
MASModula{2 Algebra SystemInteractive UsageComputer Algebra GroupUniversity of PassauMAS Version 1.01

1Document revision October 13, 1996

AbstractMAS is an experimental computer algebra system combining imperative programmingfacilities with algebraic speci�cation capabilities for design and study of algebraic algo-rithms. MAS contains a large library of implemented Gr�obner base algorithms for nearlyall algebraic structures where such methods exist. This document describes the interac-tive usage of MAS, the MAS language, the speci�cation component, basic arithmetic andpolynomial system libraries.

CopyrightsThe MAS system was developed using several public domain programs. So permission isgranted for unrestricted use of MAS as long as the copyrights are preserved. The copyrightsare: MAS: c1989 { 1996, by H. Kredel, University Mannheim,M. Pesch, University Passau.ALDES / SAC{2: c1982, by G. E. Collins and R. Loos.However remember: We make no warranty and disclaim any usefulness. Use this programat your own risk.

PrefaceMAS (Modula{2 Algebra System) is an experimental computer algebra system combiningimperative programming facilities with algebraic speci�cation capabilities for design andstudy of algebraic algorithms. MAS contains a large library of implemented Gr�obner basealgorithms for nearly all algebraic structures where such methods exist, together withmany applications which make use of these algorithms. The interactive part of MAS viewsmathematics in the sense of universal algebra and model theory and is in some partsinuenced by category theory.MAS combines Modula{2 program development, a LISP interpreter with a Modula{2like language and an algebraic speci�cation component. MAS can be used interactively,but includes access to to the comprehensive ALDES/SAC{2 and DIP algebraic algorithmlibraries. MAS can also be used as ordinary Modula{2 program library. Despite of itsdesign it can directly access numerical Modula{2 libraries.The current implementations (version 1.0) run on IBM RS6000 / AIX, IBM{AT 386/ DOS(or compatible), IBM{AT 386/ OS2 2.x, 3.x (or compatible) and further workstationswith unix tools and C compiler. The previous implementations (version 0.7 and 0.6) wererunning on IBM RS6000 / AIX, IBM{PC, IBM{AT / MS{DOS (or compatible), Atari1040ST / GEM{TOS and on Commodore Amiga / Amiga{DOS. It is mostly written inthe programming language Modula-2.Major mathematical library changes of the current version 1.0 are:� added a package for counting real roots based on Hermites method by F. Lippold,� added a package on permutation invariant polynomials by M. G�obel,� added an optimized Gr�obner base package (including the \sugar"-method) byC. Rose,� added a package to compute factorized Gr�obner bases by J. Pfeil,� added a logic formula representation with simpli�cation package and real quanti�erelimination package by A. Dolzmann,� a package for involutive bases by R. Grosse-Gehling,� Improved comprehensive Gr�obner Base algorithms using factorization, conditionevaluation and case elimination by M. Pesch,� arbitrary domain polynomial system extended to a generic Gr�obner base package.1

2Major system changes of the current version 1.0 are:� MAS language accepts small letter key words and braces {} to denote list expressions.� Improved error handling and user signal processing to examine long running compu-tations.� GNU readline for easier command line editing.� Using Kpathsearch Library from K. Berry.� Improved batch processing capabilities.� Distribution now uses GNU autocon�g for easy compilation.� Generic garbage collection support for most architectures.Major mathematical library changes between version 0.7 and version 0.6 were:� arbitrary domain polynomial system implemented,� added comprehensive Gr�obner base package by E. Sch�onfeld,� added several new basic arithmetic packages: complex numbers, quaternion numbers,octonion numbers, �nite �elds,� added package for computation in non-commutative polynomial rings of solvabletype: �-product, left Gr�obner base, two-sided Gr�obner base, elements in the center,� added a package for the computation of generators for the module of syzygies ofsystems of homogeneous polynomial equations and Gr�obner bases for modules overpolynomial rings (also available for solvable polynomial rings) by J. Phillip.� added universal Gr�obner base package by T. Belkahia.� added d-Gr�obner base and e-Gr�obner base packages for Gr�obner bases over the in-tegers and univariate rational polynomial rings by W. Mark.Major system changes between the version 0.6 and 0.7 were:� Distribution based on Modula-2 to C translator and a C distribution which will workon 'most' workstations.� New support for PC 386 and higher (OS2 2.0 and higher) with emx dll runtimelibraries.� New support for PC 386 and higher (DOS 5.0) with emx DOS extender (10 timesfaster).� Dropped support for the Atari, Amiga and PC XT up to 286 versions. That means,that we do no more distribute executables for these systems, but if you have themaskern(el) you can get the new source code (except maskern) and compile it onyour system.

3� The HELP and help command has been changed to provide name ranges and moreinformation from the procedure comments.Major system changes between the version 0.3 and 0.6 were:� added language extensions for speci�cation capabilities,� added a parser for the ALDES language and possibility for interpretation of ALDESprograms,� added an interface between the MAS language and the distributive polynomial sys-tem,� improved symbol handling by hash tables combined with balanced trees,� EMS support for IBM PC implementations,� C code version of the Modula-2 programms, generated be the Modula-2 to C trans-lator from the GMD.OrganizationThis document is a description of the front{end part of the system: the interpreter. Itis intended as a manual for the MAS interactive part. The syntax of the MAS languagetogether with informal semantics and examples is discussed. Further basic arithmetic andpolynomial system data structures and libraries are discussed. A document for implemen-tors is already available under the title `MAS Library description'. The de�nition modulesand indexes are contained in a separate document `MAS Speci�cation, De�nition Modules,Indexes'.Some discussions are currently rather short but will be improved in later revisions of thedocument. The �rst chapters (up to chapter 7) are already self contained and can serveas a tutorial introduction into MAS and the algorithm libraries and data structures. Thelater chapters are complete, but very condensed. So you may need some knowledge ofLISP, the ALDES / SAC{2 computer algebra system and Modula-2 in the more advancedchapters.The organization of this document is as follows:Chapter 1 gives a short introduction of MAS and shows how to use MAS for the �rst time.Chapter 2 gives an tutorial overview of MAS, and discusses several important aspects ofMAS, such as arithmetic, help facilities, speci�cations and function overloading, talkingLISP and handling errors.Chapter 3 describes the MAS language and chapter 4 describes the MAS speci�cationcomponent.Chapter 5 gives an introduction into list processing and algorithm complexity.In chapter 6 the basic arithmetic algorithms and in chapter 7 the polynomial systems aredescribed.Chapter 8 contains description of the available packages like Gr�obner bases, ideal dimen-sion, primary ideal decomposition, real roots of zero dimensional ideals, real root counting,real quanti�er elimination, polynomial invariants, involutive bases and more.

4In Chapter 9 the parser for the ALDES language and the syntax of the ALDES languageare presented.Chapter 10 summarizes system commands: display commands, pragmas, LISP commandsand command line parameters.Chapter 11 gives some information on the system components, on the internal structure, onimplementation issues and on the con�guration of MAS. It also provides some backgroundinformation on the underlying LISP.The appendices contain notes on the distribution and the current release of MAS and anindex of this document.AcknowledgmentsMany thanks to all who made contributions or inuenced this project: R. Loos, G. E.Collins and co{workers for the ALDES / SAC{2 system; I. Giese, W. Kynast and H.Czytrek for discussions in the early stages of the MAS project; M. Pesch, B. Haible, V.Weispfenning and T. Becker for feedback during the later stages of the development ofMAS. In the current version also contributions from students are incorporated:� a package on permutation invariant polynomials by M. G�obel,� a package for counting real roots by F. Lippold,� a \sugar"-optimized Gr�obner base package by C. Rose,� a Gr�obner factorizer package by J. Pfeil,� a logic package and extensions to the interpreter by A. Dolzmann,� a real quanti�er elimination package by A. Dolzmann,� a package for involutive bases by R. Grosse-Gehling,� a non-noetherian ring package by I. Bader,� a comprehensive Gr�obner base package by E. Sch�onfeld,� a syzygy package by J. Phillip,� a linear algebra library by J. M�uller,� an universal Gr�obner base package by T. Belkahia,� an d- and e-Gr�obner base package by W. Mark,� port to IBM PC, M2SDS by B. Deyle,� port to IBM PC, Topspeed Modula{2 by H. Freibel,� port to Atari ST, SPC by E. Reisinger,� port to Amiga, M2Amiga by M. Rothmeier,� a hash table symbol handling by T. Wollersberger,

5� and an ALDES parser by K. Rieger.If you �nd a bug in MAS, please let us know (email to mas@alice.fmi.uni-passau.de).Also any suggestions will be welcome. Most of the MAS system is available viaanonymous ftp from internet node alice.fmi.uni-passau.de or on world wide webhttp://alice.fmi.uni-passau.de/mas.html.Passau, October 13, 1996. H. Kredel1, M. Pesch2

1University of Mannheim, L 15, 16, D-68131 Mannheim, FRG, Tel: (49,0) 621/ 292 5673, E-mail:kredel @ rz.uni-mannheim.de2University of Passau, Innstra�e 33, D-94030 Passau, FRG, Tel: (49,0) 851/ 509-3123, E-mail: pesch@ alice.fmi.uni-passau.de

Contents
1 Introduction 151.1 Getting Started . 152 Elementary Concepts 182.1 Edit{run{debug Cycle . 192.2 Elementary Arithmetic . 202.3 Speci�cation Component . 222.3.1 Example . 222.4 Getting Help . 232.4.1 HELP and help Command . 232.4.2 System Browser . 252.4.3 Signatures . 262.5 Handling Errors . 272.6 Talking LISP . 283 The MAS Language 303.1 Lexical Conventions . 303.1.1 Character Set . 303.1.2 Tokens . 313.1.3 Numbers . 313.1.4 Identi�ers . 323.1.5 Strings . 333.1.6 Comments . 333.1.7 Blanks . 333.2 Syntax . 333.2.1 Syntax Diagram . 343.2.2 Expressions . 343.2.3 Conditions . 373.3 Statements . 386

CONTENTS 73.3.1 Assignment . 383.3.2 Procedure Call . 393.3.3 Statement Sequence . 423.3.4 BEGIN{END Statement . 433.3.5 IF Statement . 433.3.6 WHILE Statement . 443.3.7 REPEAT Statement . 443.4 Declarations . 443.4.1 VAR Declaration . 453.4.2 PROCEDURE Declaration . 453.5 Input and Output . 483.5.1 Stream Summary . 503.5.2 Operating System . 504 Speci�cation Component 514.1 Overview . 514.2 Syntax . 524.2.1 Syntax Diagram . 524.3 Unit Declarations . 524.4 Speci�cations . 544.4.1 SORT Declaration . 544.4.2 IMPORT Declaration . 544.4.3 SIGNATURE Declaration . 554.4.4 Example Speci�cation . 554.5 Implementations . 574.5.1 SORT Declaration . 574.5.2 IMPORT Declaration . 574.5.3 VAR Declaration . 574.5.4 PROCEDURE Declaration . 584.5.5 Example Implementation . 584.6 Models . 594.6.1 SORT Declaration . 594.6.2 IMPORT Declaration . 594.6.3 MAP Declaration . 604.6.4 Example Model . 604.7 Axioms . 614.7.1 SORT Declaration . 614.7.2 IMPORT Declaration . 614.7.3 RULE Declaration . 61

8 CONTENTS4.7.4 Example Axioms . 624.8 EXPOSE Statement . 634.9 Operator Overloading . 634.10 Expression Evaluation . 635 List Processing 655.1 List Construction . 655.2 List Destruction . 665.3 List Diagrams . 665.4 Exercises . 685.5 Strings . 695.6 Exercises . 695.7 Complexity . 715.8 Algorithms . 726 Basic Arithmetic 746.1 Integer Arithmetic . 756.1.1 Algorithms . 756.1.2 Exercises . 806.2 Rational Number Arithmetic . 846.2.1 Algorithms . 856.2.2 Exercises . 896.3 Arbitrary Precision Floating Point Arithmetic 916.3.1 Algorithms . 916.3.2 Exercises . 957 Polynomial Systems 987.1 Coe�cient Rings . 997.2 Recursive Polynomial System . 1007.2.1 Algorithms . 1017.2.2 Exercises . 1057.3 Dense Polynomial System . 1057.4 Distributive Polynomial System . 1077.4.1 Term Orders . 1087.4.2 Description of term orders by linear forms 1107.4.3 Algorithms . 1127.4.4 Exercises . 1177.5 Interface to the MAS language . 1207.6 Optimization of the Term Order . 1247.7 Non-commutative Solvable Polynomial System 126

