�h9+h8�c9t
0Xj+h8�h9)+h7 = c7abc8(Xis

0�c9)t
0Xj+h10.

Using several induction assumptions and simpli�cations on the second to fourth

summand, such that h10 = c7ab(c8Xis
0 � h9 + h8 � c9t

0Xj + h8 � h9) + h7, h10 < st.

Using lemma A.1.3(2) we can write Xis
0�c9 = c9Xis

0+h11, h11 < Xis
0. With further

simpli�cations we get: as � bt = c7abc8(c9Xis
0 + h11)t

0Xj + h10 = c7abc8c9(Xis
0) �

(t0Xj) + c7abc8h11 � t
0Xj + h10 = c10abXi(s

0 � t0)Xj + h12. Using h12 = c7abc8h11 �

t0Xj + h10 < st, and c10 2 K such that c10ab = c7abc8c9.

Since s0t0 < st we can apply induction assumption to the middle product s0 � t0 =
c11s

0t0 + h13, so as � bt = c10abXi(c11s
0t0 + h13)Xj = c10ab(Xic11)s

0t0Xj + c10abXi �

h13 �Xj + h12 = c10ab(c12Xi + h14)(s
0t0)Xj + c10abXi � h13 �Xj + h12 = c10abc12Xi �

(s0t0) �Xj+ c10ab �h14 � (s
0t0) �Xj +h15 = c13abXi � (s

0t0) �Xj +h15, using induction
assumptions on the second summands, Xic11 = c12Xi+h14, coeÆcient products and

collecting the rests in h15 < st.

Now by the hypothesis of this case, s0t0 2 T (Xi; : : : ; Xj) and we can write s0t0 =
Xd
i s

00t00Xe
j = Xd

i �s
00t00�Xe

j using axiom A.1.1(2,b). By axiom A.1.1(5) let Xi�X
d
i =

c14X
d+1
i and Xj �X

e
j = c15X

e+1
j .

So as�bt = c13abc14X
d+1
i �s00t00 �c15X

e+1
j +h15 = c16ab(X

d+1
i s00t00�c15)�X

e+1
j +h15 =

c16ab(c17X
d+1
i s00t00+h16) �X

e+1
j +h15 = c16abc17X

d+1
i s00t00 �Xe+1

j + c16abh16 �X
e+1
j +

h15 = cabXd+1
i s00t00Xe+1

j + h00.

By axiom A.1.1(2,b) we can write Xd+1
i � s00t00 = Xd+1

i s00t00. Furthermore we use

lemma A.1.3(2) on (Xd+1
i s00t00)�c15 = c17(X

d+1
i s00t00)+h16 and induction assumption

on the second summand such that h00 = c16abh16 � X
e+1
j + h15, h

00 < st. Finally

again by axiom A.1.1(2,b) Xd+1
i s00t00 �Xe+1

j = Xd+1
i s00t00Xe+1

j = st and with c 2 K

such that cab = c16abc17 we obtain as � bt = cabst + h00 as desired.
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So in all cases we have proved (A.1) and so the lemma. 2

The next lemma shows that in any case the �-product of two (commutative) polynomials

is again a (commutative) polynomial.

Proposition A.1.6 Let R = KfX1; : : : ; Xng be a solvable polynomial ring, let <T be a

�-compatible admissible term order, and let f; g 2 R. Then there exists an h 2 R

f � g = h

and h � HT(fg), precisely HT(f � g) = HT(fg) or HT(f � g) < HT(fg). Moreover, h is

uniquely determined by f and g.

Proof: In the proof of proposition A.1.5 it may happen, that for some 1 � i � j � n:
cij = 0 or for some 1 � i � n, a 2 K: caj = 0 As a consequence some terms in f � g

(probably the head term) may vanish, but the remaining terms are still less than the
head term of fg and are still in K[X1; : : : ; Xn]. If the product of the head terms does not
vanish, then obviously HT(f � g) = HT(fg), otherwise HT(f � g) = HT(h) < HT(fg). 2

The last lemmas of this section deal with the �-product and the quasi-order <.

Lemma A.1.7 Let R = KfX1; : : : ; Xng be a solvable polynomial ring, let <T be a �-

compatible admissible term order, and let f; g 2 R. Furthermore let caj 6= 0 when a 6= 0,

for 1 � j � n and a 2 K and let cij 6= 0 1 � i � j � n. Then

1. HT(f � g) = HT(f)HT(g) = HT(fg) = HT(g)HT(f) = HT(g � f),

2. HM(f � g) = cHM(f)HM(g),

3. For h 2 R, HT(f) < HT(g) implies HT(f�h) < HT(g�h) and HT(h�f) < HT(h�g).

Proof: (1) The assumptions of proposition A.1.5 are ful�lled, so f � g = cfg + h with

h < fg, and we have HT(f � g) = HT(cfg) = HT(fg) = HT(f)HT(g) and similarly

HT(g � f) = HT(c0gf) = HT(gf) = HT(fg).

