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Introduction

● Software architecture for computer algebra 
systems :

– run-time infrastructure, memory management 
parallel hardware support

– statically typed object oriented algorithm libraries

– dynamic interactive scripting interpreters

● reuse existing projects – concentrate on algebra, 
design and implementation

● be reused : Meditor, Symja, MathPiper, 
GeoGebra



Need for types

● Scratchpad, Axiom, Aldor
● Kenzo : algebraic topology, object oriented with 

run-time type safety
● MuPad : object oriented layer with 'categories'
● DoCon : field extension towers, type safe, 

Haskell
● Pros and cons of our approach

– see (related) work in Jolly & Kredel, CASC 2010



Field (and ring) extensions

● K computable field (or ring), e.g. prime fields
– rational numbers

– modular integers

● algebraic extensions
● transcendental extensions 
● real algebraic extensions
● complex algebraic extensions

ℚ

ℤm ,ℤp

K =K [x ]/  f  ,with f =0

K x 

ℚ2

ℚi



Design and implementation

● Goal : design and implement extensions so that 
they can be coefficient rings of polynomial rings 
and relevant properties are preserved

● provide algorithms so that polynomials over real 
algebraic extensions have real root isolation

● provide algorithms so that polynomials over 
complex algebraic extensions have complex 
root isolation

– fundamental theorem of algebra

– constructive version : Weierstraß-Durand-
Kerner fixpoint method
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Basic types

factory() method provides a back-link



Example

BigRational rf = new BigRational(1); // element = factory

GenPolynomialRing<BigRational> pf

= new GenPolynomialRing<BigRational>(rf,new String[]{"w"});

GenPolynomial<BigRational> a = pf.parse("w^2 - 2");

w2−2 ∈ ℚ[w ] :



Algorithms and factories

ℤ[x ] ,a ,ℤp[x ] ,a1 , ... ,ar , ℕ ,k ℤ pk [ x ] ,b1 , ... ,br

example univariate Hensel lifting :

a∈ℤ[x ] ,a1 , ... , ar∈ℤp[x ]
r ,k∈ℕb1 , ... , br∈ℤpk [x ]

r

meaning :

a :ℤ[x ] ,a1 , ... , ar:ℤp [x ]
r , k :ℕb1 , ... , br:ℤpk [x ]

r

using type annotations :

the last ring is constructed within the algorithm



Algebraic and transcendental 
ring and field extensions

●  
– AlgebraicNumber, AlgebraicNumberRing

● better names : AlgebraicElement, 
AlgebraicExtensionRing

●  
– Quotient, QuotientRing

● the construction works for all computable fields 
as base fields

– so towers of field / ring extensions can be 
constructed

– for example

L=K =K [x ]/  f  ,with f =0, is field iff f is irreducible

L=K x ={
p
q
: p ,q ∈ K [x ] , q0, gcd  p ,q=1 }

ℚ2x x



Algebraic numbers



Example construction (1)

ℚ2x x

ℚ1ℚ[w ]2ℚ[w ]/ w2−23ℚ[w ]/ w2−2x 

AlgebraicNumber<Quotient<AlgebraicNumber<BigRational>>> elem;

elem = fac.parse("wx + x^5");

4 ℚ[w ]/ w2−2x [wx ]5ℚ[w ]/ w2−2x [wx ]/ wx2−x



Example construction (2)

GenPolynomial<BigRational> a = pf.parse("w^2 - 2");
AlgebraicNumberRing<BigRational> af 
  = new AlgebraicNumberRing<BigRational>(a);

String[] vx = new String[]{ "x" };
GenPolynomialRing<AlgebraicNumber<BigRational>> tf 
  = new GenPolynomialRing<AlgebraicNumber<BigRational>>(af,vx);
QuotientRing<AlgebraicNumber<BigRational>> qf 
  = new QuotientRing<AlgebraicNumber<BigRational>>(tf);

String[] vw = new String[]{ "wx" };
GenPolynomialRing<Quotient<AlgebraicNumber<BigRational>>> qaf 
  = new 
GenPolynomialRing<Quotient<AlgebraicNumber<BigRational>>>(qf,vw);

GenPolynomial<Quotient<AlgebraicNumber<BigRational>>> b 
  = qaf.parse("wx^2 - x");
AlgebraicNumberRing<Quotient<AlgebraicNumber<BigRational>>> fac 
  = new AlgebraicNumberRing<Quotient<AlgebraicNumber<BigRational>>>(b);

can be avoided with Java 7



Extension field builder

RingFactory fac = ExtensionFieldBuilder
                  .baseField(new BigRational(1))
                  .algebraicExtension("w", "w^2 - 2")
                  .transcendentExtension("x")
                  .algebraicExtension("wx", "wx^2 - x")
                  .build();

● above construction is tedious but exact
● much 'boiler plate' code
● Scala can spare some type annotations via 

type resolution
● more simplification using 'builder pattern'

– for example



Applications and optimizations

● such field towers can be used as coefficients for 
polynomial rings

● then computations like Gröbner bases can be 
performed in these polynomial rings