CONTENTS 97.7.1 Algorithms . 1267.8 Arbitrary domain system . 1297.8.1 Algorithms . 1297.8.2 Available Domains . 1337.8.3 Integral Numbers . 1347.8.4 Rational Numbers . 1357.8.5 Modular Integers and Digits . 1377.8.6 Arbitrary precision oating point numbers 1387.8.7 Integral Polynomials . 1407.8.8 Rational Polynomials . 1417.8.9 Rational Functions . 1427.8.10 Algebraic Numbers . 1437.8.11 Gr�obner bases over various domains 1478 Packages 1518.1 Gr�obner Bases . 1518.1.1 Algorithms and Examples . 1538.2 Ideal dimension . 1548.2.1 Algorithms and Examples . 1558.3 Zero-dimension ideal decomposition . 1578.3.1 Algorithms and Examples . 1588.4 Zero-dimension ideal real roots . 1648.4.1 Algorithms and Examples . 1668.5 Comprehensive Gr�obner bases . 1718.5.1 The new implementation and interface 1728.5.2 Features . 1738.5.3 Functions available through the interpreter 1748.5.4 User selectable Options . 1748.5.5 Case Distinction and Polynomial Set 1758.5.6 Gr�obner Systems . 1768.5.7 Comprehensive Gr�obner Bases . 1778.5.8 Quanti�er Elimination . 1778.5.9 Writing the actual state of computation 1778.5.10 A Sample Session . 1788.6 Non-commutative Gr�obner bases and centers 1838.6.1 Relation Tables . 1848.6.2 Left and Two-sided Gr�obner Bases 1858.6.3 Center of solvable polynomial rings 1898.7 Linear Equations and Modules over Polynomial rings 195

10 CONTENTS8.7.1 Linear Equations and Syzygies . 1958.7.2 Gradings and Partial Gr�obner Bases 1998.7.3 Modules over Polynomial Rings . 2008.7.4 Algorithms and Examples . 2018.8 Universal Gr�obner Bases . 2078.8.1 Example . 2088.9 Polynomial rings over Euclidean domains 2118.9.1 Examples . 2118.10 Buchberger algorithm with sugar strategy 2158.10.1 DIPAGB procedures in the interpreter 2168.10.2 Examples . 2188.11 Buchberger algorithm with polynomial factorization 2228.11.1 Optionen . 2228.11.2 Benutzung der Prozeduren im MAS-Interpreter 2248.11.3 Beispiel . 2268.12 Polynomial Invariants Package . 2298.12.1 Permutation Invariant Polynomials 2308.12.2 The Integer Case (Module GSYMFUIN) 2308.12.3 The Rational Case (Module GSYMFURN) 2318.12.4 Noether's Theorem (Module NOETHER) 2318.12.5 Substitution Invariant Polynomials (Module SUBST) 2318.12.6 Examples . 2328.13 Real root counting for multivariate polynomials 2378.13.1 Examples . 2388.14 Real quanti�er elimination . 2398.14.1 The Syntax of Formulas . 2408.14.2 Examples . 2448.15 Construction of involutive bases . 2468.15.1 Computing Janet-irreducible-sets . 2478.15.2 Computing a Janet-normalform of f modulo G 2478.15.3 Computing involutive Bases . 2488.15.4 Setting options . 2488.15.5 Example . 2498.16 Other Packages . 2518.16.1 Greatest common divisors and resultants 2518.16.2 Polynomial factorization . 2518.16.3 Polynomial real root isolation . 2518.16.4 Symmetric functions . 2518.16.5 Linear algebra . 251

CONTENTS 118.16.6 Linear diophantine equations . 2518.16.7 Non-Noetherian polynomial rings . 2529 The ALDES Language 2539.1 Lexical Conventions . 2539.1.1 Character Set . 2539.1.2 Tokens . 2539.1.3 Numbers . 2549.1.4 Identi�ers . 2549.1.5 Strings . 2549.1.6 Comments . 2559.1.7 Blanks . 2559.2 Syntax . 2559.2.1 Syntax Diagram . 2559.3 Example . 25810 System Commands 26010.1 Information Display . 26010.2 Pragmas . 26110.3 Operating System . 26210.4 Input / Output . 26310.5 Command Line Parameters . 26310.6 The LISP Interpreter . 26410.6.1 Functions and Variables . 26410.6.2 What is Not Contained . 26511 Internal Structure of MAS 26611.1 System Components . 26611.2 Module Layout of MAS . 26811.2.1 Program Dependencies . 26911.3 Implementation Issues of the LISP Interpreter 26911.3.1 LISP to Modula{2 Interface . 27011.3.2 Con�guration Management . 27111.4 Libraries . 27211.4.1 Kernel . 27311.4.2 Interpreter, LISP, Main Program . 27311.4.3 Basic arithmetic . 27411.4.4 Polynomial arithmetic . 27511.4.5 Ring theory, algebraic geometry . 27511.4.6 Non-commutative Polynomials . 276

12 CONTENTS11.4.7 Arbitrary domain Polynomials . 27611.4.8 Module Arithmetic . 27711.4.9 Involutive Bases . 27711.4.10Real root counting . 27811.4.11Logic formulas and quanti�er elimination 278A Distribution 279A.1 Distribution �les . 279A.2 Installation . 280A.2.1 Unpack . 280A.2.2 Test . 281A.3 Start { Stop . 281A.3.1 Path and Compile . 281A.3.2 Notes . 282A.4 Release and Change Notes . 282A.5 Copyrights . 284Bibliography 284Index 293

List of Tables3.1 Constants and Ranges . 323.2 Transliteration Scheme . 323.3 MAS Syntax Diagram . 353.4 Syntax Error Messages . 363.5 Syntax Warning Messages . 364.1 Speci�cation Syntax Diagram . 537.1 Computing times for di�erent term orderings 1258.1 Overview of primary ideal docomposition 1598.2 Overview of real root computation . 1668.3 Computing Time Summary: Real Roots . 1718.4 Computing example input . 1878.5 Computing example left irreducible set . 1888.6 Computing example left Gr�obner base . 1888.7 Computing example two-sided Gr�obner base 1888.8 Computing Time Summary: Gr�obner Bases 1898.9 Lie Algebra: A3;2 . 1918.10 Lie Algebra: A3;4 . 1928.11 Lie Algebra: A3;9 . 1928.12 Lie Algebra: A4;1 . 1938.13 Lie Algebra: A6;1 . 1938.14 Computing Time Summary: Center . 1948.15 Ergebnisse zu F1, Zeiten in ms . 2278.16 Syntax of Formulas . 2418.17 Syntax of Polynomials . 2429.1 ALDES Syntax Diagram . 2569.2 ALDES Syntax Error Messages . 2579.3 ALDES Syntax Warning Messages . 25713

14 LIST OF TABLES10.1 Generic Operators and Functions . 26211.1 System Components . 26711.2 Module Structure . 268

Chapter 1IntroductionMAS is a computer algebra system in contrast to symbol manipulation systems. TheMAS data objects are not considered as symbolic expressions, but they are consideredto be elements of algebraic structures. So working with MAS usually requires that youhave to decide in which algebraic structure you want to compute. Data objects can thenbe converted from their external representation (character sequences) to their internalrepresentation (lists over numbers). These internal objects can then be used as inputs toprograms which are implementations of algebraic functions.In contrast, other symbol manipulation programs such as Derive [Rich et al. 1988], Re-duce [Hearn 1987], Maple [Geddes et al. 1986], Mathematica [Wolfram 1988], or Macsyma[Pavelle, Wang 1985] view their input as untyped expressions built from numbers, sym-bols, operators and functions. The user has then a wide variety of tools to manipulateexpressions (like expanding expressions, collecting or extracting subexpressions or apply-ing substitutions or rewrite rules to the expressions). The interpreter of the ScratchpadII [Jenks et al. 1984, Jenks et al. 1985] computer algebra system is further equipped withan algebraic `knowledge' and tries to determine the algebraic domain to which the inputexpression belongs.In MAS algebraic objects are constants for the interpreter and can only be modi�ed usingappropriate methods from the respective algebraic structures. The mathematical knowl-edge of MAS is only contained in the algorithm libraries (either Modula{2 programs orspeci�cation de�nitions).1.1 Getting StartedIn this section we give a �rst look on the usage of the MAS system.To start the program, select the directory containing the MAS program and data �les.start: mas or mas.exebanner: MAS Version r.xusystem prompt: MAS:system answer: ANS:leave with: EXIT. 15

16 CHAPTER 1. INTRODUCTIONWhen MAS is started, it �rst initializes all available storage for list processing. Then itreads the data set `mas.ini' from the current directory. It next issues the following prompt:MAS:Now MAS is waiting for a program to be typed in. The program has to be in a Modula{2like syntax (see below). The parser reads the parts of the program: declarations andstatements. A simple assignment like a:=1. su�ces as program. From this program theparser generates a LISP S{expression which is then fed into the evaluator. The result isdisplayed afterANS:Then the read-eval-print loop is repeated.Example 1:MAS: a:=2*3. (* this is a one statement program *)ANS: 6.By this one statement program 2*3 is evaluated and the result 6 is bound to the symbol(or variable) `a'. Comments are enclosed in (* and *).The next example shows the usage of the WHILE statement.Example 2:MAS: d:=0. i:=0. (* two one statement programs *)ANS: 0ANS: 0MAS: WHILE i < 17 DOi:=i+1; d:=d+i*iEND.ANS: 1785First the symbol `d' is bound to 0 and also the symbol `i' is bound to 0. Then comesa WHILE{loop in Modula{2 style. In its body the squares of `i' are computed andsummed to `d'. Observe that statements have values as in LISP. However constructionslike d:=IF cond THEN ... END are syntactically invalid in the MAS language.It is possible to access compiled functions and procedures. However you must use thecorresponding write procedures to display the object not as list.Example 3:MAS: p:=APPI().ANS: (2 (221327762 71487876 210828714))MAS: APWRIT(p).0.314159265358979323846E1ANS: ()In this example APPI denotes a function from the arbitrary precision oating point librarywhich returns the value of � in the actual precision (initially 20 decimal digits). The

1.1. GETTING STARTED 17computed value is in internal lisp representation and to display the value in readable formthe procedure APWRIT must be called.To �nd out which compiled procedures are accessible there is a `help' command. With`help(all).' you get a list of all available functions together with their signature. Duringthe display screen scrolling can be stopped by pressing any key (in particular <CNTRL>-S will work), output can be resumed by again pressing any key (e.g. <CNTRL>-Q). Ifmore help support is loaded then with `help(name).' you get the procedure comments ofall functions which have a name starting with `name'.If the speci�cation support is loaded it is possible to declare variables and to use genericassignments. If further generic parse is enabled (with PRAGMA(GENPARSE)) then also genericexpressions are possible.Example 4:MAS: VAR f: FLOAT. (* declare FLOAT variable *)ANS: FLOAT.MAS: f:="1.0E99".ANS: "0.100000000000000000000E100"MAS: f:= "2.0": FLOAT * f - f.ANS: "0.100000000000000000000E100"In this example MAS uses the type information of the variable `f' to determine the correctconversion function from the string "1.0E99" to the internal representation of oatingpoint numbers. During the evaluation the data object is tagged, so that the outputroutine can call the correct printing function. If PRAGMA(GENPARSE) was executed, thenthe arithmetical operators (like * and - in line 5) are associated with generic functions (inthis case with PROD and DIF). The constant 2.0 from the FLOAT structure can be enteredin the form "2.0": FLOAT. The generic operations can also be used within algorithms.In this section we have seen that control statements can be entered directly from thekeyboard, that compiled functions can be accessed and that variable declarationsand generic expressions are available in MAS.

