
Algebraic structures as
typed objects

Heinz Kredel, University of Mannheim
Raphael Jolly, Databeans

CASC 2011, Kassel

Overview

Introduction

Algebraic structures as typed objects
Ring elements and ring factories, algorithms and factories

Algebraic and transcendental extensions

Real algebraic numbers and complex algebraic numbers

Algebraic structures in scripting interpreters

Problems

Generic types and subclasses

Dependent types

Conclusions

Introduction

● Software architecture for computer algebra
systems :

– run-time infrastructure, memory management
parallel hardware support

– statically typed object oriented algorithm libraries

– dynamic interactive scripting interpreters

● reuse existing projects – concentrate on algebra,
design and implementation

● be reused : Meditor, Symja, MathPiper,
GeoGebra

Need for types

● Scratchpad, Axiom, Aldor
● Kenzo : algebraic topology, object oriented with

run-time type safety
● MuPad : object oriented layer with 'categories'
● DoCon : field extension towers, type safe,

Haskell
● Pros and cons of our approach

– see (related) work in Jolly & Kredel, CASC 2010

Field (and ring) extensions

● K computable field (or ring), e.g. prime fields
– rational numbers

– modular integers

● algebraic extensions
● transcendental extensions
● real algebraic extensions
● complex algebraic extensions

ℚ

ℤm ,ℤp

K =K [x]/ f ,with f =0

K x

ℚ2

ℚi

Design and implementation

● Goal : design and implement extensions so that
they can be coefficient rings of polynomial rings
and relevant properties are preserved

● provide algorithms so that polynomials over real
algebraic extensions have real root isolation

● provide algorithms so that polynomials over
complex algebraic extensions have complex
root isolation

– fundamental theorem of algebra

– constructive version : Weierstraß-Durand-
Kerner fixpoint method

Overview

Introduction

Algebraic structures as typed objects
Ring elements and ring factories, algorithms and factories

Algebraic and transcendental extensions

Real algebraic numbers and complex algebraic numbers

Algebraic structures in scripting interpreters

Problems

Generic types and subclasses

Dependent types

Conclusions

Basic types

factory() method provides a back-link

Example

BigRational rf = new BigRational(1); // element = factory

GenPolynomialRing<BigRational> pf

= new GenPolynomialRing<BigRational>(rf,new String[]{"w"});

GenPolynomial<BigRational> a = pf.parse("w^2 - 2");

w2−2 ∈ ℚ[w] :

Algorithms and factories

ℤ[x] ,a ,ℤp[x] ,a1 , ... ,ar , ℕ ,k ℤ pk [x] ,b1 , ... ,br

example univariate Hensel lifting :

a∈ℤ[x] ,a1 , ... , ar∈ℤp[x]
r ,k∈ℕb1 , ... , br∈ℤpk [x]

r

meaning :

a :ℤ[x] ,a1 , ... , ar:ℤp [x]
r , k :ℕb1 , ... , br:ℤpk [x]

r

using type annotations :

the last ring is constructed within the algorithm

Algebraic and transcendental
ring and field extensions

●
– AlgebraicNumber, AlgebraicNumberRing

● better names : AlgebraicElement,
AlgebraicExtensionRing

●
– Quotient, QuotientRing

● the construction works for all computable fields
as base fields

– so towers of field / ring extensions can be
constructed

– for example

L=K =K [x]/ f ,with f =0, is field iff f is irreducible

L=K x ={
p
q
: p ,q ∈ K [x] , q0, gcd p ,q=1 }

ℚ2x x

Algebraic numbers

Example construction (1)

ℚ2x x

ℚ1ℚ[w]2ℚ[w]/ w2−23ℚ[w]/ w2−2x

AlgebraicNumber<Quotient<AlgebraicNumber<BigRational>>> elem;

elem = fac.parse("wx + x^5");

4 ℚ[w]/ w2−2x [wx]5ℚ[w]/ w2−2x [wx]/ wx2−x

Example construction (2)