(2) As in (1) HM(f � g) = HM(cfg) = cHM(fg) = cHM(f)HM(g).

(3) If HT(f) < HT(g), then by (1) and since < is admissible, we have HT(f �

h) = HT(f)HT(h) < HT(g)HT(h) = HT(g � h) and HT(h � f) = HT(h)HT(f) <

HT(h)HT(g) = HT(h � g). 2

A.2 Associativity and Order

The axioms A.1.1(2,3,4,5) do not guarantee the associativity of the �-product. So axiom

A.1.1(1) imposes some restrictions on the values of the cai, pai, cij and the coeÆcients of
the pij. These restrictions can be stated as a set of equations between these elements.
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Also the admissibility of the order < imposes restrictions on the values of the cai, pai, cij
and the coeÆcients of the pij.

Consider R as a K bi-module generated by the elements of T . Besides the restrictions

mentioned in lemmas 3.3.2 and 3.3.3 we note the following.

Lemma A.2.1 Let R = KfX1; : : : ; Xn;Q;Q
0g be a solvable polynomial ring, satisfying

axioms A.1.1(2,3,4,5). If < is an admissible quasi-order on R, then if for some 1 � i �

j � n

cij = 0 =) cikXiXk + pik <T pij;

for all 1 � k < j.

Proof: Let Xk < Xj so we must have Xi � Xk < Xi � Xj, i. e. cikXiXk + pik <T

cijXiXj + pij = pij. 2

Lemma A.2.2 Let R = KfX1; : : : ; Xn;Q;Q
0g be a solvable polynomial ring, satisfying

axioms A.1.1(2,3,4,5). If < is an admissible quasi-order on R, then if for some 1 � j � n

and some 0 6= a 2 K

caj = 0 =) cbi = 0 and pbi = 0

for all 1 � i � j and all 0 6= b 2 K.

Proof: Write a = bc for any b 2 K, 0 6= c 2 K, then Xj � a = paj and Xi � a = Xi � bc =
cbiXic + pbic. From Xi < Xj follows cbiXic + pbic < paj. So cbi = 0 and pbi = 0 for all

1 � i � j and all 0 6= b 2 K. 2

A.3 Examples and Applications

In addition to the algebraic structures which satisfy the axioms A.1.1 the extended set of
axioms A.1.1 is satis�ed by Cli�ord and Grassmann algebras.

A.3.1 Cli�ord and Grassmann Algebras

Let �(V ) be a Grassmann algebra of a vector space V over a �eldK, with basisX1; : : : ; Xn.
De�ne the commutator relations by cij = �1, pij = 0, cii = 0, pii = 0, 1 � i < j � n,

and cai = a and pai = 0 1 � i � n, a 2 K. Then R = KfX1; : : : ; Xn;Q;Q
0g satis�es the

axioms A.1.1.

More generally let C(V ) be a Cli�ord algebra of a vector space V over a �eld K, with
basis X1; : : : ; Xn, determined by the quadratic form

Q(X1; : : : ; Xn) =
X

1�i�n

qiX
2
i +

X
1�i<j�n

qijXiXj;

qi; qij 2 K De�ne the commutator relations by cij = �1, pij = qij, cii = 0, pii = qi, 1 �

i < j � n, and cai = a and pai = 0 1 � i � n, a 2 K. Then R = KfX1; : : : ; Xn;Q;Q
0g

satis�es the axioms A.1.1.
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A.4 Reduction Relations and Saturation

We de�ne non-constructive, constructive and saturated reduction relations. Assume in

this section all cai 6= 0 for a 6= 0, a 2 K for cai as in axiom A.1.1(4).

A.4.1 Non-commutative Division

A few remarks on the relation between commutative and non-commutative division are

in order.

Lemma A.4.1 Let p 2 R and let i 2 f1; : : : ; ng. If HT(Xi � p) = XiHT(p) then for all

k 2 N

HT(Xk
i � p) = Xk

i HT(p):

Proof: By induction on k: k = 0: HT(X0
i � p) = HT(p) = X0

i HT(p). k = 1: by
assumption.

k > 0: We have HT(Xk
i �p) = HT(cXi�(X

k�1
i �p)) by lemma A.1.4 and associativity of �.