● can use primitive elements for multiple extensions
● build() method to optimize the extension towers

– structural optimizations
● transcendental high, algebraic lower in tower
● or residue class ring modulo a Gröbner base

– simplification 
●  simple extension via primitive element (CAD example)



Real algebraic numbers

● implementation using delegation to algebraic 
extension ring 

– sub-classing not possible, see 'problems' later

● classes RealAlgebraicNumber with factory 
RealAlgebraicRing

– factory contains isolating interval and root engine

K  = K [x ]/ f  , with f =0, ∈ℝ , char K =0

I=[l , r ] ⊂ ℝ isolating interval for :

∈I for exactly one real root  of f



Real root computation

● using Sturm sequences
– faster algorithms are future work

● classes RealRootAbstract and RealRootsSturm

● one generic implementation for any real field tower
● can construct polynomials over such fields

– GenPolynomial<RealAlgebraicNumber<BigRational>>

● can continue with real roots for such polynomials
– RealRootsSturm<RealAlgebraicNumber<BigRational>>

– method realSign() used in signum() method 

– unique feature to our knowledge



Example

fac = ExtensionFieldBuilder
       .baseField(new BigRational())
       .realAlgebraicExtension("q", "q^3 - 3","[1,2]")
       .realAlgebraicExtension("w", "w^2 - q","[1,2]")
       .realAlgebraicExtension("s", "s^5 - 2","[1,2]")
       .build();

L=ℚ
3
33

3
5
2 , I=[1,2]

y2−33⋅52 ∈ L[ y ]

Decimal approximation of the two real roots with 50 decimal digits

  -1.1745272686769866126436905900619307101229226521299
   1.1745272686769866126436905900619307101229226521299

1.2 sec, approximation to 50 digits 5.2 sec, AMD at 3 GHz, IcedTea6 JVM



Complex algebraic numbers (1)

● classes ComplexAlgebraicNumber with factory 
ComplexAlgebraicRing in edu.jas.root

– factory contains isolating rectangle

– roots work only for a single extension, no towers

– since real or imaginary parts cannot be extracted

– need bi-variate representation

K  = K [x ]/ f  , with f =0, ∈ℂ , char K =0

I=[lr , rr ]×[l i , r i ] ⊂ ℂ isolating rectangle for :

∈I for exactly one complex root  of f



Complex root computation (1)

● using Sturm sequences, and a method derived from 
Wilf's numeric Routh-Hurwitz method

– faster algorithms are future work

● classes ComplexRootsAbstract ComplexRootsSturm

● can construct polynomials over such fields
– GenPolynomial<ComplexAlgebraicNumber<BigRational>>

● cannot continue with complex roots for such 
polynomials

– ComplexRootsSturm<ComplexAlgebraicNumber<.>>



Complex root computation (2)

● alternative : represent as tuples of real roots of 
the ideal generated by the equations for the real 
and imaginary part

● repr. as extension of two real algebraic numbers
● one implementation for any complex field tower

zabi in f z=f a ,b=f r a ,bf ia ,b i
∈L=L' i , with f =0

=i , with f r  ,=f i  ,=0

L'=K  , ,  ,∈ℝ , Ideal  f r , f i={g x  ,hx , y }

L'=K  , ∈ℝ , poly∈K [ y ]



Complex algebraic numbers (2)

● new classes RealAlgebraicNumber and 
RealAlgebraicRing in edu.jas.application 

– use as  Complex<RealAlgebraicNumber<.>>

● bi-variate ideal with real root tuples as input, from 
ideal real roots computation

–  Ideal.zeroDimRootDecomposition()

–  PolyUtilApp. realAlgebraicRoots()

● can construct polynomials over such fields
– GenPolynomial<Complex<RealAlgebraicNumber<.>>>

● one level instantiation is also possible
– ComplexRootsSturm<RealAlgebraicNumber<.>>



Example

L=ℚ=ℚ
32=ℚ , , i , I=[−1,−1/2]×[1,2]

 =  i with 
3
1 /4=0 and 

2
−32=0

≈−0.62996051.0911236 i

f t  = f t , = t3−2 ∈ ℚ[t ] , f =0,
f t , , , i=t322−2 i

1≈ 0.8936130− 0.7498304 i ,
2≈−1.0961787− 0.3989764 i ,
3≈ 0.2025656 1.1488068 i

3=  i=256 /27
7
−112 /274356 /272 i

−10368
9
38886−1555223−81 = 0
27192733624267 = 0

163 sec, AMD at 3 GHz, IcedTea6 JVM



Root factory

● link between the computation and the structures
● roots of polynomials represented as

– list of real algebraic numbers

– list of complex algebraic numbers

– rings accessible via factory() method

● versions for fields (irreducible generator) or non 
fields (squarefree generator only)