Chapter 2Elementary ConceptsIn this section we will discuss some of the key features and concepts of MAS.Starting point for the development of MAS was the requirement for a computer algebrasystem with an up to date language and design which makes the existing ALDES / SAC{2algorithm libraries available. At this time there have been about 650 algorithms in ALDES/ SAC{2 and in addition I had 450 algorithms developed on top of ALDES / SAC{2.The tension of reusing existing software in an interactive environment with speci�cationcapabilities contributes most to the evolution of MAS.The resulting view of the software has many similarities with the model theoretic view ofalgebra. The abstract speci�cation capabilities are realized in a way that an interpretationin an example structure (a model) can be denoted. This means that it is not only possibleto compute in term models modulo some congruence relation, but it is moreover possibleto exploit an fast interpretation in some optimized (or just existing) piece of software.The main design concepts are: MAS replaces the ALDES language [Loos 1976] and theFORTRAN implementation system of SAC-2 by the Modula-2 language [Wirth 1985a].Modula-2 is well suited for the development of large program libraries; the language ispowerful enough to implement all parts of a computer algebra system and the Modula{2compilers have easy to use program development environments.To provide an interactive calculation system a LISP interpreter is implemented in Modula{2 with full access to the library modules. LISP was chosen because it seemed to be mostexible and well understood to provide a basis for an interactive system and experimentingwith generic functions. Using Modula{2 procedure types, the compiled procedures aremade accessible from the LISP interpreter. To add a new compiled procedure one hasto compile an interface module coded in Modula{2 with the appropriate import lists anddeclaration procedures and then one re{links the MAS main program. This guaranteesmaximum e�ciency of the developed algorithms.As mentioned above, the mathematical knowledge of MAS is only contained in the Modula{2 algorithm libraries. Thus the Modula{2 compiler with its linker serves as a knowledgeacquisition system without requiring any further e�ort to setup knowledge{based computeralgebra systems as suggested by[Calmet, Lugiez 1987].For better usability a Modula-2 like imperative (interaction) language was de�ned, includ-ing a type system and function overloading capabilities. The MAS parser generates LISP18

2.1. EDIT{RUN{DEBUG CYCLE 19S{expressions, which are then evaluated by the LISP interpreter.To increase expressiveness high{level speci�cation language constructs have been includedtogether with conditional term rewriting capabilities. They resemble facilities known fromalgebraic speci�cation languages like ASL [Wirsing 1986].The MAS language and its interpreter has no knowledge of mathematics and mathematicalobjects; however it is capable to describe (specify) and implement mathematical objectsand to use libraries of implemented mathematical methods. Further the imperative pro-gramming, the conditional rewriting and function overloading concepts are separated in aclean way.The type declaration concept equips the interpreter with the knowledge that some variablesand objects have types. Applying generic functions to these typed variables or objectscauses the interpreter to look for an executable function, which can work with the speci�cobject types.The system design also assures high portability of the software. All storage and in-put/output management is handled by only two library modules MASSTOR and MAS-BIOS. They have been �rst implemented for an Atari 1040 computer running TOS andGEM and are also running on other computers.In the following sections we explain how to make e�cient use of MAS: editing �les, reading�les, browsing de�nition modules. Further some basic arithmetic functions are explainedand the error handling of MAS is discussed.2.1 Edit{run{debug CycleIn general you will not type every statement directly to the MAS terminal. It is muchmore convenient to use your favourable editor to prepare a sequence of statements forMAS. Then you can feed this data set into MAS, save some output and determine yournext action.Although editors are computer and operating system dependent, any implementation ofMAS should provide some similar statements as discussed now for the Atari implementa-tion.On the Atari there are two ways to call an editor: EDIT("data-set-name") or via theoperating system DOS("editor-name data-set-name"). After return from the editor thedata set can be read in with IN("data-set-name"). Output can be saved in a �le withOUT("data-set-name") and then the �le can be closed using SHUT("data-set-name").To speedup this cycle and minimize typing you can use the following two proceduresVAR what: STRING.PROCEDURE doit;BEGIN what:="data set name";EDIT(what) END doit.PROCEDURE run;IN(what) run.

20 CHAPTER 2. ELEMENTARY CONCEPTSSo typing doit. will call the editor and after return typing run. will execute the �le. Youcan also place several procedures like `doit' in the startup �le `MAS.INI', so that they areready to be used. run will then always execute the last edited �le.The editor can also be used to browse the appropriate de�nition modules during editing.If the editor is programmable (like microEMACS) further improvements of this procedureare possible and are described in the section on `getting help'.2.2 Elementary ArithmeticAs mentioned above, the interpreter only knows about atoms and lists, that means thearithmetic operators `+, �, �, =' and relations `<, =, <=, >, >=' are only valid withatoms as arguments. But this is not checked, and may lead to unpredictable results, soyou are self responsible to supply the correct arguments to the compiled subroutines.In the next example we will discuss the computation of n factorial for di�erent values ofn. If you know that you need factorial(n) only for small values of n, such that factorial(n)< beta = 229, that is for n <= 12 you may write:MAS: PROCEDURE fac(n);VAR d, i: ANY;BEGIN d:=1; i:=n;WHILE i > 1 DOd:=d*i; i:=i-1END;RETURN(d)END fac;fac(6).ANS: 720For bigger values of n you must use arbitrary precision integers as provided with theALDES/SAC-2 subroutine libraries. Here we use IPROD for multiplication (�) andIWRITE to display the result, otherwise the internal SAC-2 list representation of arbitraryprecision integers is displayed.MAS: PROCEDURE fac(n);VAR d, i: ANY;BEGIN d:=1; i:=n;WHILE i > 1 DOd:=IPROD(d,i); i:=i-1END;RETURN(d)END fac;j:=fac(50).ANS: (0 373030912 375187572 439570590 300896040154982421 452089979 2365)MAS: IWRITE(j).30414093201713378043612608166064768844377641568960512000000000000

2.2. ELEMENTARY ARITHMETIC 21Note that since i contains only small integers, the built-in operations can be used. Thecomputing time for `fac(50)' is 4 seconds on an Atari 1040 ST and 2 seconds are neededto print the result.Question: how are the arbitrary precision integers internally represented if you knowthat 229 is represented by the list (0; 1) and �229 by (0;�1).It is also possible to use recursion as with LISP or Modula{2:PROCEDURE fac(n);IF n <= 1 THEN RETURN(1)ELSE RETURN(IPROD(n,fac(n-1))) END fac.Now let's try a more di�cult example: compute 50 digits of e using arbitrary precisionrational numbers.The function `Exp' takes x and the desired precision eps as input parameter. It computesthe taylor series of the exponential function: Pi=1;::: xifac(i) . The summation runs untilxifac(i) < eps2 , that is the rest is smaller than the desired precision. Integers are convertedto rational numbers by the function `RNINT' or `RNRED'. `RNPROD', `RNSUM', `RN-ABS' and `RNCOMP' denote the product, sum, absolute value and comparison of rationalnumbers.dig:=50.Eps:=RNRED(1,IEXP(10,dig)).PROCEDURE Exp(x,eps);(*Exponential function. eps is thedesired precision. *)VAR s, xp, i, y, p: ANY;BEGIN(*1*) y:=RNINT(1); s:=RNINT(1); i:=0;p:=RNPROD(eps,RNRED(1,2));(*2*) REPEAT i:=i+1; xp:=RNRED(1,i);y:=RNPROD(y,x); y:=RNPROD(y,xp);s:=RNSUM(s,y)UNTIL RNCOMP(RNABS(y),p) <= 0;RETURN(s)(*9*) END Exp.The results of the computation can be displayed by the functions `RNDWR' and `RN-WRIT'. RNWRIT writes out a rational number as `nominator/denominator' and RNDWRwrites a rational number as decimal number with speci�ed number of digits after the dec-imal point.one:=RNINT(1).e:=Exp(one,Eps).BEGIN CLOUT("AbsErr = "); RNDWR(Eps,dig); BLINES(0) END.BEGIN CLOUT("Result = "); RNDWR(e,dig); BLINES(0) END.BEGIN CLOUT("Result = "); RNWRIT(e); BLINES(0) END.

22 CHAPTER 2. ELEMENTARY CONCEPTSThe following output is produced:{0 sec} ANS: (1 1){20 sec} ANS: ((119769761 450433631 444044040 360650700406458113 17125896) (0338539520 159342123356614372 176392732 6300265))AbsErr = 0.0001Result = 2.71828182845904523536028747135266249775724709369996-Result = 763840519752288597376564549384146889815927382313633/281001223550575979708628521248902313987276800000000The computing time for `Exp(1)' is 20 seconds on an Atari 1040 ST and 4 seconds areneeded to print the result with `RNDWR'.2.3 Speci�cation ComponentAs already mentioned MAS views mathematics in the sense of universal algebra and modeltheory and is in some parts inuenced by category theory. In contrast to other computeralgebra systems (like Scratchpad II [Jenks et al. 1985]), the MAS concept provides a cleanseparation of computer science and mathematical concepts. The MAS language and itsinterpreter has no knowledge of mathematics and mathematical objects; however it is ca-pable to describe (specify) and implement mathematical objects and to use libraries ofimplemented mathematical methods. Further the imperative programming, the condi-tional rewriting and function overloading concepts are separated in a clean way. Theinformal semantics of the MAS language is also discussed in [Kredel 1991].MAS includes the capability to join speci�cations and to rename sorts and operationsduring import of speci�cations. This allows both the speci�cation of abstract objects(rings, �elds), concrete objects (integers, rational numbers) and concrete objects in termsof abstract objects (integers as a model of rings). Speci�cations can be parameterized inthe sense of � abstraction.The speci�cation language constructs are discussed in detail in chapter 4. In this overviewwe will just describe the advantages in the interactive usage which are gained when usingthe speci�cation component.2.3.1 ExampleWe will only discuss some features of the interactive use of the speci�cation componentby means of the following example:

2.4. GETTING HELP 23VAR r, s: RAT. ANS: RAT().r:="2222222222.777777777777777".ANS: "2222222222777777777777777/1000000000000000".s:=r/r. ANS: "1".s:=r^0 + s - "1": RAT. ANS: "1".The �rst line declares the variables r and s to be of type RAT, that is to be rationalnumbers.The second line is a so called generic assignment. Depending on the type of r the characterstring on the right hand side is read (or converted to internal form). Internally an objectwith type, value and descriptor information is created. This information is then used bythe generic write function WRITE(RAT) for displaying the result in the next line.The fourth line shows the computation of r/r. According to the type information of rthe corresponding generic function is determined. Then the interpretation of the genericfunction in the rational numbers is determined and executed.Finally the information on the output parameters is used to create a new typed object.This object is then bound to the variable s and �nally it is displayed.The last line shows the computation of the expression r^0 + s - "1": RAT. The term"1": RAT denotes a constant from the rational numbers, namely 1. The contents of thecharacter string are read by the generic function READ(RAT) and a new typed object iscreated. The expression r^0 is computed by an abstract function (namely EXP) of theabstract RING implementation.We have seen, that the usage of the speci�cation component is easy when the speci�cationlibraries are available. However a detailed explanation of the complete truth is somewhatcomplex and cannot be discussed here.2.4 Getting HelpOne problem in using MAS is that information is required on what functions are available.Further the speci�cations of the functions are often required. MAS provides several helpfacilities which are discussed in this section.There is a help command showing all accessible compiled functions, all interpreter functionsand all signatures, a EXTPROCS command showing accessible external compiled func-tions, an SIGS command showing de�ned signatures of functions, a VARS command whichdisplays de�ned variables, a TYPES command which displays de�ned types, a GENERICScommand listing all generic functions, a LISTENV command to display values of variables,and a system browse facility for Modula{2 de�nition modules.2.4.1 HELP and help CommandUse the HELP. or help. command to display the following listEnter 'help(name[,mod])' or 'help(start,end[,mod])' to get