And HT(cXi � HT(X
k�1
i � p)) = HT(cXi � (X

k�1
i HT(p))) by induction assumption. Now

let HT(p) = u1X
e
i u2 such that u1 2 T (X1; : : : ; Xi�1) and u2 2 T (Xi+1; : : : ; Xn). Then

Xk�1
i HT(p) = u1X

e+k�1
i u2 and HT(cXi � (X

k�1
i HT(p)) = HT(cXi � (u1X

e+k�1
i u2). By

assumption we have HT(Xi � (u1X
e
i u2)) = Xiu1X

e
i u2, which requires HT(Xi � u1) = Xiu1

to hold. So HT(cXi � (u1X
e+k�1
i u2) = HT(cu1Xi � X

e+k�1
i u2) and by lemma A.4.1 the

head term is equal to HT(cu1X
e+k
i u2). This shows HT(Xk

i � p) = Xk
i HT(p) and proves

the lemma. 2

Lemma A.4.2 Let p 2 R and let J = fi1; : : : ; ikg � f1; : : : ; ng, with ij < ij0 when j < j 0.

If HT(Xil � p) = XilHT(p) for all 1 � l � k then for all u 2 T (Xi1; : : : ; Xik)

HT(u � p) = uHT(p):

Proof: By induction on jJ j using the previous lemma A.4.1. 2

A.4.2 Non-constructive Reduction Relations

Our �rst attempt to de�ne suitable reduction relations is as follows:

De�nition A.4.3 (Left Reduction) Let p 2 R, t 2 T . �!t;p � R�R denotes a left

reduction relation i�

for f; f 0 2 R, t 2 T (f) with f �!t;p f
0, there exists u 2 T , au 2 K such that

t = HT(u � p), coe�(t; f) = au � coe�(t; u � p) and

f 0 = f � au � u � p:
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By construction t 62 T (f 0). If for certain f , t no such u exists, then t in T (f) is called

irreducible.

The de�nition requires that a suitable u 2 T exists for t to be reducible, but in certain

situations there might be no constructive method to determine such an u. A trivial but

important consequence of the de�nition is:

Lemma A.4.4 Let t; u 2 T , p 2 R such that t = HT (u � p). Then

u � p �!t;p 0:

In such a case we write u � p �!p 0 for short.

Proof: Since t = HT (u � p) there exists u 2 T as desired. Let au = 1 then also au 2 K

exists with coe�(t; u � p) = au � coe�(t; u � p). So u � p �!t;p u � p� 1 � u � p = 0. 2

In other words, expressions which look reducible are in fact reducible (with respect to this
de�nition).

A.4.3 Constructive Reduction Relations

To �nd a constructive de�nition of reduction one might try only head term reductions:

De�nition A.4.5 (Left Head Term Reduction) Let p 2 R, t 2 T . �!t;p � R�R

denotes a left head term reduction relation i�

for f; f 0 2 R, t 2 T (f) with f �!t;p f
0, there exists u 2 T , au 2 K such that

t = u � HT(p) = HT(u � p), coe�(t; f) = au � coe�(t; u � p) and

f 0 = f � au � u � p:

By construction t 62 T (f 0). If for certain f , t no such u exists, then t in T (f) is called
irreducible.

This de�nition requires that

1. HT(p) divides t in the commutative sense and

2. the head term of u � p is equal to t.

Now (1) is constructive by comparing exponents of powers of Xi in t and in HT(p)

(which also determines u) and (2) can be tested constructively by proposition A.1.5.

Unfortunately it may happen, that for certain u 2 T , u � p is irreducible with respect to

p. Precisely this is the case when HT(u � p) < u �HT(p). One way out could be to de�ne

reductions only with respect to a (�nite) set of polynomials:
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De�nition A.4.6 (Left Head Term Reduction wrt. P ) Let P � R, P �nite, t 2

T , p 2 P . �!t;P � R�R denotes a left head term reduction relation wrt. P i�

for f; f 0 2 R, t 2 T (f) with f �!t;P f 0, there exists u 2 T , p0 2 P , au 2 K

such that t = u � HT(p0) = HT(u � p0), coe�(t; f) = au � coe�(t; u � p
0) and

f 0 = f � au � u � p
0:

By construction t 62 T (f 0). If for certain t, f no such u and p0 exists, then t in T (f) is

called irreducible.

This de�nition requires that there exists a p0 2 P such that

1. HT(p0) divides t in the commutative sense and

2. the head term of u � p0 is equal to t.

Now (1) is constructive by comparing exponents of powers of Xi in t and in HT(p0) for
all p0 2 P (which also determines u) and (2) can be tested constructively by proposition
A.1.5. But it still may happen, that for certain u 2 T , p 2 P , u � p is irreducible with

respect to P . Again this is the case when P = fpg and HT(u � p) < u � HT(p). This
shows, that we need some closure of P , such that such anomalies can not occur.

A.4.4 Saturated Polynomial Sets

The condition on P to improve reducibility is de�ned as follows:

De�nition A.4.7 (Left Head Term Saturation) Let P � R. For k 2 N de�ne

P0 = P;

�P0 = P;

Pk+1 = fXi � p 6= 0 j p 2 Pk; 1 � i � n; for no p0 2 �Pk; there exists u0 2 T;

such that HT(Xi � p) = u0HT(p0) = HT(u0 � p0)g;

�Pk+1 = �Pk [ Pk;

P̂ =
[
k2N

Pk:

P̂ is called a left head term saturated closure of P . P is called left head term saturated,

i� P̂ = P .

