

Parametric solvable polynomial rings and applications

Heinz Kredel, University of Mannheim

CASC 2015, Aachen

Overview

- Introduction
- Solvable Polynomial Rings
 - Parametric Solvable Polynomial Rings
 - Solvable Quotient and Residue Class Rings
 - Solvable Quotient Rings as Coefficient Rings
- Implementation of Solvable Polynomial Rings
 - Recursive Solvable Polynomial Rings
 - Solvable Quotient and Residue Class Rings
- Applications
- Conclusions

Introduction

- solvable polynomial rings fit between commutative and free non-commutative polynomial rings
- share many properties with commutative case: being Noetherian, tractable by Gröbner bases
- free non-commutative case no more Noetherian, so eventually infinite ideals and non terminating computations
- though, solvable polynomials are not easy to compute either

Introduction (cont.)

- problems have been explored mainly in theory
- solvable polynomials can share representations with commutative polynomials and reuse implementations, "only" multiplication to be done
- implementation is generic in the sense that various coefficient rings can be used in a strongly type safe way and still good performing code
- parametric coefficient rings with commutator relations between variables and coefficient variables new
- solvable quotient ring elements as coefficients new

Related work (selected)

- enveloping fields of Lie algebras [Apel, Lassner]
- solvable polynomial rings [Kandri-Rodi, Weispfenning]
- free-noncommutative polynomial rings [Mora]
- parametric solvable polynomial rings and comprehensive Gröbner bases [Weispfenning, Kredel]
- PBW algebras in Singular / Plural [Levandovskyy]
- primary ideal decomposition [Gomez-Torrecillas]

Solvable Polynomial Rings

Solvable polynomial ring S: associative Ring (S,0,1,+,-,*), K a (skew) field, in n variables

 $S = \mathbf{K}\{X_1, \dots, X_n; Q; Q'\}$

commutator relations between variables, $It(p_{ij}) < X_i X_j$

$$Q = \{X_j * X_i = c_{ij}X_iX_j + p_{ij} : 0 \neq c_{ij} \in \mathbf{K}, X_iX_j > p_{ij} \in S, 1 \le i < j \le n\}$$

commutator relations between variables and coefficients

$$Q' = \{X_i * a = c_{ai}aX_i + p_{ai} : 0 \neq c_{ai} \in \mathbf{K}, p_{ai} \in \mathbf{K}, 1 \le i \le n, a \in \mathbf{K}\}\$$

< a *-compatible term order on S x S: a < b \Rightarrow a*c < b*c and c*a < c*b for a, b, c in S

Parametric Solvable Polynomial Rings

 $S = \mathbf{R}[U_1, \dots, U_m]\{X_1, \dots, X_n; Q\}$

domain R, parameters U, variables X_i, Q' empty

Lemma 1 (7.1.2 in [12]). Let **R** be a commutative Noetherian domain, $m \in \mathbb{N}$, $R = \mathbb{R}[U_1, \ldots, U_m]$. Let $S = R\{X_1, \ldots, X_n; Q\}$ be a parametric solvable polynomial ring as defined in Axioms 7.1.1 in [12] with respect to a *-compatible term order <. Let C be the multiplicative subset of R generated by the c_{ij} from the commutator relations Q. Then for $0 \neq f, g \in S$ one can compute $0 \neq c \in C$ and $p \in S$ with $p < f \cdot g$ such that

$$f * g = c \cdot f \cdot g + p.$$

c and p are uniquely determined by these properties and the coefficients of p in R are polynomials in the c_{ij} , the coefficients of all p_{ij} from the commutator relations Q and of the coefficients of f, g. Furthermore these polynomials are formed uniformly, independently of the ring R.

Solvable Polynomial Coefficient Rings

$$S = \mathbf{R}\{U_1, \dots, U_m; Q_u\}\{X_1, \dots, X_n; Q_x; Q'_{ux}\}$$

$$Q_u = \{U_j * U_i = c_{uij}U_iU_j + p_{uij}: 0 \neq c_{uij} \in \mathbf{R}, U_iU_j > p_{uij} \in R, 1 \le i < j \le m\}$$

$$Q_x = \{X_j * X_i = c_{xij}X_iX_j + p_{xij}: 0 \neq c_{xij} \in R, X_iX_j > p_{xij} \in S, 1 \le i < j \le n\}$$

$$Q'_{ux} = \{X_j * U_i = c_{ij}U_iX_j + p_{ij}: 0 \neq c_{ij} \in \mathbf{R}, U_iX_j > p_{ij} \in S, 1 \le i \le m, 1 \le j \le n\}$$

recursive solvable polynomial rings

$$S_k = \mathbf{R}\{X_1, \dots, X_k; Q_k\}\{X_{k+1}, \dots, X_n; Q_n; Q'_{kn}\}, \quad 0 \le k \le n$$