24 CHAPTER 2. ELEMENTARY CONCEPTSmore help.'Name' means the first characters of a range of names,'start,end' means a range of names.'[,mod]' is optional and 'mod' can be'ModulName' = list module names of the procedures,'all' = list all loaded procedures,'Loaded' = list loaded procedures,'Comment' = list procedure comments (default).Use the `help(all).' command to display a list of all compiled functions accessible fromthe interpreter. The help command output is like the following:List of functions and procedures:PROCEDURE ADV(LIST; LIST,LIST)FUNCTION APFINT(LIST): LISTFUNCTION APFRN(LIST): LIST...PROCEDURE TIMEPROCEDURE TRACEFUNCTION TSGBASE(LIST,LIST,LIST): LIST0 signatures,10 interpreter procedures,340 compiled functions,83 compiled proceduresaccessible.From this list you can deduce the name of a function and its `arity', that is the number ofinput or output parameters. For example the procedure named `ADV' has one input andtwo output parameters, or the function `APFRN' has one input parameter.For the speci�cation of these functions you must refer to the respective ALDES / SAC{2or MAS documentation or to the corresponding Modula-2 de�nition modules. On somesystems (e.g. UNIX and OS2) you can also load more help support by typing `helpup.'.Then the command `help(DIRPGB).' will displayComments:PROCEDURE DIRPGB(P,TF: LIST): LIST;(*Distributive rational polynomials Groebner basis.P is a list of rational polynomials in distributiverepresentation in r variables. PP is the Groebner basis of P.t is the trace flag.*)Use the `help(DIRP,ModulName).' command to display a list of all Modula-2 de�nitionmodules, which contain a procedure with name starting with DIRP. The help commandoutput is like the following:

2.4. GETTING HELP 25Module Names:DIRPAB is in: DIPRN.md.DIRPDA is in: DIPDEC0.md.DIRPDF is in: DIPRN.md.DIRPDM is in: DIPRN.md.DIRPDR is in: DIPRN.md.DIRPEM is in: DIPRN.md.DIRPES is in: SYMMFU.md.DIRPEV is in: DIPRN.md....2.4.2 System BrowserFor better online help it would be nice if the Modula{2 program development systemhas some browser facilities as in the Smalltalk-80 system with its class hierarchy browser[Goldberg 1981].We have added macros and data sets for the microEMACS editor to mimic some systembrowsing facilities. Therefore if you use the microEMACS editor, you can browse a system�le containing a procedure to module cross reference. When pressing the function key`F3', an editor window is opened with the following contents:Procedure to module cross-reference:saci.def 10: AADV(L: LIST; VAR AL,LP: LIST);sacsym.def 18: ACOMP(A,B: LIST): LIST;sacsym.def 23: ACOMP1(A,B: LIST): LIST;masstor.def 44: ADV(L: LIST; VAR a, LP: LIST);saclist.def 10: ADV2(L: LIST; VAR AL,BL,LP: LIST);saclist.def 15: ADV3(L: LIST; VAR AL1,AL2,AL3,LP: LIST);saclist.def 20: ADV4(L: LIST; VAR AL1,AL2,AL3,AL4,LP: LIST);sacanf.def 10: AFDIF(AL,BL: LIST): LIST;sacanf.def 15: AFINV(M,AL: LIST): LIST;sacanf.def 21: AFNEG(AL: LIST): LIST;sacanf.def 26: AFPROD(M,AL,BL: LIST): LIST;sacanf.def 32: AFQ(M,AL,BL: LIST): LIST;sacanf.def 38: AFSIGN(M,I,AL: LIST): LIST;sacanf.def 44: AFSUM(AL,BL: LIST): LIST;masapf.def 67: APABS(A: LIST): LIST;masapf.def 73: APCMPR(A,B: LIST): LIST;masapf.def 12: APCOMP(ML,EL: LIST): LIST;masapf.def 103: APDIFF(A,B: LIST): LIST;masapf.def 115: APEXP(A,NL: LIST): LIST;masapf.def 23: APEXPT(A: LIST): LIST;masapf.def 38: APFINT(N: LIST): LIST;masapf.def 121: APFRN(A: LIST): LIST;...

26 CHAPTER 2. ELEMENTARY CONCEPTSThe three columns have the following meaning: 1) name of the de�nition module containingthe procedure, 2) the line number of the procedure within the de�nition module, 3) theprocedure header with formal parameter declarations.From the variable names it is sometimes possible to remember the meaning of the vari-ables. If this information is not su�cient the corresponding de�nition module can bebrowsed. Place the cursor in the line with the procedure you are interested in and pressfunction key `F4'. Then the system browser window is replaced by a window containingthe corresponding de�nition module. The cursor is moved to the comment of the function....PROCEDURE APSPRE(N: LIST);(*Arbitrary precision floating point set precision.N is the desired precision of the floating point numbers. *)PROCEDURE APFINT(N: LIST): LIST;(*Arbitrary precision floating point from integer.The integer N is converted to an arbitrary precisionfloating point number. *)...So browsing the de�nition modules you can determine which programs you want to call.Then using the HELP function you can determine if the program is accessible from theinterpreter.2.4.3 SignaturesThe signature shows more verbose and mnemonic names of the data types of the formalparameters of the procedures. Signature declarations for the most often used proceduresare contained in separate �les and can be loaded upon request (or automatically duringstartup). This information can then be displayed using the SIGS command.The speci�cation declarations are discussed in more detail in chapter 4.List of all signatures:APSUM:(FLOAT FLOAT) -> FLOAT.APWRIT:(FLOAT) -> ().GCD:(ER ER) -> ER.IGCD:(INT INT) -> INT.NEG:(RING) -> RING.PROD:(RING RING) -> RING.Q:(FIELD FIELD) -> FIELD.QR:(ER ER ER ER) -> ().30 signatures.For example `GCD' is a function taking two elements of an euclidean ring (`ER') as inputand returns an element of an euclidean ring. `IGCD', integer greatest common divisor,takes two integers as input and returns an integer.

2.5. HANDLING ERRORS 272.5 Handling ErrorsThere is a wide variety of sources for errors:If the parser detects any syntax errors he tries to skip invalid program parts, at leastuntil he �nds a period (= end of program mark) in the input source. Then he returnsa quoted expression of what he was able to generate so far. So only syntactically correctprograms become evaluated.Errors during evaluation are reported, but execution can usually be continued if theerrors are not too severe.Errors occurring at runtime in compiled code are also reported. This includes errorstrapped by the processor (p.e. division by zero). Whether execution is continued dependson the severity of the error. Such a case may look like:5 Division by Zero** fatal error: processor interrupt(a)bort, (b)reak, (c)ontinue (d)ebug or <ENTER> ? <ENTER>Trying to restart processor ...MAS:In general you should hit <ENTER> or <RETURN> and the system will take the ap-propriate action:error: continue, that means take some corrective action and try to continuefatal error: break, that means return to the top level command loopconfusion: abort, that means execute processor HALT instructionYou should not respond with a `softer' reaction than the system would do unless you knowwhat you are doing. But you can freely break to the top level command loop or abort therun completely.The error handler executes the command loop as a coroutine to the main MAS program.It further installs itself into the error handler provided by the Modula{2 runtime support.By these mechanisms the error handler can catch runtime errors and most software errors.However as with any LISP system incorrect input data may cause in�nite loops, whichcannot be handled. Only if MAS is still producing output you may press the ESC key,which will cause a fatal error. In other cases you must rely on the reset button (or somesoftware monitors providing hotkeys).As you may have noticed in the above example, there is also a debug option. Typing`d' will take you to the command loop of a debug processor. It is usually a restrictedform of the main MAS command loop. The commands entered must be in LISP syntax toemphasize its role as emergency aid. New errors produced during debugging count higherand may very quickly lead to total program abort. Beside these considerations you canuse almost all LISP functions, especially you can list variable contents or modify variables.Finally typing `EXIT' takes you back to the error prompt.

28 CHAPTER 2. ELEMENTARY CONCEPTS2.6 Talking LISPNot all LISP constructs have an equivalent in the MAS language, e.g. the `DM' de�nemacro is not available in the MAS language. So it can be necessary to switch to LISP bycalling the PRAGMA(LISP) procedure which switches the parser to LISP syntax. To returnto Modula style input you must use the (PRAGMA MODULA) procedure in LISP syntax toswitch the MAS parser back on.MAS: PRAGMA(LISP). (* switch to LISP *)ANS: ()LISP: (SETQ a 5) (* use LISP syntax now *)ANS: 5LISP: (PRAGMA MODULA) (* switch to MAS *)ANS: ()A macro example for those who miss a FOR{statement:PRAGMA(LISP).(DM FOR (X)(LIST (QUOTE PROGN)(CAR (CDR X))(LIST (QUOTE WHILE)(CAR (CDR (CDR X)))(LIST (QUOTE PROGN)(CAR (CDR (CDR (CDR (CDR X)))))(CAR (CDR (CDR (CDR X))))))))(PRAGMA MODULA)a:=0.FOR(SETQ(i,0), LEQ(i,10), SETQ(i,i+1), SETQ(a,a+i*i)).ANS: 11The syntax is similar to the syntax of the FOR{statement in C. Only the executed state-ment must be included in the parameter list of the FOR macro:FOR(init,cond,step,stat) == (FOR init cond step stat)The semantics of the FOR macro is de�ned by the following WHILE statement:init; WHILE cond DO stat; step END ==(PROGN init (WHILE cond (PROGN stat step)))The MAS language (like Modula{2) does not allow assignments as expressions, so allparameters of the FOR macro must be calls of the SETQ function or expressions. In Cthe FOR statement would be:

2.6. TALKING LISP 29FOR(i:=0, i <= 10, i:=i+1) a:=a+i*iThe evaluation can be traced using the PRAGMA(TRACE) procedure which turns the traceag in the evaluator ON and OFF.

Chapter 3The MAS LanguageThis chapter contains the MAS language description. Besides the lexical and syntacticalconstructs it gives information on conventions, program interpretation and input / outputfacilities. The speci�cation component is discussed separately in chapter 4. It does notcontain a description of the algebraic data structures and functions.The MAS language is only a 'cover' for the MAS LISP. The language parser can be switchedof and programs in pure LISP syntax can be entered as well. Moreover some MAS facilitiesare only accessible in LISP mode. Therefore also some LISP constructs are discussed inthis chapter. The reader not interested in them may skip such parts during a �rst reading.Such parts are indicated by small letter type style.The initial language de�nition was the PL/0 language as described in N. Wirth's book"Compilerbau" [Wirth 1985b]. This de�nition was extended to allow procedures withparameters and several new declarations where provided. Some polishing was done toallow the interactive use of the parser, e.g. empty programs are accepted.In the following sections we discuss �rst the lexical conventions and then the languagesyntax.3.1 Lexical ConventionsThe 'atomic' constituents of the language are characters and tokens (character sequenceswith special meaning).3.1.1 Character SetThe character set of MAS is a subset of the ASCII character set. It consists of thedigits 0123456789letters aAbBcCdDeEfFgGhHiIjJkKlLmMnNoOpPqQrRsStTuUvVwWxXyYzZothers .,=+-*/$() !"#%&':;<>?@[\]^_`{}|~The number of characters is denoted by � (= 95 here).30

3.1. LEXICAL CONVENTIONS 313.1.2 TokensLexical tokens of the language are:# < > = <= >= <>+ - * / %() , . ; : { }-> => :=keyword number identifierstring commentCharacters not contained in this list of tokens may only appear in strings and comments.The keywords are:NOT, AND, OR,IF, THEN, ELSE, END,WHILE, DO, TO, REPEAT, UNTIL,PROCEDURE, BEGIN, EXPOSE,SPECIFICATION, IMPLEMENTATION, MODEL, AXIOMS,SORT, VAR, IMPORT, SIGNATURE, MAP, RULE, WHEN,not, and, or,if, then, else, end,while, do, to, repeat, until,procedure, begin, expose,speci�cation, implementation, model, axioms,sort, var, import, signature, map, rule, when.The meanings of most of the tokens and keywords should be 'as expected' and are discussedlater. At this place we will only say some words on numbers, identi�ers, strings andcomments.3.1.3 NumbersNumbers may be only so called �{integers. The set of �{integers is de�ned as:B = fx 2 Zj � � < x < �g;where Z denotes the set of integral numbers.The magnitude of � depends on the implementation of MAS on the actual computer. Precisely� is de�ned as a power of 2 such that: � < � and 4� � ;where � denotes the number of characters and is the least number such that for all, representableintegral numbers y: jyj � . On 32 bit computers = 231 (32 minus one sign bit). Some basicconstants and ranges are summarized in table 3.1.3.Commonly � = 229 = 536870912. �{integers are also called atoms.Other kinds of numbers such as oating point numbers, arbitrary precision integral num-bers, rational numbers etc. are provided by library modules. These modules also supplyread / parse and write / pretty print routines for the respective data types.