If no confusion arises we will simply speak of P being saturated, when P is a left head
term saturated set. Unfortunately it may happen, that even for �nite P , P̂ is in�nite.

But there are several classes of solvable polynomial rings (depending on the type of com-

mutator relations), where P̂ is �nite when P is �nite. First this is true in the `classical'
case, where the head terms behave like in commutative polynomial rings:
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Lemma A.4.8 Let R = KfX1; : : : ; Xn;Q;Q
0g be a solvable polynomial ring. If for all

commutator relations in Q and Q0, cij 6= 0, for 1 � i � j � n, (and all cai 6= 0, for

1 � i � n and 0 6= a 2 K) then any P � R is left head term saturated. In particular for

�nite P , P̂ is �nite.

Proof: For f 2 P let t = HT(f). By proposition A.1.5 under the assumptions of the

lemma we have HT(Xi � t) = Xit. So t divides HT(Xi � t) and consequently P = P̂ , i.e.

P is left head term saturated. 2

A second class, in case of the inverse lexicographical term order on T , is characterized by

the following lemma. For 1 � i � n de�ne degi(P ) to be the maximal degree of Xi in any

head term of polynomials in P and degi(p) to be the degree of Xi in the head term of p.

Lemma A.4.9 Let R = KfX1; : : : ; Xn;Q;Q
0g be a solvable polynomial ring and let <T

be the inverse lexicographical term order (admissible for Q). (Furthermore for all com-

mutator relations in Q0 let cai 6= 0, for 1 � i � n and 0 6= a 2 K.)

If for all commutator relations in Q, either cij 6= 0, for 1 � i � j � n, or if cij = 0,

for some 1 � i � j � n then pij <T Xi, then for any �nite P � R the left head term

saturated closure P̂ is �nite.

Proof: Let P be a �nite subset of R. Let P̂ =
S
k2N Pk a saturation of P . We show that

there exists k0 2 N such that Pk0 = ;. For k 2 N let Jk = fi j cij = 0; and degi(Pk) >

0; 1 � i � j � ng. Let l = 0, kl = 0 and let sl = maxfjJkj; k > klg.

If sl = 0 we have for k > kl that Jk = ; and by lemma A.4.2 Pk = P̂k, so Pk+1 = ; and
k0 = kl + 1.

For sl > 0, k > kl let Jk 6= ; and let i0 2 Jk, be maximal among all i 2 Jk. Let

m = degi0(Pk) and k
0 = k +m. Then degi0(Pk0) = 0 since the head terms of polynomials

in Pk0 are free of Xi0 . Recall that polynomials in Pk0 are formed from polynomials of Pk
by multiplication of variables Xi (1 � i � n). So either the head terms are equal to

the commutative head terms and the polynomials do not appear in Pk0 or the head term

vanishes and by assumption on the commutator relation the variable Xi0 disappears in
the head term. So jJk0j < sl and also for all k00 > k0 we have jJk00j < sl since no more

head terms involving Xi0 are introduced by the assumption on the commutator relations.

So sk0 = maxfjJkj; k > k0g < sl and so there exists k0 � k0 such that Pk0 = ;. 2

A third class, in case of a total degree term order on T , can be characterized as follows.

Lemma A.4.10 Let R = KfX1; : : : ; Xn;Q;Q
0g be a solvable polynomial ring and let <T

be the total degree inverse lexicographical term order (admissible for Q). (Furthermore

for all commutator relations in Q0 let cai 6= 0, for 1 � i � n and 0 6= a 2 K.)

If for all commutator relations in Q, either cij 6= 0, for 1 � i � j � n, or if cij = 0, for

some 1 � i � j � n then pij =
Pn

k=1 akXk then for any �nite P � R the left head term

saturated closure P̂ is �nite.
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Proof: Let 1 � i � j � n such that cij = 0, then pij is a linear combination of linear

polynomials. By this deg(Xj �Xi) = 1 and consequently

deg(HT(Xj � p)) = deg(HT(p)):

Now let m be the maximal degree of the polynomials in P . Then also m is the maximal

degree of the polynomials in P̂ . But the set fu 2 T j deg(u) � mg is �nite, and so P̂

must be �nite too. 2

In particular P̂ for Grassmann algebras is �nite (which is true anyway since the number

of terms is equal to 2n and this is �nite). One may ask, if there is a decision procedure

or at least a characterization of P such that P̂ is �nite. A necessary condition on P if P̂

is in�nite is as follows. However it is not known if the condition is suÆcient to prove P̂
to be in�nite.