Solvable Quotient and Residue Class Rings

- solvable quotient rings, skew fields $\mathbf{R}(U_1, \ldots, U_m; Q_u)$
- solvable residue class rings modulo an ideal $\mathbf{R}\{U_1, \dots, U_m; Q_u\}_{/\mathcal{I}}$
- solvable local ring, localized by an ideal $\mathbf{R}\{U_1,\ldots,U_m;Q_u\}_{\mathcal{I}}$
- solvable quotient and residue class ring modulo an ideal, if ideal completly prime, then skew field $\mathbf{R}(U_1, \dots, U_m; Q_u)_{/\mathcal{I}}$

Ore condition

- for a, b in R there exist
 - c, d in R with $c^*a = d^*b$ left Ore condition
 - c', d' in R with a*c' = b*d' right Ore condition
- Theorem: Noetherian rings satify the Ore condition
 left / left and right / right
- can be computed by left respectively right syzygy computations in R [6]
- Theorem: domains with Ore condition can be embedded in a skew field
- a/b * c/d :=: (f*c)/(e*b) where e,f with e*a = f*d

Solvable Quotient and Residue Class Rings as coefficients

$$S = \mathbf{R}(U_1, \ldots, U_m; Q_u) \{X_1, \ldots, X_n; Q_x, Q'_{ux}\}$$

Lemma 2. Assume $c_{ij} = 1$ in Q'_{ux} . Let $x^e * d = dx^e + p$, $dx^e > p \in S$, then

$$x^{e} * \frac{1}{d} = \frac{1}{d}(x^{e} - (p * \frac{1}{d})).$$

Proof. The identity can be derived under the assumption that all $c_{ij} = 1$ in Q'_{ux} , as follows. If not all $c_{ij} = 1$ with some more care a corresponding factor c as product of c_{ij} 's can be established. Let $z = x^e$, then from $z * \frac{1}{d} * d = z$ and p = z * d - dz together with the assumption $z * \frac{1}{d} = \frac{1}{d}z + q$ for some q, it follows $(\frac{1}{d}z + q) * d = z$ and $\frac{1}{d}(dz + p) + q * d = z$. Multiplying out, we get $\frac{1}{d}d * z + \frac{1}{d}p + q * d = z$ and so $\frac{1}{d}p + q * d = 0$ must hold. Multiplying with $\frac{1}{d}$ from right, we have $\frac{1}{d}p * \frac{1}{d} + q = 0$ and so $q = -\frac{1}{d}p * \frac{1}{d}$. With this, we get $z * \frac{1}{d} = \frac{1}{d}z - \frac{1}{d}p * \frac{1}{d} = \frac{1}{d}(z - p * \frac{1}{d})$. Since by assumption p < z the claim follows by induction as finally $p \in R$ and the multiplication can be carried out in R. \Box

