
Parametric solvable polynomial
rings and applications

Heinz Kredel, University of Mannheim

CASC 2015, Aachen

Overview

● Introduction
● Solvable Polynomial Rings

– Parametric Solvable Polynomial Rings

– Solvable Quotient and Residue Class Rings

– Solvable Quotient Rings as Coefficient Rings

● Implementation of Solvable Polynomial Rings
– Recursive Solvable Polynomial Rings

– Solvable Quotient and Residue Class Rings

● Applications
● Conclusions

Introduction

● solvable polynomial rings fit between
commutative and free non-commutative
polynomial rings

● share many properties with commutative case:
being Noetherian, tractable by Gröbner bases

● free non-commutative case no more Noetherian,
so eventually infinite ideals and non terminating
computations

● though, solvable polynomials are not easy to
compute either

Introduction (cont.)

● problems have been explored mainly in theory
● solvable polynomials can share representations

with commutative polynomials and reuse
implementations, ''only'' multiplication to be done

● implementation is generic in the sense that various
coefficient rings can be used in a strongly type
safe way and still good performing code

● parametric coefficient rings with commutator
relations between variables and coefficient
variables new

● solvable quotient ring elements as coefficients new

Related work (selected)

● enveloping fields of Lie algebras [Apel, Lassner]
● solvable polynomial rings [Kandri-Rodi,

Weispfenning]
● free-noncommutative polynomial rings [Mora]
● parametric solvable polynomial rings and

comprehensive Gröbner bases [Weispfenning,
Kredel]

● PBW algebras in Singular / Plural
[Levandovskyy]

● primary ideal decomposition [Gomez-Torrecillas]

Solvable Polynomial Rings
Solvable polynomial ring S: associative Ring (S,0,1,+,-,*), K a (skew) field, in n variables

commutator relations between variables, lt(p
ij
) < X

i
 X

j

commutator relations between variables and coefficients

< a *-compatible term order on S x S: a < b a*⇒ c < b*c and c*a < c*b for a, b, c in S

Parametric Solvable Polynomial Rings

domain R, parameters U, variables X
i
, Q' empty

Solvable Polynomial Coefficient Rings

recursive solvable polynomial rings

Solvable Quotient and Residue Class Rings

● solvable quotient rings, skew fields

● solvable residue class rings modulo an ideal

● solvable local ring, localized by an ideal

● solvable quotient and residue class ring modulo an
ideal, if ideal completly prime, then skew field

Ore condition

● for a, b in R there exist
– c, d in R with c*a = d*b left Ore condition

– c', d' in R with a*c' = b*d' right Ore condition

● Theorem: Noetherian rings satify the Ore condition
– left / left and right / right

● can be computed by left respectively right syzygy
computations in R [6]

● Theorem: domains with Ore condition can be
embedded in a skew field

● a/b * c/d :=: (f*c)/(e*b) where e,f with e*a = f*d

Solvable Quotient and Residue Class Rings
as coefficients

Overview

● Introduction
● Solvable Polynomial Rings

– Parametric Solvable Polynomial Rings

– Solvable Quotient and Residue Class Rings

● Implementation of Solvable Polynomial Rings
– Recursive Solvable Polynomial Rings

– Solvable Quotient and Residue Class Rings

– Solvable Quotient Rings as Coefficient Rings

● Applications
● Conclusions

Implementation of Solvable
Polynomial Rings

● Java Algebra System (JAS)
● generic type parameters : RingElem<C>
● type safe, interoperable, object oriented
● has greatest common divisors, squarefree

decomposition factorization and Gröbner bases
● scriptable with JRuby, Jython and interactive
● parallel multi-core and distributed cluster

algorithms
● with Java from Android to Compute Clusters

Ring Interfaces

Generic Polynomial Rings

Solvable
Polynomial
Ring
Overview

Polynomial ring implementation

● commutative polynomial ring
– coefficient ring factory

– number of variables

– name of variables

– term order

● solvable polynomial ring
– relation table

– commutator relations: X
j
 * X

i
 = c

ij
 X

i
 X

j
 + p

ij

– missing relations treated as commutative

– relations for powers are stored for lookup

Solvable
Polynomial
Overview

Recursive solvable polynomial ring

● implemented in RecSolvablePolynomial and
RecSolvablePolynomialRing

● extends
GenSolvablePolynomial<GenPolynomial<C>>

● new relation table coeffTable for relations from
Q'