Lemma A.4.11 Let R = KfX1; : : : ; Xn;Q;Q
0g be a solvable polynomial ring and let <T

be an admissible term order. (Furthermore for all commutator relations in Q0 let cai 6= 0,
for 1 � i � n and 0 6= a 2 K.) Let P � R be a �nite subset of R, P̂ =

S
k2N Pk the left

head term saturated closure of P . If P̂ is in�nite then the following condition holds:

there exists a k0 2 N, such that Pk0 6= ; and for all polynomials p 2 Pk0 there

exists p0 2 P 0 such that HT(p) = uHT(p0) (u 2 T ), and HT(p) 6= HT(u � p0).

Proof: Let P̂ be in�nite. By Dickson's Lemma there exists a (�nite) subset P � of P̂ ,
such that for all p 2 P̂ there exists a p0 2 P � such that HT(p) = uHT(p0) for some u 2 T .
Trivially uHT(p0) 6= HT(u � p0) since otherwise p 62 P̂ . Since P � is �nite, there exists

k0 2 N with P � � P 0 =
S
0�k�k0 Pk. This shows that the condition holds. 2

To de�ne a reduction relation a lemma of the following kind is required. However it is
false, and there seems to be no condition on the variables, such that it can be made valid.

Lemma A.4.12 Let R = KfX1; : : : ; Xn;Q;Q
0g be a solvable polynomial ring and let <T

be an admissible term order. (Furthermore for all commutator relations in Q0 let cai 6= 0,

for 1 � i � n and 0 6= a 2 K.) Let P � R be a �nite left head term saturated subset of

R.

For u 2 T , p 2 P , there exist u0 2 T , p0 2 P , such that

HT(u � p) = u0HT(p0) = HT(u0 � p0):

One condition to make it valid, could be to assume that the u0 2 T with HT(u � p) =

u0HT(p0) = HT(u0 � p0) have the property:

HT(Xi � u
0) = Xiu

0; 1 � i � n:

This means nearly, that u0 is not only required to commute with the head term of p0, but

also with any variable.
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A.4.5 Saturated Reduction Relations

Given such a lemma we could de�ne a suitable reduction:

De�nition A.4.13 (Saturated Reduction) Let P � R, P �nite and left head term

saturated, t 2 T , p 2 P . �!t;P � R�R denotes a saturated reduction relation i�

for f; f 0 2 R, t 2 T (f) with f �!t;P f 0, there exists u 2 T , p0 2 P , au 2 K

such that t = u � HT(p0) = HT(u � p0), for no 1 6= w with u = vw, w � p0 2 P ,

coe�(t; f) = au � coe�(t; u � p
0) and

f 0 = f � au � u � p
0:

By construction t 62 T (f 0). If for certain t, f no such u and p0 exists, then t in T (f) is
called irreducible.

In order to make this de�nition to work for a completion procedure, the following lemma
is required.

Lemma A.4.14 Let P � R, P left head term saturated, u 2 T and p 2 P , t = HT(u�p).
Then u � p �!t;P f , for f 2 R, f < HT(u � p).

Proof: By lemma A.4.12. 2

Without such a lemma, there is no chance to obtain a meaningful reduction relation.

A.4.6 Saturated Representation

If such lemmas hold then we could also de�ne suitable polynomial representations, so

called saturated representations.

De�nition A.4.15 (Saturated representation) Let P � R, f 2 Il(P ). A represen-

tation

f =
kX
i=1

cisi � pi;

with ci 2 K, si 2 T , pi 2 P for all 1 � i � k is called a saturated representation wrt. P

i� for all 1 � i � k the following condition is satis�ed:

HT(si � pi) = si � HT(pi) = siHT(pi):

Lemma A.4.16 Let f 2 R, P � R, P �nite left head term saturated and �x an ad-

missible term order on T . If f 2 Il(P ), then there exists a saturated representation for

f .
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Proof: Recall that f 2 Il(P ) i� f =
Pk

i=1 cisi � pi, where ci 2 K, si 2 T and pi 2 P

for 1 � i � k0. Let t 2 T with t = maxki=0fsiHT(pi) j si � HT(pi) < siHT(pi)g where

the maximum is taken with respect to the term order on T . Let Jt = fj j 1 � j �

k; sjHT(pj) = tg. To establish the condition HT(si � pi) = si � HT(pi) = siHT(pi) for

1 � i � k, we modify the given representation by noetherian induction on t and for �xed

t by induction on jJtj.

Case t = 1 and jJtj arbitrary. Since t = 1 = HT(1 � 1) = 1 � HT(1), we have jJtj = ; and

the condition is satis�ed.