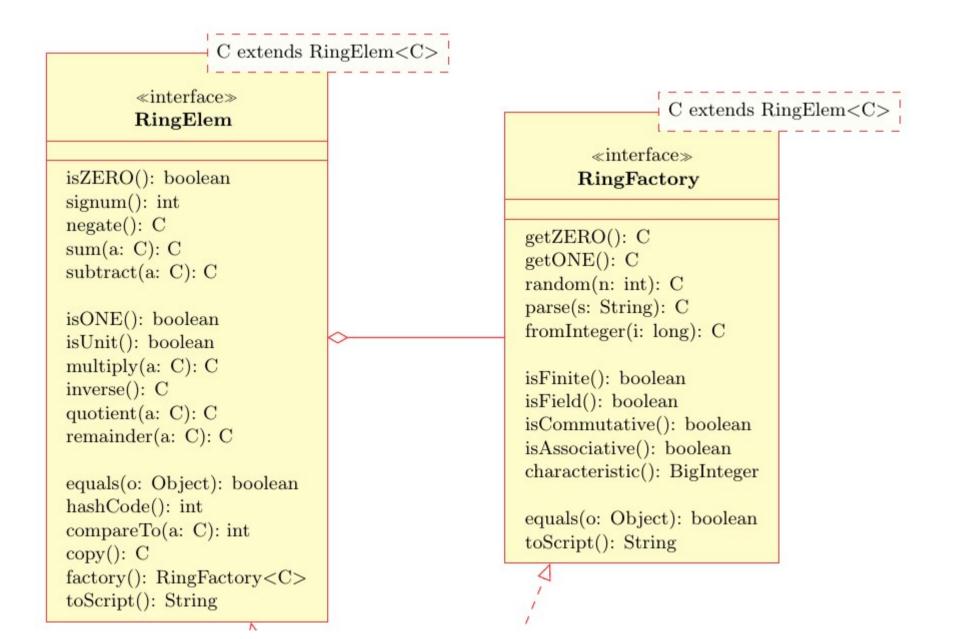
Overview

- Introduction
- Solvable Polynomial Rings
 - Parametric Solvable Polynomial Rings
 - Solvable Quotient and Residue Class Rings
- Implementation of Solvable Polynomial Rings
 - Recursive Solvable Polynomial Rings
 - Solvable Quotient and Residue Class Rings
 - Solvable Quotient Rings as Coefficient Rings
- Applications
- Conclusions

Implementation of Solvable Polynomial Rings

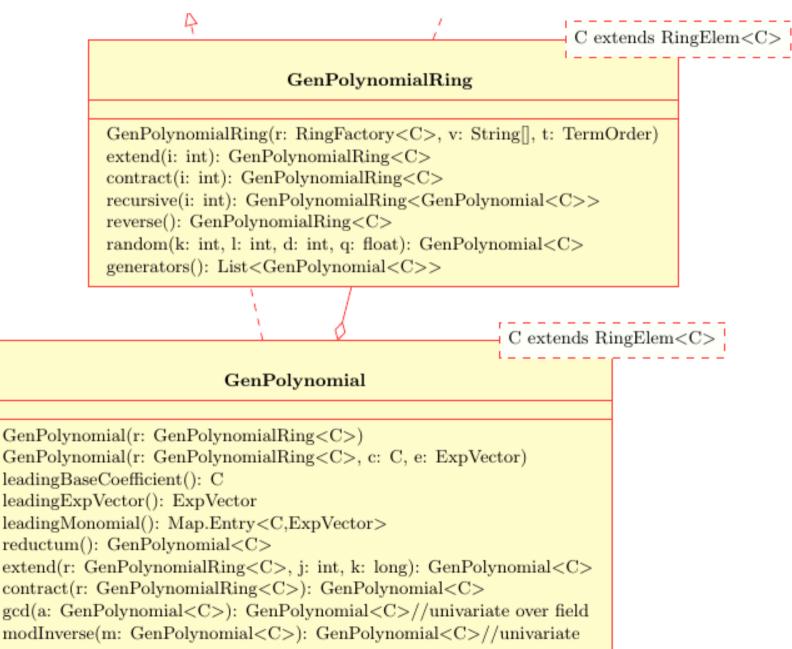
- Java Algebra System (JAS)
- generic type parameters : RingElem<C>
- type safe, interoperable, object oriented
- has greatest common divisors, squarefree decomposition factorization and Gröbner bases
- scriptable with JRuby, Jython and interactive
- parallel multi-core and distributed cluster algorithms
- with Java from Android to Compute Clusters