GenPolynomial<BigRational> a = pf.parse("w^2 - 2");
AlgebraicNumberRing<BigRational> af
 = new AlgebraicNumberRing<BigRational>(a);

String[] vx = new String[]{ "x" };
GenPolynomialRing<AlgebraicNumber<BigRational>> tf
 = new GenPolynomialRing<AlgebraicNumber<BigRational>>(af,vx);
QuotientRing<AlgebraicNumber<BigRational>> qf
 = new QuotientRing<AlgebraicNumber<BigRational>>(tf);

String[] vw = new String[]{ "wx" };
GenPolynomialRing<Quotient<AlgebraicNumber<BigRational>>> qaf
 = new
GenPolynomialRing<Quotient<AlgebraicNumber<BigRational>>>(qf,vw);

GenPolynomial<Quotient<AlgebraicNumber<BigRational>>> b
 = qaf.parse("wx^2 - x");
AlgebraicNumberRing<Quotient<AlgebraicNumber<BigRational>>> fac
 = new AlgebraicNumberRing<Quotient<AlgebraicNumber<BigRational>>>(b);

can be avoided with Java 7

Extension field builder

RingFactory fac = ExtensionFieldBuilder
 .baseField(new BigRational(1))
 .algebraicExtension("w", "w^2 - 2")
 .transcendentExtension("x")
 .algebraicExtension("wx", "wx^2 - x")
 .build();

● above construction is tedious but exact
● much 'boiler plate' code
● Scala can spare some type annotations via

type resolution
● more simplification using 'builder pattern'

– for example

Applications and optimizations

● such field towers can be used as coefficients for
polynomial rings

● then computations like Gröbner bases can be
performed in these polynomial rings

● can use primitive elements for multiple extensions
● build() method to optimize the extension towers

– structural optimizations
● transcendental high, algebraic lower in tower
● or residue class ring modulo a Gröbner base

– simplification
● simple extension via primitive element (CAD example)

Real algebraic numbers

● implementation using delegation to algebraic
extension ring

– sub-classing not possible, see 'problems' later

● classes RealAlgebraicNumber with factory
RealAlgebraicRing

– factory contains isolating interval and root engine

K = K [x]/ f , with f =0, ∈ℝ , char K =0

I=[l , r] ⊂ ℝ isolating interval for :

∈I for exactly one real root of f

Real root computation

● using Sturm sequences
– faster algorithms are future work

● classes RealRootAbstract and RealRootsSturm

● one generic implementation for any real field tower
● can construct polynomials over such fields

– GenPolynomial<RealAlgebraicNumber<BigRational>>

● can continue with real roots for such polynomials
– RealRootsSturm<RealAlgebraicNumber<BigRational>>

– method realSign() used in signum() method

– unique feature to our knowledge

Example

fac = ExtensionFieldBuilder
 .baseField(new BigRational())
 .realAlgebraicExtension("q", "q^3 - 3","[1,2]")
 .realAlgebraicExtension("w", "w^2 - q","[1,2]")
 .realAlgebraicExtension("s", "s^5 - 2","[1,2]")
 .build();

L=ℚ
3
33

3
5
2 , I=[1,2]

y2−33⋅52 ∈ L[y]

Decimal approximation of the two real roots with 50 decimal digits

 -1.1745272686769866126436905900619307101229226521299
 1.1745272686769866126436905900619307101229226521299

1.2 sec, approximation to 50 digits 5.2 sec, AMD at 3 GHz, IcedTea6 JVM

Complex algebraic numbers (1)

● classes ComplexAlgebraicNumber with factory
ComplexAlgebraicRing in edu.jas.root

– factory contains isolating rectangle

– roots work only for a single extension, no towers

– since real or imaginary parts cannot be extracted

– need bi-variate representation

K = K [x]/ f , with f =0, ∈ℂ , char K =0

I=[lr , rr]×[l i , r i] ⊂ ℂ isolating rectangle for :

∈I for exactly one complex root of f

Complex root computation (1)

● using Sturm sequences, and a method derived from
Wilf's numeric Routh-Hurwitz method