Case t > 1 and jJtj = ;. then the condition is satis�ed. Case t > 1 and jJtj > 1. Assume

the claim is true for all t0 < t with arbitrary Jt0 and for all J 0t with jJ
0
tj < jJtj. Let j 2 Jt,

J 0t = Jt n fjg. Since P is left head term saturated, by A.4.12 there exists s 2 T , p 2 P ,

such that HT(sj � pj) = s�HT(p) = sHT(p) = v < t. Now let h = cjsj � pj� cs� p, where
0 6= c 2 K such that coe�(v; cjsj � pj) = c coe�(s � p).

Since h < v < t, by induction assumption h has a representation h =
Pk0

l=1 c
0
ls
0
l � p

0
l, with

HT(s0l � p
0
l) = s0l � HT(p

0
l) = s0lHT(p

0
l), where k

0 2 N and for 1 � l0 � k0 c0l 2 K, s0l 2 T ,

p0l 2 P . By this cjsj � pj = h+ cs � p has a representation of the required form. And so

f =
kX

i=1;i6=j

cisi � pi +
k0X
l=1

c0ls
0
l � p

0
l + cs � p:

For this representation J 0t < Jt and by induction assumption f has a representation of the
required form. This completes the proof. 2

The restrictions imposed on the commutator relations are so strong, that we will not
pursue this way any further.
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Algorithmic Notation

We start with some general remarks about computability.

A set is decidable if the elements of the set can be represented in a data structure and

there is an algorithm which can determine if two elements are equal.

An algebraic structure is computable, if the universe of the structure is decidable as set
and for all functions and relations of the structure there is an algorithm which computes
the function value for all elements for which the function is de�ned, respectively computes

true or false for relations.

Where an algorithm is a �nite description of a method with `precisely' de�ned basic
operations, which can be performed e�ectively. Here `precisely' depends on the target of
the algorithm: a human being or an electronic computing device.

In the next section we will make a few remarks on algorithm description and correctness

and then we will discuss some algorithm implementation issues.

B.1 Algorithm Description

In this section we summarize the syntax of the pidgin programming language used in the

description of the algorithms.

The syntax in extended BNF is contained in table B.1. `name' denotes syntactic entities,

`fg' denote (possibly empty) sequences, `()' denote required entities, `[]' denote optional

entities. Key-words are denoted in bold-face and other terminal symbols are enclosed in

quotes. Productions are denoted by `='. We do not de�ne a syntax for data structures,

since only sets and elements are used in mathematical notation.

So an algorithm is denoted by a speci�cation of a header, a speci�cation of input and

output parameter sequences, followed by a sequence of statements. Statements can be

mathematical statements, assignments, case selection (if statement) or repetition (while

statement). In more detail we have

Algorithm: the beginning of the algorithm header,

254
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algorithm = Algorithm: ident `(' parameters `)' `.'
input output

block ident `.'
input = Input: Speci�cation of input parameters.
output = Output: Speci�cation of output parameters.

block = begin statement-seq end
statement-seq = statement f ( `;' j `.' ) statement g

statement = ( math-statement
j assignment
j if expression then statement-seq

[ else statement-seq ] end
j while expression do statement-seq end

j repeat statement-seq until expression
j return expression )

math-statement = a valid mathematical statement

assignment = ident ` ' expression
expression = a valid mathematical expression

parameters = ident f `,' ident g

ident = variable identi�er

Table B.1: Syntax of Algorithms
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Input: the speci�cation of the algorithm inputs,

Output: the speci�cation of the algorithm outputs,

return the terminating statement of an algorithm,

begin the beginning of a statement sequence,

end the end of a statement sequence,

if the begining of the IF-statement,

then the beginning of the truth case statement sequence in the IF-statement,

else the beginning of the false case statement sequence in the IF-statement,

while the beginning of the WHILE-statement,

do the beginning of the body statement sequence of the WHILE-statement,

repeat the beginning of the REPEAT-statement,

until the end of the body statement sequence of the REPEAT-statement and
the beginning of the exit condition,

The semantics is so called axiomatic (or mathematical) semantics, as de�ned in the Hoare
calculus. A speci�cation can be any mathematically meaningful condition or description

of the input / output parameters (variables).

An algorithm is partially correct, if for all input values, which satisfy the input speci�-
cation, and for which the algorithm stops, it `produces' output values, which satisfy the
output speci�cation, An algorithm terminates, if for all input values, which satisfy the

input speci�cation, the algorithm stops.

An algorithm is correct if it terminates and is partially correct. In other words an algo-

rithm is correct, if for all input values, which satisfy the input speci�cation, the algorithm

terminates and `produces' output values, which satisfy the output speci�cation,

B.2 Algorithm Implementation

The implementation of the algorithms uses the MAS (Modula-2 Algebra System) devel-

oped by myself [Kredel 1990] [Kredel 1991], which incorporates several systems for poly-

nomial arithmetic [Gebauer, Kredel 1983] and coeÆcient arithmetic [Collins, Loos 1980].
In this section we give a rough overview of the system and the libraries. The presentation

is mainly taken from the manuals. For a detailed description of the programs we must
refer the reader to the MAS manuals and the program source texts.
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B.2.1 MAS Modula-2 Algebra System

The MAS (Modula{2 Algebra System) is an experimental interactive computer algebra

system combining imperative programming facilities with algebraic speci�cation capabil-

ities for design and study of algebraic algorithms.

