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Introduction

● solvable polynomial rings fit between 
commutative and free non-commutative 
polynomial rings

● share many properties with commutative case: 
being Noetherian, tractable by Gröbner bases

● free non-commutative case no more Noetherian, 
so eventually infinite ideals and non terminating 
computations

● though, solvable polynomials are not easy to 
compute either 



Introduction (cont.)

● problems have been explored mainly in theory
● solvable polynomials can share representations 

with commutative polynomials and reuse 
implementations, ''only'' multiplication to be done

● implementation is generic in the sense that various 
coefficient rings can be used in a strongly type 
safe way and still good performing code

● parametric coefficient rings with commutator 
relations between variables and coefficient 
variables new

● solvable quotient ring elements as coefficients new



Related work (selected)

● enveloping fields of Lie algebras [Apel, Lassner]
● solvable polynomial rings [Kandri-Rodi, 

Weispfenning]
● free-noncommutative polynomial rings [Mora]
● parametric solvable polynomial rings and 

comprehensive Gröbner bases [Weispfenning, 
Kredel]

● PBW algebras in Singular / Plural 
[Levandovskyy]

● primary ideal decomposition [Gomez-Torrecillas]



Solvable Polynomial Rings
Solvable polynomial ring S: associative Ring (S,0,1,+,-,*), K a (skew) field, in n variables

commutator relations between variables, lt(p
ij
) < X

i
 X

j

commutator relations between variables and coefficients

< a *-compatible term order on S x S: a < b  a*⇒ c < b*c and c*a < c*b for a, b, c in S



Parametric Solvable Polynomial Rings

domain R, parameters U, variables X
i
, Q' empty



Solvable Polynomial Coefficient Rings

recursive solvable polynomial rings



Solvable Quotient and Residue Class Rings

● solvable quotient rings, skew fields

● solvable residue class rings modulo an ideal

● solvable local ring, localized by an ideal

● solvable quotient and residue class ring modulo an 
ideal, if ideal completly prime, then skew field



Ore condition

● for a, b in R there exist 
– c, d in R with c*a = d*b      left Ore condition

– c', d' in R with a*c' = b*d'   right Ore condition

● Theorem: Noetherian rings satify the Ore condition
– left / left and right / right

● can be computed by left respectively right syzygy 
computations in R [6]

● Theorem: domains with Ore condition can be 
embedded in a skew field

● a/b * c/d :=: (f*c)/(e*b) where e,f with e*a = f*d



Solvable Quotient and Residue Class Rings 
as coefficients
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Implementation of Solvable 
Polynomial Rings

● Java Algebra System (JAS)
● generic type parameters : RingElem<C>
● type safe, interoperable, object oriented
● has greatest common divisors, squarefree 

decomposition factorization and Gröbner bases
● scriptable with JRuby, Jython and interactive
● parallel multi-core and distributed cluster 

algorithms
● with Java from Android to Compute Clusters



Ring Interfaces



Generic Polynomial Rings
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Overview



Polynomial ring implementation

● commutative polynomial ring 
– coefficient ring factory

– number of variables

– name of variables

– term order

● solvable polynomial ring
– relation table 

– commutator relations: X
j
 * X

i
 = c

ij
 X

i
 X

j
 + p

ij
 

– missing relations treated as commutative

– relations for powers are stored for lookup
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Recursive solvable polynomial ring

● implemented in RecSolvablePolynomial and 
RecSolvablePolynomialRing

● extends 
GenSolvablePolynomial<GenPolynomial<C>>

● new relation table coeffTable for relations from 
Q'

ux
, with type 

RelationTable<GenPolynomial<C>>

● recording of powers of relations for lookup 
instead of recomputation 

● new method rightRecursivePolynomial() 
with coefficients on the right side



recursive *-multiplication
1.loop over terms of first polynomial: 

a xe = a' ue' xe

2.loop over terms of second polynomial: 

b xf = b' uf' xf

3.compute (a xe)  (b x∗ f) as a  ((x∗ e  b)  x∗ ∗ f)

(a) xe  b = p∗
eb

, iterate lookup of x
i
  u∗

j
 in Q'

ux

(b) p
eb

  x∗ f = p
ebf

, iterate lookup of x
j
  x∗

i
 in Q

x

(c) a  p∗
ebf

 = p
aebf

, in recursive coefficient ring 
lookup u

j
  u∗

i
 in Q

u

4.sum up the p
aebf



Solvable Quotient and Residue Rings

1.the solvable quotient ring, R(U
1
 , . . . , U

m
; Q

u
), is 

implemented by classes SolvableQuotient and 
SolvableQuotientRing, implements RingElem<.<C>>

2.the solvable residue class ring modulo I, R{U
1
 , . . . , U

m
 ; 

Q
u
 }

/I
, is implemented by classes SolvableResidue and 

SolvableResidueRing

3.the solvable local ring, localized by ideal I, R{U
1
, . . . , U

m
; 

Q
u
}

I
, is implemented by classes SolvableLocal and 

SolvableLocalRing

4.the solvable quotient and residue class ring modulo I, 
R(U

1
 , . . . , U

m
 ; Q

u
 )

/I
, is implemented by classes 

SolvableLocalResidue and SolvableLocalResidueRing



Implementation of + and *
● Ore condition in SolvableSyzygy

– leftOreCond() and rightOreCond()

● simplification difficult
– reduction to lower terms

– leftSimplifier() after [7] using module 
Gröbner bases of syzygies of quotients