Ring Interfaces

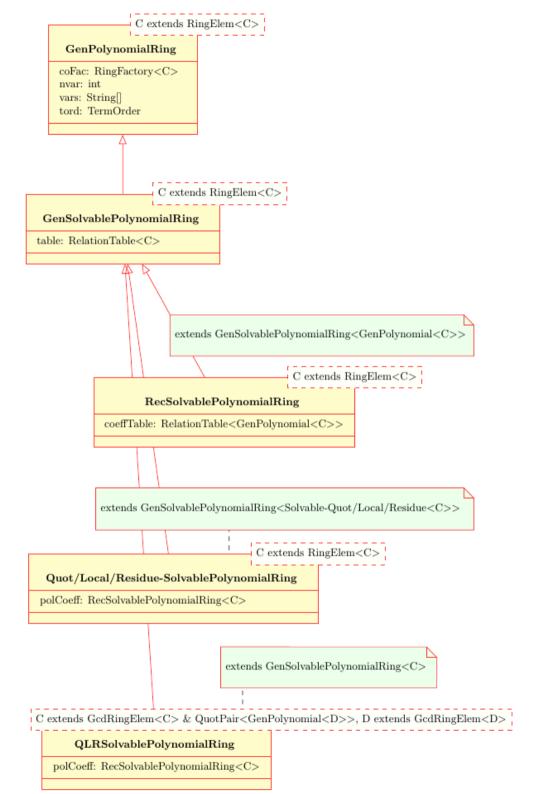


CASC 2015

Generic Polynomial Rings



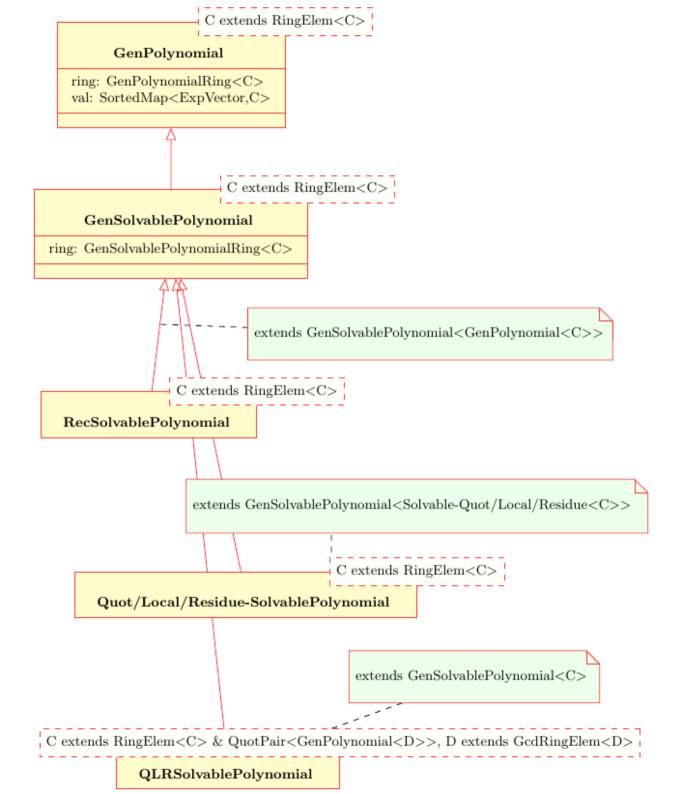
Solvable Polynomial Ring Overview



Polynomial ring implementation

- commutative polynomial ring
 - coefficient ring factory
 - number of variables
 - name of variables
 - term order
- solvable polynomial ring
 - relation table
 - commutator relations: $X_i * X_i = c_{ii} X_i X_i + p_{ii}$
 - missing relations treated as commutative
 - relations for powers are stored for lookup

Solvable Polynomial Overview



Recursive solvable polynomial ring

- implemented in RecSolvablePolynomial and RecSolvablePolynomialRing
- extends GenSolvablePolynomial<GenPolynomial<C>>
- new relation table coeffTable for relations from Q'_{ux}, with type RelationTable<GenPolynomial<C>>
- recording of powers of relations for lookup instead of recomputation
- new method rightRecursivePolynomial() with coefficients on the right side

recursive *-multiplication 1.loop over terms of first polynomial:

 $a x^e = a' u^{e'} x^e$

2.loop over terms of second polynomial:

$$b x^{f} = b' u^{f'} x^{f}$$

3.compute (a x^e) * (b x^f) as a * ((x^e * b) * x^f) (a) x^e * b = p_{eb}, iterate lookup of x_i * u_j in Q'_{ux} (b) p_{eb} * x^f = p_{ebf}, iterate lookup of x_j * x_i in Q_x (c) a * p_{ebf} = p_{aebf}, in recursive coefficient ring lookup u_j * u_i in Q_u

4.sum up the p_{aebf}

Solvable Quotient and Residue Rings

- 1.the solvable quotient ring, R(U₁, ..., U_m; Q_u), is implemented by classes SolvableQuotient and SolvableQuotientRing, implements RingElem<.<C>>
- 2.the solvable residue class ring modulo I, $R\{U_1, \ldots, U_m; Q_u\}_{/l}$, is implemented by classes SolvableResidue and SolvableResidueRing
- 3.the solvable local ring, localized by ideal I, $R\{U_1, \ldots, U_m; Q_u\}_i$, is implemented by classes SolvableLocal and SolvableLocalRing
- 4.the solvable quotient and residue class ring modulo I, $R(U_1, \ldots, U_m; Q_u)_{/l}$, is implemented by classes SolvableLocalResidue and SolvableLocalResidueRing