ux
, with type

RelationTable<GenPolynomial<C>>

● recording of powers of relations for lookup
instead of recomputation

● new method rightRecursivePolynomial()
with coefficients on the right side

recursive *-multiplication
1.loop over terms of first polynomial:

a xe = a' ue' xe

2.loop over terms of second polynomial:

b xf = b' uf' xf

3.compute (a xe) (b x∗ f) as a ((x∗ e b) x∗ ∗ f)

(a) xe b = p∗
eb

, iterate lookup of x
i
 u∗

j
 in Q'

ux

(b) p
eb

 x∗ f = p
ebf

, iterate lookup of x
j
 x∗

i
 in Q

x

(c) a p∗
ebf

 = p
aebf

, in recursive coefficient ring
lookup u

j
 u∗

i
 in Q

u

4.sum up the p
aebf

Solvable Quotient and Residue Rings

1.the solvable quotient ring, R(U
1
 , . . . , U

m
; Q

u
), is

implemented by classes SolvableQuotient and
SolvableQuotientRing, implements RingElem<.<C>>

2.the solvable residue class ring modulo I, R{U
1
 , . . . , U

m
 ;

Q
u
 }

/I
, is implemented by classes SolvableResidue and

SolvableResidueRing

3.the solvable local ring, localized by ideal I, R{U
1
, . . . , U

m
;

Q
u
}

I
, is implemented by classes SolvableLocal and

SolvableLocalRing

4.the solvable quotient and residue class ring modulo I,
R(U

1
 , . . . , U

m
 ; Q

u
)

/I
, is implemented by classes

SolvableLocalResidue and SolvableLocalResidueRing

Implementation of + and *
● Ore condition in SolvableSyzygy

– leftOreCond() and rightOreCond()

● simplification difficult
– reduction to lower terms

– leftSimplifier() after [7] using module
Gröbner bases of syzygies of quotients

– require common divisor computation
● not unique in solvable polynomial rings

– package edu.jas.fd

● very high complexity and (intermediate)
expression swell, only small examples feasible

with solvable quotient coefficients

● reuse recursive solvable polynomial multiplication
with polCoeff ring internally

● extend multiplication to quotients or residues

● class QLRSolvablePolynomial,
QLRSolvablePolynomialRing

● abstract quotient structure, additional to ring
element, QuotPair and QuotPairFactory

● conversion
– fromPolyCoefficients()

– toPolyCoefficients()

*-multiplication with 1/d
● recursion base, denominator = 1: xe n/1. It ∗

computes xe n from the recursive solvable ∗
polynomial ring polCoeff, looking up xe n in Q'∗

ux
,

and then converting the result to a polynomial with
quotient coefficients

● recursion base, denominator != 1: xe 1/d. Let p ∗
be computed by xe d = d x∗ e + p then compute xe ∗
1/d as 1/d (xe − (p 1/d)) by lemma 2. Since p < ∗
xe, p 1/d uses recursion on a polynomial with ∗
smaller head term, so the algorithm will terminate

● numerator != 1: let p
xed

 = xe 1/d and compute ∗
p

xed
 n/1 by recursion∗

Overview

● Introduction
● Solvable Polynomial Rings
● Implementation of Solvable Polynomial Rings
● Applications

– comprehensive Gröbner bases

– left, right and two-sided Gröbner bases

– examples

– extensions to free non-commutative coefficient
rings

● Conclusions

 Applications (1)

● Comprehensive Gröbner bases

commutative

solvable
– silght modfication of commutative algorithm

works for solvable case: use
multiplyLeft()

● also commutative transcendental field
extension coefficients works

● fraction free coefficients by taking primitive
parts work

Solvable
Gröbner
bases

Applications (2)

● applications with solvable quotient coefficient
– verify multiplication by coefficients is correct, so

existing algorithms can be reused

– gives left, right and two-sided Gröbner bases
● for two-sided case more right multiplications with

coefficent generators required

– gives also left and right syzygies

– same for left, right and two-sided module
Gröbner bases

● recursive solvable polynomials with pseudo
reduction using Ore condition to adjust
coefficient multipliers