32 CHAPTER 3. THE MAS LANGUAGEName De�nition Value integer size 231 = 2147483648� 4� � 229 = 536870912{integer fn 2 Z j � < n < g�{integer fn 2 Z j �� < n < �g� number of cells run time dependentatoms �{integerspointers fn 2 Z j � � n � � + (8�)gempty list �SIL �NIL �Table 3.1: Constants and Ranges3.1.4 Identi�ersIdenti�ers are used as names of variables and names of procedures. The character sequenceof an identi�er must start with a letter and may be followed by digits and letters. Identi�ersare case sensitive, that means upper case and lower case letters are distinct. The lengthof identi�ers is restricted by the requirement that they must �t on one input line.Example: NIL, p123, AL9, XSH, AlongName.Naming ConventionsIdenti�er names from the ALDES / SAC{2 system follow the so called 'ImplementationALDES' naming scheme. However in comments we have already introduced upper case andlower case letters according to the 'Publication ALDES' naming scheme. So it is useful toknow the transliteration between both conventions. The transliterations are summarizedin table 3.1.4. Several ornaments are transliterated in clockwise order.Publication ALDES Implementation ALDES Meaninga; b AL, BL lower caseA0; B0 AP, BP primeA�; B� AS, BS star�A; �B AB, BB barÂ; B̂ AH, BH hatA0; B1 A0, B1 subscript�a00 ALBP0 clockwiseTable 3.2: Transliteration SchemeProcedure and variable names from the ALDES / SAC{2 system are at most 6 characterslong and follow certain further conventions. The �rst letters identify the data structureand the following letters are chosen according to the meaning of the identi�er.Example:

3.2. SYNTAX 33IPROD Integer ProductMPPROD Modular Polynomial ProductDIRPPR Distributive Rational Polynomial Product3.1.5 StringsCharacter sequences enclosed in double or single quotes are called strings. Within thequotes any character from the character set may appear. Quotes itself can be part of astring, if they are written twice.Example:"this is a string" denotes the string this is a string,"'" denotes the string ','"' denotes the string ","x'7""'" denotes the string x'7"'Strings are internally represented as lists of numbers (�{integers). So all list operationsare applicable to strings, like concatenating, reversing.3.1.6 CommentsComments are sequences of characters enclosed in (* and *). Comments may be nested,that means the comment character sequence may contain pairs of (*, *).Comments can appear everywhere except in other tokens.3.1.7 BlanksBlanks can appear everywhere except in numbers, identi�ers, keywords or two letter tokens.Blanks must be used in some cases to separate keywords. So ENDEND would mean theidenti�er ENDEND and not two END keywords.Characters in input lines which do not belong to the MAS character set are converted toblanks. ASCII characters like CR (return), LF (line{feed), EOL (end{of{line) are ignoredduring input form data sets.3.2 SyntaxIn this section we discuss the MAS language syntax and the meaning of the languageconstructs. First we give the complete syntax diagram and the list of syntax errors. Thenwe will concentrate the description on the procedural aspects of the MAS language. TheMAS type system and generic function support will be discussed later in a separate section.

34 CHAPTER 3. THE MAS LANGUAGE3.2.1 Syntax DiagramThe syntax de�nition is given in extended BNF notation. That means name denotessyntactic entities, {} denotes (possibly empty) sequences, () denotes required entities, |denotes case selection and [] denotes optional cases. Terminal symbols are enclosed indouble quotes and productions are denoted by =. The syntax diagram is listed in table3.2.1.Observe, that a program is a (possibly empty) sequence of declarations, followed by a(possibly empty) statement followed by a period. A statement can be an assignment, aprocedure call or a IF{, WHILE{, REPEAT{ or BEGIN{statement. Declarations are VARand PROCEDURE. The syntax of the language constructs for speci�cations is discussedin chapter 4.The semantics of the statements are discussed next, but let us �rst mention the syntaxerrors and syntax warnings detected by the parser (see tables 3.2.1 and 3.5).If a syntax error is detected one of the error messages is displayed followed by the actualinput line where the last character read is underscored. However this last character is onecharacter and one lexical token to far. That means the syntax error is caused by one tokenbehind.Error repair is limited to skipping tokens until something meaningful is found.In case syntax errors are detected, the execution of the program is totally suppressed, thatmeans no executable code is generated. If a syntax warning is given execution proceeds.3.2.2 ExpressionsExpressions are built from numbers, strings, identi�ers and function calls. Mathematicaloperators de�ned in the MAS language are only valid on numbers (�{integers), variableshaving a number as value or function calls with a number as return value or on genericitems (de�ned in chapter 4. Variables are bound to values by means of the assignmentstatement, which is discussed later.So expressions are sums or di�erences of terms:expression = ["+"|"-"] term {("+"|"-") term}The operators + and - correspond to the LISP functions ADD and SUB or to the genericfunctions SUM, NEG and DIF.Terms are themselves products, quotients or remainders of powers:term = power {("*"|"/"|"%") power}The operators *, / and % correspond to the LISP functions MUL, QUOT and REM or to thegeneric functions PROD and Q.Note: From the syntax de�nition follows, that '*', '/' and '%' have precedence over '+'and '-'.Powers are factors with an optional number as exponent.power = factor [("^"|"**") number]

3.2. SYNTAX 35
program = block"."block = { "VAR" identlist ":" ident [string] ";"| "PROCEDURE" ident ["("[identlist][";" "VAR" identlist] ")"][":" ident]";" block ident ";"}statementstatement = [ident ":=" listexpr |ident ["(" [actualparms] ")"] |"RETURN" ["(" [expression] ")"]"BEGIN" statementseq "END" |"IF" condition "THEN" statementseq["ELSE" statementseq] "END" |"WHILE" condition "DO" statementseq "END" |"REPEAT" statementseq "UNTIL" condition]listexpr = "{" expression {"," expression} "}" | expressionidentlist = ident {"," ident}actualparms = listexpr {"," listexpr}statementseq = statement {";" statement}condition = "NOT" condition |"(" condition ")" ("AND"|"OR") "(" condition ")"expression ("="|"#"|"<"|"<="|">"|">=") expressionexpression = ["+"|"-"] term {("+"|"-") term}term = power {("*"|"/"|"%") power}power = factor [("^"|"**") number]factor = ident ["("[actualparms]")"] |number | string [":" typeexpr] |"(" expression ")"string = ('"' {character} '"' | "'" {character} "'")ident = letter {letter|digit}number = digit {digit}Table 3.3: MAS Syntax Diagram

36 CHAPTER 3. THE MAS LANGUAGE
1 = expected2 type declaration expected4 identi�er expected5 ; or , expected6 expression expected7) expected8 factor expected9 . expected10 assignment expected13 := or (expected14 statement expected15 : expected16 THEN expected17 ; or END expected18 DO expected20 relation expected21 , or) expected22 -> expected23 (or identi�er expected24 (expected25 condition expected26 number expected27 , or) or ; expected28 ; expected29 END or ; expected30 , or] expected31 / expected32 == expected33 END or ; or BEGIN expected34 , or { expected35 TO expectedTable 3.4: Syntax Error Messages
1 identi�er expected2 algorithm name expectedTable 3.5: Syntax Warning Messages

3.2. SYNTAX 37The operators + and - correspond to the LISP function POW or to the generic function EXP.Factors are identi�ers, function calls, numbers, strings or expressions enclosed in paren-thesis. factor = ident ["("[actualparms]")"] |number |string [":" typeexpr] |"(" expression ")"Strings can be accompanied by type information. This is discussed in chapter 4.List expressions are sequences of expressions enclosed by curly braces or expressions.listexpr = "{" expression {"," expression} "}" | expressionFunction calls can be supplied by actual parameters which are sequences of list expressions:actualparms = listexpr {"," listexpr}Note, that function calls are distinguished from variables (identi�ers) only by syntax.Function names must be speci�ed with parenthesis, even if no arguments are supplied.Names without parenthesis are considered to be variable names.Example:name = variable,name() = function call without argument,name(1) = function call with argument '1',name1(name2) = function call with variable as argument.S{expressionsWe include some information on LISP. This may be skipped during a �rst reading.The main LISP language construct is the so called S{expression or symbolic expression. S{expressions are lists of objects, where the �rst object evaluates to a function symbol. For examplethe S{expression corresponding to the MAS expression 2+3 is the list (ADD 2 3). The translationscheme between variables and functions in MAS and in LISP is the following:MAS expression S-expressionname namename() (name)name(1) (name 1)name1(name2) (name1 name2)3.2.3 ConditionsTwo expressions combined by an relational operator are a condition. Further two condi-tions can be combined by AND or OR, or a condition can be negated by NOT:condition = "NOT" condition |"(" condition ")" ("AND"|"OR") "(" condition ")" |expression ("="|"#"|"<>"|"<"|"<="|">"|">=") expression

38 CHAPTER 3. THE MAS LANGUAGEThe hash character (#) denotes 'not equal'. The LISP functions corresponding to therelational operators (in the same sequence as above are): EQ, NE, NE, LT, LEQ, GT andGEQ. Conditions evaluate to true or false depending on the expressions and the relationaloperators.How are true and false de�ned ? The are at least two possibilities:1. LISP like:In LISP systems usually false is de�ned to be NIL, and every thing which is notNIL is considered to be true. There is additionally a variable T to denote true.2. ALDES / SAC{2 like:false is de�ned to be 0 (zero) and true is de�ned to be 1 (one). In the implementationof ALDES it is however also assumed, that everything 6= 0 is considered to be true.In MAS LISP we have implemented the �rst variant. But the ALDES / SAC{2 booleanroutines return 0 or 1, so some care is needed to obtain the right result from the evaluationof the condition.However the syntax of the MAS language does not allow a function call as condition. Soone is forced to write a condition with relational operator. Then one can decide to comparethe function value against 0 or NIL or what else.3.3 StatementsStatements are assignment, procedure call, return, begin, if, while and repeat:statement = [assignment | procedurecall |beginend | return |if | while | repeat]Observe that a statement can be empty.3.3.1 AssignmentThe assignment statement has the following syntax:ident ":=" listexprThe expression respectively the list expression is evaluated a nd the result is bound to thevariable named 'ident'. It is not required to declare variables before they are used in anassignment statement. However variables with type information must be de�ned with aVAR statement.Example:x:=4*7+3-29*5. evaluates to -114.The corresponding S{expression is:(ASSIGN x (SUB (ADD (MUL 4 7) 3) (MUL 29 5)))

3.3. STATEMENTS 39where ASSIGN denotes the LISP assignment function. In this case ASSIGN is equivalent to theLISP SETQ function which might be more familiar.y:=x*x. evaluates to 12996.The corresponding S{expression is:(ASSIGN y (MUL x x))3.3.2 Procedure CallA procedure call has the following syntax:ident ["(" [actualparms] ")"]The actual parameters can be expressions as described in the section on MAS expressions.If no parameters are required, then the parenthesis can be omitted. Example:ADD(1,3). evaluates to 4.The corresponding S{expression is:(ADD 1 3)Contrary to other LISP systems, but closer to Modula{2 syntax, identi�ers as statements aresupposed to be procedure calls and not variable names. Schematically we have:MAS statement S-expressionname. (name)name(). (name)name(2). (name 2)By this translation scheme we obtain several equivalent formulations of MAS statements. Forexample the S{expression(ASSIGN x (ADD 1 3))is generated from any of the following MAS statements:ASSIGN(x,ADD(1,3)).x:=ADD(1,3).x:=1+3.So all 3 statements are equivalent.Further examples:x:=IEXP(2,100). evaluates to (0 0 0 8192).The function IEXP stands for integer exponentiation and delivers the internal representa-tion of 2100. Then x is bound to the list (0 0 0 8192).IWRITE(x). evaluates to () and as a side e�ect produces 12...376.This statement is a procedure call. First x is evaluated to the value to which it is bound(0 0 0 8192). This list is then supplied as input to the procedure IWRITE, which meansinteger write. Procedures always evaluate to NIL (= ()). IWRITE writes the external(decimal) representation 12...376 of (0 0 0 8192) to the terminal.