Implementation of + and *

- Ore condition in SolvableSyzygy
 - leftOreCond() and rightOreCond()
- simplification difficult
 - reduction to lower terms
 - leftSimplifier() after [7] using module
 Gröbner bases of syzygies of quotients
 - require common divisor computation
 - not unique in solvable polynomial rings
 - package edu.jas.fd
- very high complexity and (intermediate) expression swell, only small examples feasible

with solvable quotient coefficients

- reuse recursive solvable polynomial multiplication with polCoeff ring internally
- extend multiplication to quotients or residues
- class QLRSolvablePolynomial, QLRSolvablePolynomialRing
- abstract quotient structure, additional to ring element, QuotPair and QuotPairFactory
- conversion
 - fromPolyCoefficients()
 - toPolyCoefficients()

*-multiplication with 1/d

- recursion base, denominator = 1: x^e * n/1. It computes x^e * n from the recursive solvable polynomial ring polCoeff, looking up x^e * n in Q'_{ux}, and then converting the result to a polynomial with quotient coefficients
- recursion base, denominator != 1: x^e * 1/d. Let p be computed by x^e * d = d x^e + p then compute x^e * 1/d as 1/d (x^e (p * 1/d)) by lemma 2. Since p < x^e, p * 1/d uses recursion on a polynomial with smaller head term, so the algorithm will terminate
- numerator != 1: let $p_{xed} = x^e * 1/d$ and compute $p_{xed} * n/1$ by recursion

Overview

- Introduction
- Solvable Polynomial Rings
- Implementation of Solvable Polynomial Rings
- Applications
 - comprehensive Gröbner bases
 - left, right and two-sided Gröbner bases
 - examples
 - extensions to free non-commutative coefficient rings
- Conclusions

Applications (1)

- Comprehensive Gröbner bases commutative $S = \mathbf{R}[U_1, \dots, U_m][X_1, \dots, X_n]$ solvable $\mathbf{R}[U_1, \dots, U_m]\{X_1, \dots, X_n, Q\}$
 - silght modification of commutative algorithm works for solvable case: use multiplyLeft()
- also commutative transcendental field extension coefficients works
- fraction free coefficients by taking primitive parts work

Solvable Gröbner bases

«interface» SolvableGroebnerBase

isLeftGB(F: List<GenSolvablePolynomial<C>>): boolean isRightGB(F: List<GenSolvablePolynomial<C>>): boolean isTwosidedGB(F: List<GenSolvablePolynomial<C>>): boolean leftGB(F: List<GenSolvablePolynomial<C>>): List<GenSolvablePolynomial<C>> rightGB(F: List<GenSolvablePolynomial<C>>): List<GenSolvablePolynomial<C>> twosidedGB(F: List<GenSolvablePolynomial<C>>): List<GenSolvablePolynomial<C>> extLeftGB(F: List<GenSolvablePolynomial<C>>): List<GenSolvablePolynomial<C>> minimalLeftGB(G: List<GenSolvablePolynomial<C>>): List<GenSolvablePolynomial<C>>

 $\label{eq:solvableGroebnerBaseAbstract} C extends RingElem <C > SolvableGroebnerBaseAbstract(red: SolvableReduction <C >, pl: PairList <C >) is*GB(F: List <GenSolvablePolynomial <C >>): boolean is*GB(modv: int, F: List <GenSolvablePolynomial <C >>): boolean *GB(F: List <GenSolvablePolynomial <C >>): boolean *GB(F: List <GenSolvablePolynomial <C >>): List <GenSolvablePolynomial <C >>):$

44

C extends RingElem<C>

C extends RingElem<C>

SolvableGroebnerBaseSeq

 $\label{eq:solvableGroebnerBaseSeq(red: SolvableReduction<C>, pl: PairList<C>) \\ leftGB(modv: int, F: List<GenSolvablePolynomial<C>>): List<GenSolvablePolynomial<C>>) \\ twosidedGB(modv: int, F: List<GenSolvablePolynomial<C>>): \\ \end{tabular}$

 ${\rm List}{<}{\rm GenSolvablePolynomial}{<}{\rm C}{>}{>}$

Applications (2)

- applications with solvable quotient coefficient
 - verify multiplication by coefficients is correct, so existing algorithms can be reused
 - gives left, right and two-sided Gröbner bases
 - for two-sided case more right multiplications with coefficent generators required
 - gives also left and right syzygies
 - same for left, right and two-sided module
 Gröbner bases
- recursive solvable polynomials with pseudo reduction using Ore condition to adjust coefficient multipliers