– faster algorithms are future work

● classes ComplexRootsAbstract ComplexRootsSturm

● can construct polynomials over such fields
– GenPolynomial<ComplexAlgebraicNumber<BigRational>>

● cannot continue with complex roots for such
polynomials

– ComplexRootsSturm<ComplexAlgebraicNumber<.>>

Complex root computation (2)

● alternative : represent as tuples of real roots of
the ideal generated by the equations for the real
and imaginary part

● repr. as extension of two real algebraic numbers
● one implementation for any complex field tower

zabi in f z=f a ,b=f r a ,bf ia ,b i
∈L=L' i , with f =0

=i , with f r ,=f i ,=0

L'=K , , ,∈ℝ , Ideal f r , f i={g x ,hx , y }

L'=K , ∈ℝ , poly∈K [y]

Complex algebraic numbers (2)

● new classes RealAlgebraicNumber and
RealAlgebraicRing in edu.jas.application

– use as Complex<RealAlgebraicNumber<.>>

● bi-variate ideal with real root tuples as input, from
ideal real roots computation

– Ideal.zeroDimRootDecomposition()

– PolyUtilApp. realAlgebraicRoots()

● can construct polynomials over such fields
– GenPolynomial<Complex<RealAlgebraicNumber<.>>>

● one level instantiation is also possible
– ComplexRootsSturm<RealAlgebraicNumber<.>>

Example

L=ℚ=ℚ
32=ℚ , , i , I=[−1,−1/2]×[1,2]

 = i with
3
1 /4=0 and

2
−32=0

≈−0.62996051.0911236 i

f t = f t , = t3−2 ∈ ℚ[t] , f =0,
f t , , , i=t322−2 i

1≈ 0.8936130− 0.7498304 i ,
2≈−1.0961787− 0.3989764 i ,
3≈ 0.2025656 1.1488068 i

3= i=256 /27
7
−112 /274356 /272 i

−10368
9
38886−1555223−81 = 0
27192733624267 = 0

163 sec, AMD at 3 GHz, IcedTea6 JVM

Root factory

● link between the computation and the structures
● roots of polynomials represented as

– list of real algebraic numbers

– list of complex algebraic numbers

– rings accessible via factory() method

● versions for fields (irreducible generator) or non
fields (squarefree generator only)

● version for polynomial with complex coefficients

Algebraic structures in
scripting interpreters

● Use general purpose scripting language as
DSL for computer algebra

● Algebraic expressions are written in the host
language ≠ strings

● No need to parse (in Java)
● Type-safe (partly at run-time)
● for details see Jolly & Kredel 2008, 2009

¿

Jython

Q = PolyRing(QQ(),"w2",PolyRing.lex); [e,w2] = Q.gens();
Q2 = AN(w2**2 – 2,field=True);
Qp = PolyRing(Q2,"x",PolyRing.lex);
Qr = RF(Qp);
Qwx = PolyRing(Qr,"wx",PolyRing.lex);
[ewx,wwx,ax,wx] = Qwx.gens();
Q2x = AN(wx**2 – ax,field=True);
Yr = PolyRing(Q2x,"y",PolyRing.lex)
[e,w2,x,wx,y] = Yr.gens();

f = (y**2 - x) * (y**2 - 2);
// = y**4 - (x + 2) * y**2 + 2 * x
factor(f) :
// (y - wx) * (y - w2) * (y + wx) * (y + w2)

EF(QQ()).extend("w2","w2^2 – 2")
 .extend("x").extend("wx","wx^2 - x").build().