40 CHAPTER 3. THE MAS LANGUAGEExternal and Internal FunctionsWe have to distinguish between internal, external and user de�ned functions or procedures.User de�ned functions are those declared with the PROCEDURE declaration in MAS.Internal functions are the functions which are builtin LISP functions, that means functionsimplemented in the LISP evaluator. Especially all functions which correspond to MASoperators are builtin.External functions are compiled Modula{2 procedures which are accessible from theinterpreter. A list of all external functions can be displayed with the help(all) procedure.The output looks like the following:List of all compiled functions and procedures:PROCEDURE ADV(LIST; LIST,LIST)FUNCTION APFINT(LIST): LISTFUNCTION APFRN(LIST): LIST...PROCEDURE TIMEPROCEDURE TRACEFUNCTION TSGBASE(LIST,LIST,LIST): LIST65 functions and 27 procedures accessible.The �rst column contains the type FUNCTION or PROCEDURE, which indicates if a value isreturned or not. In the second column follows the name of the function. Finally the typeof input and output parameters is shown. Currently all displayed parameters types areLIST, so this gives only a hint on the number of input and output parameters.The description of the procedures and the meaning of the parameters must be takenfrom the Modula{2 library de�nition modules. A procedure to module cross reference iscontained in the data set browse.rc. The de�nition modules are contained in a foldernamed HELP. See the section on help facilities for more information on the system browser.BindingsThe assignment statement is one way to bind a value to a variable. In MAS a variable anda procedure cannot both have the same name, that means the identi�er names are unique.Caution: Other LISP systems allow variables and procedures to have the same name butto mean di�erent objects.MAS allows procedure names to be used as variable names. So procedure names can bebound to variables and the variable can then be used as synonym for the procedure.Consider the example:say:=IWRITE.Note that no parenthesis are following the IWRITE name. The variable say is now boundto the procedure IWRITE. So it is valid to use it in a procedure call:say(7).

3.3. STATEMENTS 41which writes 7 to the terminal.But don't bind a value to a procedure name, since this overwrites the procedure de�nition(unless you want to bind it to a di�erent procedure body).Example:IWRITE:=foo. nowIWRITE(7). leads to a run time error:** error: invalid function object in APPLY: foo.Such a problem can be `resolved' by the following assignment.IWRITE:=QUOTE(QUOTE(IWRITE)).This assures that IWRITE is bound to QUOTE(IWRITE) which evaluates to IWRITE whenused.One further remark on bindings is that you can produce in�nite loops with them. Considerthe example:x:=y. assume x and y are unde�ned,y:=x. y is bound to itself,a:=y. evaluates in�nitely.The actual (top level) bindings can be displayed by the DUMPV and LISTV procedures.LISTV lists the variable values in the syntax:name:=value.value is listed in MAS syntax as far as possible, but it is not always guaranteed that suchlistings can be read by the MAS parser again.The output of LISTV may look like:exit:=EXIT.PROCEDURE tuwas();EDIT(was) tuwas.PROCEDURE run();IN(was) run.PROCEDURE masini();BEGIN was:="MAS.INI"; EDIT(was) END masini.NIL:=().DUMPV lists the variable values in the syntax:(SETQ name value)

42 CHAPTER 3. THE MAS LANGUAGEvalue is listed in LISP syntax, so it is always guaranteed, that such listings can be readin LISP mode again.The output of DUMPV may look like:(SETQ exit EXIT)(SETQ was (25 21 39 21 49 29 17 68 29 39))(SETQ tuwas (LAMBDA () (EDIT was)))(SETQ run (LAMBDA () (IN was)))(SETQ masini (LAMBDA () (PROGN (ASSIGN was (STRING 3712 51 68 29 39 29)) (EDIT was))))(SETQ NIL ())VAR parametersUsually function and procedure parameters are evaluated from left to right upon invoca-tion. Exceptions to this rule are so called FEXPR functions or externalModula{2 functionswith VAR parameters. VAR parameters mean that only a reference to a variable is usedas parameter and not the value bound to a variable.FEXPR functions do not evaluate their arguments at all. They are described in the sectionon LISP and not discussed here.The ALDES / SAC{2 libraries contain many procedures with VAR parameters. The VARand non VAR parameters are organized in the scheme: �rst all non VAR parameters, thenall VAR parameters. This is respected by the MAS interpreter when external proceduresare called. The user may therefore supply only variable names in places were VAR pa-rameters appear. Upon exit from the procedure the variables are bound to the computedvalues.Example:PROCEDURE ADV(L: LIST; VAR a, LP: LIST);This procedure expects one value input parameter L and two VAR parameters a and LP.ADV selects the �rst element of a list and the rest of a list:ADV(LIST(1,2,3),a,B). binds a to 1 and B to (2,3).The integer quotient and remainder function is another example:IQR(44,7,a,b). binds a to 6 and b to 2.3.3.3 Statement SequenceIn certain situations it is allowed to write sequences of statements separated by semicolons(";"). Note that since statements may be empty one can view the semicolon also asstatement terminator character. The syntax of statement sequences is:statement { ";" statement }

3.3. STATEMENTS 433.3.4 BEGIN{END StatementIn cases where no statement sequences are allowed, but only a statement, the BEGIN{ENDstatement can be used to enclose a statement sequence. Its syntax is:"BEGIN" statement-sequence "END"Note: BEGIN{END does not create a new block with new local variables !The LISP code generated from BEGIN{END is the PROGN S{expression. This implies that thevalue of a BEGIN{END statement is the value of the last executed statement.Example:BEGIN a:=IEXP(2,49); IWRITE(a) END.The corresponding LISP expression is(PROGN (ASSIGN a (IEXP 2 49) (IWRITE a))On the interpreter top level the BEGIN{END statement is often useful to suppress unusedoutput: in the above example the internal representation of 249 is not written, only theexternal representation appears in the output stream.3.3.5 IF StatementThe syntax of the IF statement is:"IF" condition "THEN" statementseq1["ELSE" statementseq2] "END"When the evaluation of condition yields true then statementseq1 is executed, otherwisestatementseq2 is executed (if present).Example:a:=1. b:=2.IF a = b THEN CLOUT("equal")ELSE CLOUT("not equal") END.The LISP equivalent of the IF statement is:(IF (EQ a b) (CLOUT "equal")(CLOUT "not equal"))The expression produces not equal as side e�ect.Note: The IF statement returns the value of the statement sequence which gets evaluated.Note: With the Modula{2 like IF statements all ambiguities of nested IF statements inPascal are resolved.

44 CHAPTER 3. THE MAS LANGUAGE3.3.6 WHILE StatementThe syntax of the WHILE statement is:"WHILE" condition "DO" statementseq "END"The condition is evaluated. When the result is true, the statement sequence is executed,when the result is false then the evaluation of the WHILE statement is �nished. Afterexecution of the statement sequence the WHILE statement is again evaluated.Note: The WHILE statement returns the value of the last executed statement sequenceor NIL if the �rst evaluation of condition is false.Example:i:=0. a:=0.WHILE i < 17 DO i:=i+1; a:=a+i*i END.The WHILE statement evaluates to 1785, the sum of the squares of the numbers from 0to 17.3.3.7 REPEAT StatementThe syntax of the REPEAT statement is:"REPEAT" statementseq "UNTIL" conditionFirst the statement sequence is executed, then the condition is evaluated. When the resultis true, the execution of the REPEAT statement is �nished. When the result is false, theREPEAT statement is again executed.Note: The REPEAT statement returns the value of the last executed statement sequence.Example:i:=0. a:=1.REPEAT i:=i+1; a:=a*2 UNTIL i > 5.The REPEAT statement evaluates to 64, the 6{th power of 2.3.4 DeclarationsElementary declarations can be{ variabledecl | proceduredecl }In this place we will only discuss elementary declarations, the speci�cation declarationswill be described in a later section.

3.4. DECLARATIONS 453.4.1 VAR DeclarationThe syntax of the VAR declaration is:"VAR" identifierlist ":" identifier [string]The VAR declaration is used to de�ne global or local variables. In general it is not requiredto declare variables in MAS. But certain usages (support type information, generic functionarguments) require de�ned variables. The identifier in the above de�nition denotes anarbitrary name. The meaning of string is explained in chapter 4.The identifierlist has the following syntax:identifier { "," identifier }This is a sequence of identi�ers separated by commas.3.4.2 PROCEDURE DeclarationThe syntax of the PROCEDURE declaration is:"PROCEDURE" ident1["(" [identlist] [";" "VAR" identlist] ")"][":" ident2] ";"block ident1 ";"With this declaration it is possible to de�ne a new procedure, which can be used afterwardsin the same way as the builtin procedures. ident1 denotes the name of the procedure, itmust be repeated at the end of the procedure declaration.["(" [identlist] [";" "VAR" identlist] ")"] denotes the so called formal pa-rameter list. The formal parameter list is a list of identi�ers separated by commas,followed optionaly by a VAR parameter list.When the procedure is called (used, invoked) the so called actual parameters are eval-uated and bound to the formal parameters and are then accessible within the procedurebody. The numbers of actual and formal parameters must be equal at runtime, otherwisean error occurs. The formal parameters should be pair wise disjoint, otherwise only thelast (that is the right most) actual parameter is bound to the formal parameter. The VARparameters are not evaluated and must be identi�ers. Uppon return from a procedure withVAR parameters, the local values of these parameters are bound to the actual parametersymbols.The [":" ident2] construct speci�es the type of the return value. However this infor-mation is not used further by the interpreter. block denotes a sequence of declarationsfollowed by a statement.Results computed within the body of a procedure can be returned to the caller by functionvalues. The return values can be speci�ed explicitly be the RETURN statement or implic-itly as value of the last evaluated statement. Several return values can only be returnedas a single list.The syntax of the RETURN statement is:

46 CHAPTER 3. THE MAS LANGUAGE"RETURN" ["(" [expression] ")"]The expression is evaluated and the result is returned to the caller. The execution ofstatement sequences or iteration statements is suspended after evaluation of a RETURNstatement.The generated code for the procedure declaration is(DE ident1 (identifierlist) block)DE stands for `De�ne{Expr{function', and means that the actual parameters are evaluated beforethey are bound to the formal parameters. `fexpr' functions, which do not evaluate their arguments,and `macros' are discussed in the section on LISP. They cannot be de�ned in the MAS language,but only in LISP.The following examples de�ne a function, that squares its argument, in several ways:PROCEDURE sqr(a);RETURN(a*a) sqr.The square of 'a' is explicit returned with a RETURN statement.PROCEDURE sqr(a);VAR b: ANY;b:=a*a sqr.A local variable 'b' is declared to be of ANY type. The square of 'a' is bound to 'b'. Sincethe assignment statement returns a value, this value is then returned by the function.PROCEDURE sqr(a);VAR b: ANY;BEGIN b:=a*a END sqr.The assignment statement can also be enclosed in a BEGIN{END statement.PROCEDURE sqr(a): LIST;BEGIN RETURN(a*a) END sqr.This is almost in Modula{2 syntax except the missing type speci�cation of the formalparameter 'a'.Scoping RulesThe scope of a variable is the 'area' within the variable is 'visible'. The visibility canbe determined statically from the program text, or dynamically during execution of theprogram. The MAS parser uses statical scoping and the MAS interpreter uses dynamicalscoping.Variables which are de�ned on the top level interpreter are global variables. Local variablesare those which are only visible in a procedure body. But there is a case, when a variableis de�ned within a procedure, but used within a further procedure called from the �rstprocedure. These variables are called uid variables. The values of uid variables dependon the actual (run{time) environment of the procedure.For MAS the following scoping rules apply:

3.4. DECLARATIONS 471. Variables which are de�ned in the procedure header, (formal parameters) are localvariables.2. Variables de�ned with the VAR declaration after the procedure header are localvariables.3. For undeclared variables the following cases apply:(a) If there does not exist a global variable or a local variable in a calling procedurein the textual scope with the same name, then the variable is declared as local.In this case a VAR declaration is generated by the parser and a warning messageis issued.(b) If there exists a global variable or a local variable in a calling procedure inthe textual scope with the same name, then the variable is uid. Care has tobe taken in the case when a procedure containing uid variables is transfered(assigned to a global variable or returned as value) outside of its lexical block.In this case the dynamical scoping of the interpreter is used.Note: Declare variables to ensure the correct usage of them.Note: Mutual recursive procedures will need a dummy forward reference to be in thetextual scope when they are used.Procedure VariablesIn a procedure declaration the name of the procedure becomes a variable, which is bound to theS{expression corresponding to the procedure body. In other words(DE name (formals) body)is equivalent to(ASSIGN name (LAMBDA (formals) body))where LAMBDA is a tag to denote procedure bodies.By this de�nition it is possible to use procedures as input to other procedures or to assignprocedures to variables. Compiled procedures are not de�ned in this way and have noassociated LAMBDA expressions. However the evaluation mechanism takes care that alsocompiled procedures can be used as parameters.Example: De�nition of a function apply, which applies its �rst argument to its secondargument.PROCEDURE apply(f,x); RETURN(f(x)) apply.apply(INEG,4). --> -4x:=INEG. apply(x,4). --> -4A de�nition of a function mapcar, which applies its �rst argument to each list element ofits second argument is discussed in the section on list processing.This completes the discussion of the basic MAS language. In the next section we discussinput and output. Although it is not de�ned in the language it is included here since it'sunderstanding is required to write MAS programs.

48 CHAPTER 3. THE MAS LANGUAGE3.5 Input and OutputThe facilities for reading and writing data are described in this section.The concept for input and output in MAS is based on streams. Streams are continuoussequences of characters. A stream is called open, when it is connected to a physical device.MAS allows maximal 25 streams to be open at a time.From these streams at any time two are the current streams. That means all read opera-tions go to the current (or actual) input stream and all write operations go to the currentoutput stream. It is possible to switch between open streams and a switch to a non openstream implies a open operation for that stream.From the beginning of the execution the current input stream is connected to the terminal(the keyboard) and the current output stream is also connected to the terminal (thescreen). These two streams are always open. Further the terminal never becomes fullduring a write operation and never becomes empty during a read operation.One exception to the concept of current streams is the error stream. It is always connectedto the terminal and can not be switched. So all error messages appear on the terminaland response to them is expected from the terminal.The streams are moreover managed like a stack. If an open input stream becomes empty,then the next open input stream becomes automatically the current input stream. If anopen output stream becomes full, then the next open output stream is used. 'Last stream'means the stream which was current before the last stream switch operation.The stream switching functions are:IN("stream") the current input stream is switched to the stream `stream',OUT("stream") the current output stream is switched to the stream `stream',SHUT("stream") the speci�ed stream is closed.The `stream' name may be pre�xed by a 'device name' to specify non{disk data sets:CON: is the terminalWIN: is a window (not yet implemented)RAM: is an internal memory stream, `RAM{disk'GRA: is a graphic window (not yet implemented)NUL: is a dummy stream to suppress output, always empty on input, never full on output,Other 'device names' are passed to the operating system and are usually interpreted asdisk data sets.Notes on the usage of the IN function. Consider the following two MAS inputs:a) IN("x.y"). statement.and b) BEGIN IN("x.y"); statement END.

3.5. INPUT AND OUTPUT 49In a) the IN function switches the actual stream to `x.y'. The contents of this stream areevaluated, then the statement is executed.In b) the BEGIN{END statement is parsed and evaluated. The IN function switches theactual stream to `x.y'. But now the statement is executed and afterwards the contents ofthe stream `x.y' are executed.In other words the IN function does only a switch to the next stream. If MAS is alreadyexecuting some statements it �nishes �rst and afterwards takes the next input from thenew stream.The following two functions are for output:BLINES(i) writes i blank lines to the output streamCLOUT("string") writes this string to the output streamExample:We will write a function, which puts a character string to the input stream.PROCEDURE cltis(S);(*Character list to input stream. S is a character list.S is transferred to the input stream. *)BEGIN(*1*) SHUT("RAM:help"); OUT("RAM:help");CLOUT(S);SHUT("RAM:help"); IN("RAM:help");(*9*) END cltis.An utility stream `RAM:help' is opened for output. Then the string is written to thisstream and �nally the current input stream is switched to `RAM:help'.As an application we discuss a function to convert a string to an integer. (A detaileddescription of integers will be given later.)PROCEDURE s2i(S);(*Character list to integer. S is a character list. S isconverted to an integer and the result is returned.*)BEGIN(*1*) cltis(CCONC(S," "));RETURN(IREAD());(*9*) END s2i.The string `S' is put to the input stream, then `IREAD' reads an integer from the currentinput stream. Note that a blank must be appended with the CCONC function to thestring to stop `IREAD' from requesting more digits from the terminal, or whatever streamis open. With this function it is now more convenient to writea:=s2i("12345678901234567890").instead ofa:=IREAD(). 12345678901234567890

50 CHAPTER 3. THE MAS LANGUAGE3.5.1 Stream SummaryA list of all streams can be obtained by the BIOS function. Its output look like thefollowing:Summary of stream IOName temp.out,Output, Byte-IO 11, Line-IO 14, Lmarg 0, Rmarg 79, Size 79.Name MAS.INI,Closed, Byte-IO 11, Line-IO 14, Lmarg 0, Rmarg 79, Size 79.Name CON:,Output, Byte-IO 25, Line-IO 13, Lmarg 0, Rmarg 79, Size 79.Name CON:,Input, Byte-IO 3, Line-IO 0, Lmarg 0, Rmarg 79, Size 79.4 Files used.The �rst line contains the name of the stream. The second line contains information onthe status of the stream Closed etc. Next the number of bytes and lines transferred toor received from the respective stream are displayed. Finally the left margin Lmarg, theright margin Rmarg and line length Size are shown.3.5.2 Operating SystemOn some computers the MAS system provides access to the operating system. Mostimportant is the possibility to call an editor from within MAS. The two functions DOS andEDIT are summarized as follows:DOS("prog parms") Calls the program 'prog' with the parameters 'parms'.The meaning of the string depends on the operating system.EDIT("data set name") Edits the speci�ed data set.The editor is expected to be 'EDITOR.PRG' on the currentdirectory. The editor on disk is 'microEMACS 3.9'. Thedata set name string is pre�xed by the string " @MAS.RC "which speci�es the startup �le for EMACS to be 'MAS.RC'.Examples:List the directory on an IBM PC:PROCEDURE dir;DOS("c:\command.com /c dir/p") dir.Call the PC command interpreter:PROCEDURE command;DOS("c:\command.com") command.

Chapter 4Speci�cation ComponentIn this chapter we discuss the speci�cation capabilities of MAS. In the �rst section we givean overview over the design considerations. Then we de�ne the syntax of the respectivelanguage constructs and then we discuss the semantics of the constructs.4.1 OverviewMAS views mathematics in the sense of universal algebra and model theory and is insome parts inuenced by category theory. In contrast to other computer algebra systems(like Scratchpad II [Jenks et al. 1985]), the MAS concept provides a clean separation ofcomputer science and mathematical concepts. The MAS language and its interpreter hasno knowledge of mathematics and mathematical objects; however it is capable to describe(specify) and implement mathematical objects and to use libraries of implemented math-ematical methods. Further the imperative programming, the conditional rewriting andfunction overloading concepts are separated in a clean way. The denotational semanticsof the MAS language is discussed in [Kredel 1991].MAS includes the capability to join speci�cations and to rename sorts and operationsduring import of speci�cations. This allows both the speci�cation of abstract objects(rings, �elds), concrete objects (integers, rational numbers) and concrete objects in termsof abstract objects (integers as a model of rings). Speci�cations can be parameterized inthe sense of � abstraction.The semantics of a speci�cation can be described either by implementations, axioms ormodels. The implementation part describes (imperative) procedures and data representa-tions.The axioms part describes conditional rewrite rules which de�ne a reduction relation onthe term algebra generated by the sorts and operations of the speci�cation. The semanticsis therefor the class of models of the term algebra modulo the (congruence) relation.Currently there are no facilities to solve conditional equations.The model part describes the association between abstract speci�cations (like rings) andconcrete speci�cations (like integers). The semantics is the interpretation of the (abstract)function in the model. Operations in models can be compiled functions, user de�ned im-perative functions or term rewrite rules. The function overloading capabilities are realized51

52 CHAPTER 4. SPECIFICATION COMPONENTby this concept. Dynamic abstract objects like �nite �elds can be handled by a descriptorconcept.Evaluation of functional terms is as follows: If there is a model in which the function hasan interpretation and a condition on the parameters is ful�lled, then the interpretation ofthe function in this model is applied to the interpretation (values) of the arguments. Ifthere is an imperative procedure, then the procedure body is evaluated in the procedurecontext. If the uni�cation with the left hand side of a rewrite rule is possible and theassociated condition evaluates to true, then the right hand side of the rewrite rule isevaluated. Otherwise the functional term is left unchanged.In contrast to functional programming languages (like SML [Appel et al. 1988]) whichimplement typed lambda calculus the types of operations are not deduced from the pro-gram text but must be explicitly de�ned in the speci�cation of an operation, in a variabledeclaration or in a typed string expression.A weak point in the current MAS design is that the language is only interpreted. Thisis actualy not a handicap in execution speed since compiled libraries can be used, but ina too weak semantic analysis of the speci�cations. This means that certain errors in thespeci�cations are only detected during actual evaluation of an expression.4.2 SyntaxTo precisely de�ne the syntax we �rst specify the syntactic domains and then give theEBNF de�nition of the language. Note that we use the terms `function' and `procedure'interchangeably throughout the rest of the text.4.2.1 Syntax DiagramThe syntax de�nition is given in extended BNF notation. That means name denotes non{termial symbols, {} denotes (possibly empty) sequences, () denotes required entities, |denotes case selection and [] denotes optional cases. Terminal symbols are enclosed indouble quotes and productions are denoted by =. The syntax diagramms are listed in table4.1.Observe that a program is a (possibly empty) sequence of declarations, followed by a (possi-bly empty) statement followed by a period. A statement can be an assignment, a procedurecall or a IF{, WHILE{, REPEAT{, BEGIN{statement or EXPOSE{statement. Declara-tions are VAR and PROCEDURE; Unit speci�cations are SPECIFICATION, IMPLE-MENTATION, MODEL, AXIOMS, IMPORT, SORT, SIGNATURE, MAP and RULE.The syntax of statements and expressions has already been discussed in chapter 3. Con-text conditions have also been discussed there.4.3 Unit DeclarationsA collection of denotations which belong to the same algebraic structure is called a unit.A unit consists of at most one SPECIFICATION construct which de�nes the (algebraic)language of the structure. Optionally several constructs may accompany a speci�cation