– require common divisor computation
● not unique in solvable polynomial rings

– package edu.jas.fd

● very high complexity and (intermediate) 
expression swell, only small examples feasible



with solvable quotient coefficients

● reuse recursive solvable polynomial multiplication 
with polCoeff ring internally

● extend multiplication to quotients or residues

● class QLRSolvablePolynomial, 
QLRSolvablePolynomialRing 

● abstract quotient structure, additional to ring 
element, QuotPair and QuotPairFactory

● conversion 
– fromPolyCoefficients()

– toPolyCoefficients()



*-multiplication with 1/d
● recursion base, denominator = 1: xe  n/1. It ∗

computes xe  n from the recursive solvable ∗
polynomial ring polCoeff, looking up xe  n in Q'∗

ux
, 

and then converting the result to a polynomial with 
quotient coefficients

● recursion base, denominator != 1: xe  1/d. Let p ∗
be computed by xe  d = d x∗ e + p then compute xe  ∗
1/d as 1/d (xe − (p  1/d)) by lemma 2. Since p < ∗
xe, p  1/d uses recursion on a polynomial with ∗
smaller head term, so the algorithm will terminate

● numerator != 1: let p
xed

 = xe  1/d and compute ∗
p

xed
  n/1 by recursion∗
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 Applications (1)

● Comprehensive Gröbner bases

commutative

solvable
– silght modfication of commutative algorithm 

works for solvable case: use 
multiplyLeft()

● also commutative transcendental field 
extension coefficients works

● fraction free coefficients by taking primitive 
parts work 



Solvable
Gröbner
bases



Applications (2)

● applications with solvable quotient coefficient
– verify multiplication by coefficients is correct, so 

existing algorithms can be reused

– gives left, right and two-sided Gröbner bases
● for two-sided case more right multiplications with 

coefficent generators required

– gives also left and right syzygies

– same for left, right and two-sided module 
Gröbner bases

● recursive solvable polynomials with pseudo 
reduction using Ore condition to adjust 
coefficient multipliers



Examples (1)

pcz = PolyRing.new(QQ(),"x,y,z,t")
zrel = [z, y, ( y * z + x ), t, y, ( y * t + y ),
        t, z, ( z * t - z )]
pz = SolvPolyRing.new(QQ(),"x,y,z,t",PolyRing.lex,zrel)
ff = pz.ideal("", [t**2 + z**2 + y**2 + x**2 + 1])
ff = ff.twosidedGB()

SolvIdeal.new(
 SolvPolyRing.new(QQ(),"x,y,z,t",PolyRing.lex, 
 rel=[z, y, ( y * z + x ), t, z, ( z * t - z ), 
      t, y, ( y * t + y )]),
 "",[x, y, z, ( t**2 + 1 )])

Ruby syntax in JAS jRuby interface



Examples (2)

construction: SLR(ideal, numerator, denominator)

f0 = SLR(ff, t + x + y + 1)
f1 = SLR(ff, z**2+x+1 )

f2 = f1*f0: z**2 * t + x * t + t + y * z**2 + x * z**2 
 + z**2 + 2 * x * z + x * y + y + x**2 + 2 * x + 1

fi = 1/f1: 1 / ( z**2 + x + 1 )

fi*f1 = f1*fi: 1

f0*fi: ( x**2 * z * t**2 + ... ) / ( ... + 23 * x + 7 )

       ( 2 * t**2 + 7 ) / ( 2 * t + 7 )

want x, y, z simplified to 0



Examples (3)

pt = SolvPolyRing.new(f0.ring, "r", PolyRing.lex)

fr = r**2 + 1
iil = pt.ideal( "", [ fr ] )
rgll = iil.twosidedGB()

SolvIdeal.new(...,[( r**2 + 1 )])

e = fr.evaluate( t )
e: 0

fp = (r-t)

fr / fp: (r+t)
fr % fp: 0

frp = fp*(r+t)

frp: ( r**2 - t**2 )
frp-fr: 0
frp == fr: true



Examples (4)

rf = SLR(rgll, r)

rf**2 + 1: 0

ft = SLR(rgll, t)

ft**2 + 1: 0
(rf-ft)*(rf+ft): 0



Extension to free non-commutative 
polynomial coefficients

Free non-commutative generic polynomial ring K<x,y,z>

implementation in classes GenWordPolynomial and 
GenWordPolynomialRing
r = WordPolyRing.new(QQ(),"x,y"); one,x,y = r.gens();

f1 = x*y – 1/10; 
f2 = y*x + x + y;
ff = r.ideal( "", [f1,f2] ); gg = ff.GB();

WordPolyIdeal.new(WordPolyRing.new(QQ(),"x,y"),"",
     [( y + x + 1/10 ), ( x*x + 1/10 * x + 1/10 )])

integro-differential Weyl algebra :



Conclusions

● presented parametric solvable polynomial rings, 
with definition of commutator relations between 
polynomial variables and coefficient variables

● enables the computation in recursive solvable 
polynomial rings 

● possible to construct and compute in localizations 
with respect to two-sided ideals in such rings 

● using these as coefficient rings of solvable 
polynomial rings makes computations of roots, 
common divisors and ideal constructions over 
skew fields feasible



Conclusions (cont.) 

● algorithms implemented in JAS in a type-safe, 
object oriented way with generic coefficients 

● the high complexity of the solvable 
multiplication and the lack of efficient simplifiers 
to reduce (intermediate) expression swell 
hinder practical computations

● this will eventually be improved in future work



Thank you for your attention

Questions ?

Comments ?

http://krum.rz.uni-mannheim.de/jas/
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