● version for polynomial with complex coefficients 



Algebraic structures in 
scripting interpreters

● Use general purpose scripting language as 
DSL for computer algebra

● Algebraic expressions are written in the host 
language ≠ strings

● No need to parse (in Java)
● Type-safe (partly at run-time)
● for details see Jolly & Kredel 2008, 2009

¿



Jython

Q = PolyRing(QQ(),"w2",PolyRing.lex); [e,w2] = Q.gens();
Q2 = AN(w2**2 – 2,field=True);
Qp = PolyRing(Q2,"x",PolyRing.lex);
Qr = RF(Qp);
Qwx = PolyRing(Qr,"wx",PolyRing.lex);
[ewx,wwx,ax,wx] = Qwx.gens();
Q2x = AN(wx**2 – ax,field=True);
Yr = PolyRing(Q2x,"y",PolyRing.lex)
[e,w2,x,wx,y] = Yr.gens();

f = ( y**2 - x ) * ( y**2 - 2 ); 
// = y**4 - ( x + 2 ) * y**2 + 2 * x
factor(f) : 
// ( y - wx ) * ( y - w2 ) * ( y + wx ) * ( y + w2 )

EF(QQ()).extend("w2","w2^2 – 2")
    .extend("x").extend("wx","wx^2 - x").build().

9.5 seconds, 5.7 seconds after JIT warm-up, AMD 3 GHz, IcedTea6 JVM



Jython : target design

p = PolyRing(QQ, ["w2"]) ; [w2] = p.gens()
q = RF(PolyRing(AN(w2**2 – 2), ["x"])) ; [x] = q.gens()
r = PolyRing(q, ["wx"]) ; [wx] = r.gens()
s = PolyRing(AN(wx**2 – x), ["y"]) ; [y] = s.gens()

factor(( y**2 - x ) * ( y**2 - 2 ))
# ( y - wx ) * ( y - w2 ) * ( y + wx ) * ( y + w2 )

● Problem : each definition of ring/extension field 
factory must redefine all generators in the 
factory tower

● Need a mechanism to « lift » values to the 
correct level in the ring/field tower

● Not yet fully implemented
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Generic types and subclasses

class AlgebraicNumber<C extends GcdRingElem<C>> 
implements GcdRingElem<AlgebraicNumber<C>>

class RealAlgebraicNumber<C extends GcdRingElem<C>> 
extends AlgebraicNumber<C> implements 
GcdRingElem<RealAlgebraicNumber<C>>

● Why subclassing ?
– Allows to reuse code of algorithms

● Problem :

not possible because of type-erasure



Generic types and subclasses : 
delegation

● Delegation : object features are not inherited 
but available through associated object 
(delegate)

● Avoids the above type-erasure problem
● Can not use algorithms written specifically for 
AlgebraicNumbers with RealAlgebraicNumbers

class RealAlgebraicNumber<C extends GcdRingElem<C>>  
implements GcdRingElem<RealAlgebraicNumber<C>> {

public final AlgebraicNumber<C> number;
}



Third solution
● use neither delegation nor subclassing
● inherit from a common, abstract superclass



Dependent types

● Goal : forbid operations between kinds different 
only with respect to some parameter

– Integer : Mod(7)

– Array of String : Polynomial(BigInt, ["x"])

– Polynomial : AlgebraicNumber( w**2 - 2 )

● Need for a dependent type
● Scala has such a concept
● Work in progress



Dependent types in Scala

val r = Mod(7)
r(4)+r(4) // 1
val s = Mod(2)
r(4)+s(1) // problem : this works

object r extends Mod(7)
r(4)+r(4) // 1
object s extends Mod(2)
r(4)+s(1) // type mismatch, as expected

→ with "val", r and s are of the same type (class)

→ with "object", each value has its own type 
(singleton)



Dependent types : polynomials

implicit object r extends Mod(7)
implicit object p extends Polynomial(r, Array("x")) ; val 
Array(x) = p.generators
implicit object q extends Polynomial(p, Array("y")) ; val 
Array(y) = q.generators
// and so on

class Polynomial[C <: Ring, P](val ring: C,
                               val variables: Array[String],
                               val ordering: Comparator[P]) {
  type E // the type of the elements of the ring
  ...
}

● Can use implicit conversion to lift values to 
correct level



Conclusions (1)

● extensions are designed and implemented so 
that they can be coefficient rings of polynomial 
rings and relevant properties are preserved

● obtain pluggable algebraic objects by well 
defined interface for ring elements

● precise and explicit construction of extensions
● one generic implementation for a real root 

computation algorithm for any real extension 
field tower

● one generic implementation for a complex root 
computation algorithm



Conclusions (2)

● scripting languages can be used to write (run-
time) type-safe algebraic expressions

● tedious work can be reduced with Scala
● dependend types can be designed in Scala
● engineering and usage of algorithm libraries 

benefits from type safety
● provides a Java CAS library under GPL or LGPL 
● future work 

– study Scala possibilities

– implement some faster algorithms



Thank you for your attention

Questions ?

Comments ?

http://jscl-meditor.sourceforge.net/

http://krum.rz.uni-mannheim.de/jas/
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