Examples (1)

 $\mathbb{Q}(x, y, z, t; Q_x)_{/\mathcal{I}}\{r; Q_r\}$

 $Q_x = \{z * y = yz + x, t * y = yt + y, t * z = zt - z\}$ $Q_r = \emptyset$

 $\mathcal{I} = (t^{2} + z^{2} + y^{2} + x^{2} + 1)$ pcz = PolyRing.new(QQ(), "x, y, z, t") zrel = [z, y, (y * z + x), t, y, (y * t + y), t, z, (z * t - z)] pz = SolvPolyRing.new(QQ(), "x, y, z, t", PolyRing.lex, zrel) ff = pz.ideal("", [t*2 + z*2 + y*2 + x*2 + 1]) ff = ff.twosidedGB()

Examples (2)

construction: SLR(ideal, numerator, denominator)

f0 = SLR(ff, t + x + y + 1)f1 = SLR(ff, z**2+x+1)

 $f2 = f1*f0: z^{**2} * t + x * t + t + y * z^{**2} + x * z^{**2}$ $+ z^{**2} + 2 * x * z + x * y + y + x^{**2} + 2 * x + 1$

fi = 1/f1: 1 / (z**2 + x + 1)

fi*f1 = f1*fi: 1

f0*fi: (x**2 * z * t**2 + ...) / (... + 23 * x + 7)

(2 * t * * 2 + 7) / (2 * t + 7) want x, y, z simplified to 0

Examples (3)

```
pt = SolvPolyRing.new(f0.ring, "r", PolyRing.lex)
```

```
fr = r^{*} + 1
iil = pt.ideal( "", [ fr ] )
rgll = iil.twosidedGB()
SolvIdeal.new(...,[( r**2 + 1 )])
e = fr.evaluate(t)
e: 0
fp = (r-t)
                      frp = fp^*(r+t)
                      frp: ( r**2 - t**2 )
fr / fp: (r+t)
fr % fp: 0
                      frp-fr: 0
                      frp == fr: true
```


Examples (4)

 $\mathbb{Q}(x, y, z, t; Q_x)_{/\mathcal{I}}(r; Q_r)_{/(r^2+1)}$

```
rf = SLR(rgll, r)
```

```
rf**2 + 1: 0
```

```
ft = SLR(rgll, t)
```

```
ft**2 + 1: 0
(rf-ft)*(rf+ft): 0
```


Extension to free non-commutative polynomial coefficients

Free non-commutative generic polynomial ring K<x,y,z>

implementation in classes GenWordPolynomial and GenWordPolynomialRing

r = WordPolyRing.new(QQ(),"x,y"); one,x,y = r.gens();

```
f1 = x*y - 1/10;
f2 = y*x + x + y;
ff = r.ideal( "", [f1,f2] ); gg = ff.GB();
```

WordPolyIdeal.new(WordPolyRing.new(QQ(),"x,y"),"", [(y + x + 1/10), (x*x + 1/10 * x + 1/10)])

integro-differential Weyl algebra :

 $\mathbf{K} \langle \ell, \partial \rangle_{/(\partial \ell = 1)} \{ x; Q \}, \quad Q = \{ x * \partial = \partial x - 1, \ x * \ell = \ell x + \ell^2 \}$

Conclusions

- presented parametric solvable polynomial rings, with definition of commutator relations between polynomial variables and coefficient variables
- enables the computation in recursive solvable polynomial rings
- possible to construct and compute in localizations with respect to two-sided ideals in such rings
- using these as coefficient rings of solvable polynomial rings makes computations of roots, common divisors and ideal constructions over skew fields feasible

Conclusions (cont.)

- algorithms implemented in JAS in a type-safe, object oriented way with generic coefficients
- the high complexity of the solvable multiplication and the lack of efficient simplifiers to reduce (intermediate) expression swell hinder practical computations
- this will eventually be improved in future work

Thank you for your attention

- Questions ?
- Comments ?
- http://krum.rz.uni-mannheim.de/jas/
- Acknowledgments
 - thanks to: Thomas Becker, Raphael Jolly, Wolfgang K. Seiler, Axel Kramer, Thomas Sturm, Victor Levandovskyy, Joachim Apel, Hans-Günther Kruse, Markus Aleksy
 - thanks to the referees