MAS combines Modula-2 program development, a LISP interpreter with a Modula-2 like

language and an algebraic speci�cation component. MAS can be used interactively, but

includes access to to the comprehensive ALDES/SAC-2 and DIP algebraic algorithm

libraries. MAS can also be used as ordinary Modula-2 program library. Despite of its

design it can directly access numerical Modula-2 libraries.

The current implementations run on an Atari 1040ST / GEM-TOS, IBM{PC / MS{
DOS (or compatible), and Commodore Amiga / Amiga-DOS, further implementations are

planned on Unix workstations. MAS is completely written in the programming language
Modula-2 [Wirth 1985].

B.2.2 Polynomial Systems

Polynomials are always represented in some (internal) canonical form. The most impor-
tant canonical representations are:

� recursive representation,

� distributive (or distributed) representation,

� dense representation.

In the next section we will discuss only the distributive representation. For every repre-
sentation there are algorithms to read and write polynomials, select parts of polynomials,
construct polynomials and to perform basic arithmetic of polynomials (like sum, product,

remainder, evaluation, substitution).

For more advanced methods like polynomial greatest common divisors or multivariate
polynomial factorization there are algorithms for the recursive polynomial representation.

For Gr�obner bases and polynomial ideal decomposition or solving systems of polynomial

equations there are algorithms for the distributive polynomial representation. The dense
representation is mainly used for algorithms for fast univariate polynomial remainder

computations.

There is a variety of application dependent `�ne tunings' of representations to optimize

space, time or programming complexity of the algorithms which are not discussed here

(and which are only partly available in the current system).

Program libraries are composed from the ALDES / SAC-2 computer algebra system by

[Collins, Loos 1980], from the DIP polynomial system, which is based on the former, by
[Gebauer, Kredel 1983], [Gebauer, Kredel 1984] and from further extensions by myself

[Kredel 1988], [Kredel 1988a]. The collection of algorithms and global variables are called
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`systems'. The systems are broken into modules according to speci�c characteristics of

subcollections of the algorithms.

The available ALDES / SAC-2 polynomial libraries are the following:

ALDES / SAC{2 Polynomial System,

ALDES / SAC{2 Algebraic Number System,

ALDES / SAC{2 Polynomial GCD and Resultant System,

ALDES / SAC{2 Polynomial Factorization System,

ALDES / SAC{2 Real Root System.

The available DIP polynomial libraries are the following:

DIP Common Distributive Polynomial System,
DIP Distributive Integral Polynomial System,

DIP Distributive Rational Polynomial System,
DIP Distributive Arbitrary Domain Polynomial System,
DIP Buchberger Algorithm System (Gr�obner bases),

DIP Polynomial Ideal Dimension System,
DIP Zero-dimensional Polynomial Ideal Decomposition System,

DIP Zero-dimensional Polynomial Ideal Real Root System.

As extension to the DIP system there are the libraries for non-commutative polynomial
rings of solvable type:

DIP Non-commutative Rational Distributive Polynomial System,
DIP Non-commutative Gr�obner Base System,

DIP Non-commutative Polynomial Center System.

B.2.3 CoeÆcient Rings

Although the representation of polynomials is independent of the representation of the

coeÆcients the algorithms are implemented for speci�c coeÆcient rings.

Programs that work independently of the coeÆcient ring start with the program pre�x `P'

in case of the recursive polynomial representation and with `DI' in case of the distributive

polynomial representation.

For the recursive representation there are algorithms for the following coeÆcient rings:

� integral numbers: Z, program pre�x `IP' for `integral polynomial'

� rational numbers: Q, program pre�x `RP' for `rational number polynomial'

� integral numbers modulom: Z=(m), program pre�x `MIP' for `modular integral poly-
nomial'
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� algebraic numbers over the rational numbers: Q[X]=(m�(X)), where m�(X) denotes

the minimal polynomial of � over Q, program pre�x `AFP' for `algebraic number

�eld polynomial'.

For the distributive representation there are algorithms for the following coeÆcient rings:

� integral numbers: Z, program pre�x `DIIP' for `distributive integral polynomial'

� rational numbers: Q, program pre�x `DIRP' for `distributive rational number poly-

nomial'

In the so called `distributive arbitrary domain polynomial system' there are algorithms
for further coeÆcient rings.

B.2.4 Distributive Polynomial System

Let R be a commutative ring with 1 and let S = R[X1; : : : ; Xr] denote a (commutative)
polynomial ring in r � 0 variables (indeterminates) X1; : : : ; Xr. The elements of S are
sums of monomials, where each monomial is a product of a base coeÆcient and a term

(power product).