9.5 seconds, 5.7 seconds after JIT warm-up, AMD 3 GHz, IcedTea6 JVM

Jython : target design

p = PolyRing(QQ, ["w2"]) ; [w2] = p.gens()
q = RF(PolyRing(AN(w2**2 – 2), ["x"])) ; [x] = q.gens()
r = PolyRing(q, ["wx"]) ; [wx] = r.gens()
s = PolyRing(AN(wx**2 – x), ["y"]) ; [y] = s.gens()

factor((y**2 - x) * (y**2 - 2))
(y - wx) * (y - w2) * (y + wx) * (y + w2)

● Problem : each definition of ring/extension field
factory must redefine all generators in the
factory tower

● Need a mechanism to « lift » values to the
correct level in the ring/field tower

● Not yet fully implemented

Overview

Introduction

Algebraic structures as typed objects
Ring elements and ring factories, algorithms and factories

Algebraic and transcendental extensions

Real algebraic numbers and complex algebraic numbers

Algebraic structures in scripting interpreters

Problems

Generic types and subclasses

Dependent types

Conclusions

Generic types and subclasses

class AlgebraicNumber<C extends GcdRingElem<C>>
implements GcdRingElem<AlgebraicNumber<C>>

class RealAlgebraicNumber<C extends GcdRingElem<C>>
extends AlgebraicNumber<C> implements
GcdRingElem<RealAlgebraicNumber<C>>

● Why subclassing ?
– Allows to reuse code of algorithms

● Problem :

not possible because of type-erasure

Generic types and subclasses :
delegation

● Delegation : object features are not inherited
but available through associated object
(delegate)

● Avoids the above type-erasure problem
● Can not use algorithms written specifically for
AlgebraicNumbers with RealAlgebraicNumbers

class RealAlgebraicNumber<C extends GcdRingElem<C>>
implements GcdRingElem<RealAlgebraicNumber<C>> {

public final AlgebraicNumber<C> number;
}

Third solution
● use neither delegation nor subclassing
● inherit from a common, abstract superclass

Dependent types

● Goal : forbid operations between kinds different
only with respect to some parameter

– Integer : Mod(7)

– Array of String : Polynomial(BigInt, ["x"])

– Polynomial : AlgebraicNumber(w**2 - 2)

● Need for a dependent type
● Scala has such a concept
● Work in progress

Dependent types in Scala

val r = Mod(7)
r(4)+r(4) // 1
val s = Mod(2)
r(4)+s(1) // problem : this works

object r extends Mod(7)
r(4)+r(4) // 1
object s extends Mod(2)
r(4)+s(1) // type mismatch, as expected

→ with "val", r and s are of the same type (class)

→ with "object", each value has its own type
(singleton)

Dependent types : polynomials

implicit object r extends Mod(7)
implicit object p extends Polynomial(r, Array("x")) ; val
Array(x) = p.generators
implicit object q extends Polynomial(p, Array("y")) ; val
Array(y) = q.generators
// and so on

class Polynomial[C <: Ring, P](val ring: C,
 val variables: Array[String],
 val ordering: Comparator[P]) {
 type E // the type of the elements of the ring
 ...
}

● Can use implicit conversion to lift values to
correct level

Conclusions (1)

● extensions are designed and implemented so
that they can be coefficient rings of polynomial
rings and relevant properties are preserved

● obtain pluggable algebraic objects by well
defined interface for ring elements

● precise and explicit construction of extensions
● one generic implementation for a real root

computation algorithm for any real extension
field tower

● one generic implementation for a complex root
computation algorithm

Conclusions (2)

● scripting languages can be used to write (run-
time) type-safe algebraic expressions

● tedious work can be reduced with Scala
● dependend types can be designed in Scala
● engineering and usage of algorithm libraries

benefits from type safety
● provides a Java CAS library under GPL or LGPL
● future work

– study Scala possibilities

– implement some faster algorithms

Thank you for your attention

Questions ?

Comments ?

http://jscl-meditor.sourceforge.net/

http://krum.rz.uni-mannheim.de/jas/

Acknowledgments

thanks to: Thomas Becker, Werner K. Seiler, Axel
Kramer, Dongming Wang, Thomas Sturm, Hans-
Günther Kruse, Markus Aleksy

thanks to the referees

http://jscl-meditor.sourceforge.net/
http://krum.rz.uni-mannheim.de/jas/

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27
	Folie 28
	Folie 29
	Folie 30
	Folie 31
	Folie 32
	Folie 33
	Folie 34
	Folie 35
	Folie 36
	Folie 37
	Folie 38

