A Long-distance InfiniBand Interconnection between two Clusters in Production Use

Sabine Richling, Steffen Hau, Heinz Kredel, Hans-Günther Kruse

IT-Center, University of Heidelberg, Germany IT-Center, University of Mannheim, Germany

SC'11, State of the Practice, 16. November 2011

Outline

Background

- D-Grid and bwGRiD
- bwGRiD MA/HD
- 2 Interconnection of two bwGRiD clusters
- 3 Cluster Operation
 - Node Management
 - User Management
 - Job Management

4 Performance

- MPI Performance
- Storage Access Performance
- 5 Summary and Conclusions

D-Grid and bwGRiD

- bwGRiD Virtual Organization (VO)
 - Community project of the German Grid Initiative D-Grid
 - Project partners are the Universities in Baden-Württemberg
- bwGRiD Resources
 - Compute clusters at 8 locations
 - Central storage unit in Karlsruhe
- bwGRiD Objectives
 - Verifying the functionality and the benefit of Grid concepts for the HPC community in Baden-Württemberg
 - Managing organizational, security, and license issues
 - Development of new cluster and Grid applications

bwGRiD – Resources

Compute Cluster	
Site	Nodes
Mannheim	140
Heidelberg	140
Karlsruhe	140
Stuttgart	420
Tübingen	140
Ulm/Konstanz	280
Freiburg	140
Esslingen	180
Total	1580

Central Storage		
with backup without backup	128 TB 256 TB	
Total	384 TB	

bwGRiD – Situation in MA/HD before interconnection

- Diversity of applications (1–128 nodes per job)
- Many first time HPC users!
- Access with local University Accounts (Authentication via LDAP/AD)

bwGRiD – Situation in MA/HD before interconnection

- Grid certificate allows access to all bwGRiD clusters
- Feasible only for more experienced users

6 / 25

Interconnection of bwGRiD clusters MA/HD

- Proposal in 2008
- Acquisition and Assembly until May 2009
- Running since July 2009
- InfiniBand over Ethernet over fibre optics: Obsidian Longbow adaptor

InfiniBand connector (black cable), fibre optic connector (yellow cable)

MPI Performance – Prospects

- Measurements for different distances (HLRS, Stuttgart, Germany)
- Bandwidth 900-1000 MB/sec for up to 50-60 km

8 / 25

MPI Performance – Interconnection MA/HD

Latency is high 145 μ sec = 143 μ sec light transit time + 2 μ sec local latency

Bandwidth is as expected

about 930 MB/sec (local bandwidth 1200-1400 MB/sec)

Obsidian needs a license for 40 km

- Obsidian has buffers for larger distances
- Activation of buffers with license
- License for 10 km is not sufficient

MPI Bandwidth – Influence of the Obsidian License

IMB 3.2 - PingPong - buffer size 1 GB

bwGRiD Cluster Mannheim/Heidelberg – Overview

Richling, Hau, Kredel, Kruse (URZ/RUM)

Long-distance InfiniBand Connection

- Administration server provides
 - DHCP service for the nodes (MAC-to-IP address configuration file)
 - NFS export for root file system
 - NFS directory for software packages accessible via module utilities
 - queuing and scheduling system
- Node administration
 - adjusted shell scripts originally developed by HLRS
 - IBM management module (command line interface and Web-GUI)

User Management

- Users should have exclusive access to compute nodes
 - user names and user-ids must be unique
 - direct connection to PBS for user authorization via PAM module
- Authentication at the access nodes
 - ${\scriptstyle \circ}\,$ directly against directory services: LDAP (MA) and AD (HD)
 - or with D-Grid certificate
- Combining information from directory services from both universities
 - Prefix for group names
 - Adding offsets to user-ids and group-ids
 - Activated user names from MA and HD must be different
- Activation process
 - Adding a special attribute for the user in the directory service (for authentication)
 - Updating the user database of the cluster (for authorization)

User Management – Generation of configuration files

- Interconnection (high latency, limited bandwidth) provides
 - ${\scriptstyle \bullet}$ enough bandwidth for I/O operations
 - not sufficient for all kinds of MPI jobs
- Jobs run only on nodes located either in HD or in MA (realized with attributes provides by the queuing system)
- Before interconnection
 - ${\scriptstyle \circ }$ In Mannheim: mostly single node jobs \rightarrow free nodes
 - ${\scriptstyle \circ }$ In Heidelberg: many MPI jobs \rightarrow long waiting times
- With interconnection better resource utilization (see Ganglia report)

15 / 25

Ganglia Report during activation of the interconnection

- Numerical model
 - High-Performance Linpack (HPL) benchmark
 - OpenMPI
 - Intel MKL
- Model variants
 - Calculations on a single cluster with up to 1024 CPU cores
 - Calculations on the interconnected cluster with up to 2048 CPU cores symmetrically distributed

Results for a single cluster

Results for interconnected cluster

Improvement of simple analytical model (Kruse 2009) to analyze the characteristics of the interconnection

- high latency of 145 μ sec
- limited bandwidth of 930 MB/sec (modelled as shared medium)

Result for Speed-up:

$$S(p) \leq rac{p}{\ln p + rac{3}{4} \left(rac{100}{n_p}
ight)^3 (1+4p)c(p)}$$

p number of processors n_p load parameter (matrix size)

c(p) dimensionless function representing the communication topology

Speed-up of the model

Results:

- Limited bandwidth is the performance bottleneck for shared connection between the clusters
- Double bandwidth: 25 % improvement for $n_p = 40\ 000$
- 100 % improvement with a ten-fold bandwidth
- \Rightarrow Jobs run on nodes located either in MA or in HD

Long-term MPI performance – Latency

between two random nodes in HD or in MA

Richling, Hau, Kredel, Kruse (URZ/RUM) Long-distance InfiniBand Connection Seattle, November 2011 22 / 25

Long-term MPI performance - Bandwidth

between two random nodes in HD or in MA

Richling, Hau, Kredel, Kruse (URZ/RUM) Long-distance InfiniBand Connection Seattle, November 2011 23 / 25

Storage Access Performance

IOzone benchmark for 32 GB file with records size 4 MB (node - storage)

Summary and Conclusions

- Interconnection network (Obsidian and InfiniBand switches) is stable and works reliable
- Bandwidth of 930 MB/sec is sufficient for Lustre file system access
 - single system administration
 - lower administration costs
 - better load balance
- Setting up a federated authorization is challenging but worthwhile
 - Further reduction of administration costs
 - Lower access barrier for potential users
- Characteristics of the interconnection is not sufficient for all kinds of MPI jobs \rightarrow Jobs remain on one side of the combined cluster Possible improvements:
 - Adding more parallel fibre lines (very expensive)
 - Investigation of different job scheduler configurations