De�nition B.2.1 Let A(X1; : : : ; Xr) 2 S, A 6= 0 and r � 1, then

A(X1; : : : ; Xr) =
kX
i=1

aiX
ei1
1 � : : : �X

eir
r =

kX
i=1

aiX
ei

with ai 6= 0 for i = 1; : : : ; k and natural numbers eij for i = 1; : : : ; k and j = 1; : : : ; r.

Xei is an abbreviation for Xei1
1 � : : : �X

eir
r . k is the number of terms of A. For r > 0 the

representation of an exponent vector ei = (ei1; : : : ; ei;r�1; eir) is the list

�i = (eir; : : : ; ei2; ei1):

For r = 0 let � = (), the empty list. The distributive representation of A is the list

� = (�k; �k; : : : ; �2; �2; �1; �1)

where the �i denote the representations of the ai and the �i are the representation of the

exponent vectors, i = 1; : : : ; k. If A = 0 then � = 0 and if r = 0 then � = ((); �1).

Note, that the variables X1; : : : ; Xr are not stored in the representing list. This is di�erent

to other computer algebra systems like REDUCE or muMATH. The representation is
sparse in the sense, that only base coeÆcients 6= 0 are stored. The representation of the

exponent vectors is dense in the sense, that also exponents = 0 are stored.

Examples:
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1. Let S = Z[X], that is R = Z and r = 1. Let

A = 3X4 + 5;

then k = 2 and e2 = (4); a1 = 3; e1 = (0); a2 = 5. The representation is then

� = ((4); 3; (0); 5):

2. Let S = Z[X; Y ], that is R = Z and r = 2. Let

A = (3X + 2)Y 2 + 5X = 3XY 2 + 2Y 2 + 5X;

then k = 3 and e3 = (1; 2); a3 = 3; e2 = (0; 2); a2 = 2; e1 = (1; 0); a1 = 5. The
representation is then

� = ((2; 1); 3; (2; 0); 2; (0; 1); 5):

3. Let S = Q[X; Y ], that is R = Q and r = 2. Let

A =
1

4
X2Y �

3

5
;

then k = 2 and e2 = (2; 1); a1 =
1
4
; e1 = (0; 0); a1 =

�3
5
. The representation is then

� = ((1; 2); (1; 4); (0; 0); (�3; 5)):

4. Let S = Z[X1; X2; X3; X4; X5], that is R = Z and r = 5. Let

A = 5X2X3 + 7X2
1 ;

then k = 2 and e2 = (0; 1; 1; 0; 0); a2 = 5; e1 = (2; 0; 0; 0; 0); a1 = 7. The representa-

tion is then

� = ((0; 0; 1; 1; 0); 5; (0; 0; 0; 0; 2); 7):

Procedure names for exponent vector algorithms begin with `EV', for base coeÆcients

arithmetic with `RN' (for rational numbers).
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List of Special Notations

In addition to TEX's menagerie of mathematical symbols we use the following notation.
The numbers refer to the page number where the notation is de�ned or �rst used.

N natural numbers, including 0 22

Z integral numbers, integers, 22

Q rational numbers, 30

R, P rings, 23

K, L, E (skew) �elds, 30

M model classes, 216

T theories, 216

V varieties, 233

jAj cardinality of the set A, 22

A� B cartesian product of the sets A and B, 22

char(R) the characteristic of R,

A=I residue class ring of a ring A modulo an ideal I, 100

Q(R) quotient ring or quotient �eld of a ring R (if it exists), 210

RfX1; : : : ; Xn;Q;Q
0g solvable polynomial ring

over the ring R in the variables X1; : : : ; Xn, n � 0 with commutator

relations Q between the X1; : : : ; Xn and with commutator relations Q0

between the X1; : : : ; Xn and the ring R, 33

a�1 the inverse of a, 30

abs(a) the absolute value of a,
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lcm(a; b) the least common multiple of a and b,

T (g) the set of terms of the polynomial g, 31

mult(V ) the set of multiples of the terms in V , 32

coe�(t; g) the coeÆcient of the term t in the polynomial g, 32

HT(g) the head term of the polynomial g, 32

HM(g) the head monomial of the polynomial g, 32

HC(g) the head coeÆcient of the polynomial g, 32

�! a reduction relation, 66

# reduce to a common element, 66

LSP(f; g) the left S-polynomial of the polynomials f and g, 77

RSP(f; g) the right S-polynomial of the polynomials f and g, 90

LNF(g; F ) the left normal form of the polynomial g with respect to the polynomials
F , 74

RNF(g; F ) the right normal form of the polynomial g with respect to the polynomials
F , 89

ideal(F ) the ideal generated by F , 24
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