Examples (1)

pcz = PolyRing.new(QQ(),"x,y,z,t")
zrel = [z, y, (y * z + x), t, y, (y * t + y),
 t, z, (z * t - z)]
pz = SolvPolyRing.new(QQ(),"x,y,z,t",PolyRing.lex,zrel)
ff = pz.ideal("", [t**2 + z**2 + y**2 + x**2 + 1])
ff = ff.twosidedGB()

SolvIdeal.new(
 SolvPolyRing.new(QQ(),"x,y,z,t",PolyRing.lex,
 rel=[z, y, (y * z + x), t, z, (z * t - z),
 t, y, (y * t + y)]),
 "",[x, y, z, (t**2 + 1)])

Ruby syntax in JAS jRuby interface

Examples (2)

construction: SLR(ideal, numerator, denominator)

f0 = SLR(ff, t + x + y + 1)
f1 = SLR(ff, z**2+x+1)

f2 = f1*f0: z**2 * t + x * t + t + y * z**2 + x * z**2
 + z**2 + 2 * x * z + x * y + y + x**2 + 2 * x + 1

fi = 1/f1: 1 / (z**2 + x + 1)

fi*f1 = f1*fi: 1

f0*fi: (x**2 * z * t**2 + ...) / (... + 23 * x + 7)

 (2 * t**2 + 7) / (2 * t + 7)

want x, y, z simplified to 0

Examples (3)

pt = SolvPolyRing.new(f0.ring, "r", PolyRing.lex)

fr = r**2 + 1
iil = pt.ideal("", [fr])
rgll = iil.twosidedGB()

SolvIdeal.new(...,[(r**2 + 1)])

e = fr.evaluate(t)
e: 0

fp = (r-t)

fr / fp: (r+t)
fr % fp: 0

frp = fp*(r+t)

frp: (r**2 - t**2)
frp-fr: 0
frp == fr: true

Examples (4)

rf = SLR(rgll, r)

rf**2 + 1: 0

ft = SLR(rgll, t)

ft**2 + 1: 0
(rf-ft)*(rf+ft): 0

Extension to free non-commutative
polynomial coefficients

Free non-commutative generic polynomial ring K<x,y,z>

implementation in classes GenWordPolynomial and
GenWordPolynomialRing
r = WordPolyRing.new(QQ(),"x,y"); one,x,y = r.gens();

f1 = x*y – 1/10;
f2 = y*x + x + y;
ff = r.ideal("", [f1,f2]); gg = ff.GB();

WordPolyIdeal.new(WordPolyRing.new(QQ(),"x,y"),"",
 [(y + x + 1/10), (x*x + 1/10 * x + 1/10)])

integro-differential Weyl algebra :

Conclusions

● presented parametric solvable polynomial rings,
with definition of commutator relations between
polynomial variables and coefficient variables

● enables the computation in recursive solvable
polynomial rings

● possible to construct and compute in localizations
with respect to two-sided ideals in such rings

● using these as coefficient rings of solvable
polynomial rings makes computations of roots,
common divisors and ideal constructions over
skew fields feasible

Conclusions (cont.)

● algorithms implemented in JAS in a type-safe,
object oriented way with generic coefficients

● the high complexity of the solvable
multiplication and the lack of efficient simplifiers
to reduce (intermediate) expression swell
hinder practical computations

● this will eventually be improved in future work

Thank you for your attention

Questions ?

Comments ?

http://krum.rz.uni-mannheim.de/jas/

Acknowledgments

thanks to: Thomas Becker, Raphael Jolly, Wolfgang
K. Seiler, Axel Kramer, Thomas Sturm, Victor
Levandovskyy, Joachim Apel, Hans-Günther Kruse,
Markus Aleksy

thanks to the referees

http://krum.rz.uni-mannheim.de/jas/

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27
	Folie 28
	Folie 29
	Folie 30
	Folie 31
	Folie 32
	Folie 33
	Folie 34
	Folie 35
	Folie 36