4.3. UNIT DECLARATIONS 53

program = topblock "."topblock = { (unitspec | var | proc | expose) ";" }statementblock = { (var | proc) ";" } statementunitspec = { spec | implement | model | axioms }spec = "SPECIFICATION" header ";"{ (sort | import | sig) ";" } "END" identimplement = "IMPLEMENTATION" header ";"{ (sort | import | var | proc) ";" }statement "END" identmodel = "MODEL" header ";"{ (sort | import | map) ";" } "END" identaxioms = "AXIOMS" header ";"{ (sort | import | rule) ";" } "END" identsort = "SORT" identlistimport = "IMPORT" header [renamings]sig = "SIGNATURE" ident ["(" [identlist] ")"][":" "(" [identlist]")"]var = "VAR" identlist ":" typeexprproc = "PROCEDURE" ident ["("[identlist]")"][":" ident]";" block identmap = "MAP" header "->" header ["WHEN" header]rule = "RULE" expression "=>" expression["WHEN" condition]typeexpr = header [string]header = ident ["(" [identlist] ")"]renamings = "[" { ident "/" ident ";" } "]"expose = "EXPOSE" ident ["(" [actualparms] ")"]Table 4.1: Speci�cation Syntax Diagram

54 CHAPTER 4. SPECIFICATION COMPONENTwhich de�ne the semantics of the algebraic object: IMPLEMENTATION, MODEL andAXIOMS.The pair SPECIFICATION, IMPLEMENTATION is similar to the pair DEFINITIONMODULE, IMPLEMENTATION MODULE in Modula{2. The semantics for functions is�xpoint semantics of �{terms which are given by (imperative) procedures contained in theIMPLEMENTATION construct.The pair SPECIFICATION, AXIOMS is similar to constructs from algebraic speci�cationlanguages. The semantics of functions is given by a term model modulo a congruencerelation de�ned by the rewrite rules de�ned in the AXIOMS construct.The pair SPECIFICATION, MODEL is as far as I know unique to MAS. The semanticsof functions is given by mappings which associate an interpretation function according tocertain types of arguments.When all constituents of an unit have been de�ned, the unit must be exposed (with theEXPOSE construct) to make the functions available for use in expressions.We turn now to a more detailed discussion of these constructs.4.4 Speci�cationsThe speci�cation part de�nes the (algebraic) language of an algebraic structure.The syntax of the SPECIFICATION declaration is:spec = "SPECIFICATION" header ";"{ (sort | import | sig) ";" } "END" ident1header = ident1 ["(" [identlist] ")"]The identi�er ident1 de�nes the name of the speci�cation and of the unit. The speci�ca-tions can be parameterized with formal parameters given by identlist. The semanticsis �{abstraction of a speci�cation.4.4.1 SORT DeclarationThe syntax of the SORT declaration is:sort = "SORT" identlistThe SORT declaration reserves the names in identlist for use as sorts.4.4.2 IMPORT DeclarationThe syntax of the IMPORT declaration is:import = "IMPORT" header [renamings]renamings = "[" { ident "/" ident ";" } "]"

4.4. SPECIFICATIONS 55The IMPORT declaration includes an already de�ned speci�cation, named by the identi�erin the header, into the actual speci�cation. Since several speci�cations can be importedit is possible to join speci�cations.The actual speci�cation is therefore extended by the (old) speci�cation. During import itis possible to rename functions and sorts in the imported speci�cation. The ident afterthe `/' must be de�ned in the imported speci�cation and is given the new name before the`/'.4.4.3 SIGNATURE DeclarationThe syntax of the SIGNATURE declaration is:sig = "SIGNATURE" ident ["(" [identlist] ")"][":" "(" [identlist]")"]The SIGNATURE declaration de�nes new function names (ident). Together with the inputand output parameter sorts named by the identi�eres in identlist.4.4.4 Example Speci�cationThese constructs allow both the speci�cation of abstract objects (rings, �elds), concreteobjects (integers, rational numbers) and concrete objects in terms of abstract objects(integers as a model of rings).The speci�cation of a concrete item like the rational numbers could be as follows:SPECIFICATION RATIONAL;(*Rational numbers specification. *)(*1*) SORT RAT, INT, atom;(*2*) SIGNATURE RNWRITE (RAT) ;SIGNATURE RNDRD (RAT) : RAT;(*3*) SIGNATURE RNone () : RAT;SIGNATURE RNzero () : RAT;(*4*) SIGNATURE RNPROD (RAT,RAT) : RAT;SIGNATURE RNSUM (RAT,RAT) : RAT;SIGNATURE RNDIF (RAT,RAT) : RAT;SIGNATURE RNNEG (RAT) : RAT;SIGNATURE RNINV (RAT) : RAT;SIGNATURE RNQ (RAT,RAT) : RAT;(*5*) SIGNATURE RNINT (INT) : RAT;SIGNATURE RNprec (atom) ;(*9*) END RATIONAL.In this speci�cation the sorts RAT, INT and atom are de�ned. Then the input and outputparameter sorts of various functions are de�ned.The most general unit is an object which speci�es the communication (input / output)operations of objects.

56 CHAPTER 4. SPECIFICATION COMPONENTSPECIFICATION OBJECT;(*Object specification. *)(*1*) SORT obj;(*2*) SIGNATURE READ (obj) : obj;SIGNATURE WRITE (obj) ;(*3*) SIGNATURE DECREAD (obj) : obj;SIGNATURE DECWRITE (obj) ;(*4*) SIGNATURE DEFAULT (obj) : obj;SIGNATURE COERCE (obj) : obj;(*9*) END OBJECT.Abstract speci�cations can be build from smaller pieces. For example (commutative) �eldscan be de�ned in terms of two abelian groups, which are themselves build from abelianmonoids (which extend objects).SPECIFICATION AMONO;(*Abelian monoid specification. *)(*1*) IMPORT OBJECT[amono/obj];(*2*) SIGNATURE ZERO (amono) : amono;(*3*) SIGNATURE SUM (amono,amono) : amono;(*9*) END AMONO.SPECIFICATION AGROUP;(*Abelian group specification. *)(*1*) IMPORT AMONO[ag/amono];(*2*) SIGNATURE DIF (ag,ag) : ag;SIGNATURE NEG (ag) : ag;(*9*) END AGROUP.SPECIFICATION FIELD;(*Field specification joining two abelian groups. *)(*1*) IMPORT AGROUP[field/ag];IMPORT AGROUP[field/ag, ONE/ZERO, PROD/SUM,REZIP/NEG, Q/DIF];(*9*) END FIELD.The renamings are used to write one abelian group `multiplicatively', like PROD for SUM.Using the �eld speci�cation one could derive an alternative de�nition of the rational num-ber speci�cation.SPECIFICATION RATIONAL;(*Rational numbers specification using the abstractfield specification. *)(*1*) SORT INT, atom;(*2*) IMPORT FIELD[RAT/field,RNDRD/READ, RNWRITE/WRITE,RNone/ONE, RNzero/ZERO,RNSUM/SUM, RNNEG/NEG, RNDIF/DIF,RNPROD/PROD, RNQ/RECIP, RNQ/Q];

4.5. IMPLEMENTATIONS 57(*3*) SIGNATURE RNINT (INT): RAT;SIGNATURE RNprec (atom);(*9*) END RATIONAL.Note that some unique functions for rational numbers must be speci�ed separately.4.5 ImplementationsThe implementation part describes (imperative) procedures and data representations.The syntax of the IMPLEMENTATION declaration is:implement = "IMPLEMENTATION" header ";"{ (sort | import | var | proc) ";" }statement "END" ident1header = ident1 ["(" [identlist] ")"]The identi�er ident1 de�nes the name of the speci�cation and of the unit. The speci�ca-tions can be parameterized with formal parameters given by identlist.A statement can be a BEGIN{statement and is executed during the exposition of theunit. The Modula{2 library functions exist a priori and can be accessed without furtherimplementation de�nitions.An implementation de�nes a closed environment for the contained variable and proceduredeclarations (so called closures).4.5.1 SORT DeclarationThe syntax of the SORT declaration is:sort = "SORT" identlistThe SORT declaration reserves the names in identlist for use as sorts.4.5.2 IMPORT DeclarationThe syntax of the IMPORT declaration is:import = "IMPORT" header [renamings]renamings = "[" { ident "/" ident ";" } "]"The IMPORT declaration makes the sorts and operations of a speci�cation locally available.Its semantics correspond to the EXPOSE statement.4.5.3 VAR DeclarationThe syntax of the VAR declaration is the same as already discussed in chapter 3:

58 CHAPTER 4. SPECIFICATION COMPONENTvar = "VAR" identlist ":" typeexprtypeexpr = header [string]The VAR declaration reserves names for local variables and associates type informationwith them.4.5.4 PROCEDURE DeclarationThe syntax of the PROCEDURE declaration is the same as already discussed in chapter3: proc = "PROCEDURE" ident ["("[identlist]")"][":" ident]";" block identblock = { (var | proc) ";" } statementThe PROCEDURE declaration de�nes the imperative (or functional) implementation of aprocedure. A block can contain further declarations and a statement.4.5.5 Example ImplementationThe implementations can be used to de�ne concrete procedures, abstract procedures oras extension to some existing library functions. The imperative language constructs (likeassignments and loops) are fairly standard and are not discussed here.In case of the rational number unit just some gaps left by the library functions need to be�lled. IMPLEMENTATION RATIONAL;VAR s: atom;(*1*) PROCEDURE RNone();BEGIN RETURN(RNINT(1)) END RNone;(*2*) PROCEDURE RNzero();BEGIN RETURN(RNINT(0)) END RNzero;(*3*) PROCEDURE RNWRITE(a);BEGIN IF s < 0 THEN RNWRIT(a) ELSE RNDWR(a,s) END;END RNWRITE;(*4*) PROCEDURE RNprec(a);BEGIN s:=a END RNprec;(*8*) BEGIN s:=-1;(*9*) END RATIONAL.Here RNWRITE is de�ned for convenience and internally switches between the two rationalnumber write functions RNWRIT and RNDWR according to the local precision variable s.Abstract functions are those which use function names of abstract speci�cations to im-plement something. For example in an ring one could have an abstract exponentiationfunction EXP.

4.6. MODELS 59IMPLEMENTATION RING;(*1*) PROCEDURE EXP(X,n);VAR x: ring; VAR i: atom;BEGIN(*1*) IF n <= 0 THEN x:=ONE(X); RETURN(x) END;(*3*) i:=n; x:=X;WHILE i > 1 DO i:=i-1;x:=PROD(x,X) END;RETURN(x)(*9*) END EXP;(*9*) END RING.Here ONE and PROD denote (abstract) functions from the ring. The operators <=, > and -are used on atoms (integers k in the range �229 = � < k < � = 229).4.6 ModelsThe model part describes the association between abstract speci�cations (like rings) andconcrete speci�cations (like integers).The syntax of the IMPLEMENTATION declaration is:model = "MODEL" header ";"{ (sort | import | map) ";" } "END" ident1header = ident1 ["(" [identlist] ")"]The identi�er ident1 de�nes the name of the speci�cation and of the unit. The speci�ca-tions can be parametrized with formal parameters given by identlist.Operations / functions in models can be compiled functions, user de�ned imperative func-tions or term rewrite rules. Dynamic abstract objects like �nite �elds can be handled bya descriptor concept. The descriptor can then specify the characteristic of the �eld.4.6.1 SORT DeclarationThe syntax of the SORT declaration is:sort = "SORT" identlistThe SORT declaration reserves the names in identlist for use as sorts.4.6.2 IMPORT DeclarationThe syntax of the IMPORT declaration is:import = "IMPORT" header [renamings]renamings = "[" { ident "/" ident ";" } "]"The IMPORT declaration makes the sorts and operations of a speci�cation locally available.Its semantics correspond to the EXPOSE statement.

60 CHAPTER 4. SPECIFICATION COMPONENT4.6.3 MAP DeclarationThe syntax of the MAP declaration is:map = "MAP" header1 "->" header2 ["WHEN" header3]The MAP declaration de�nes the interpretation of an abstract operation (named by theidenti�er in header1) In the parameter list of an abstract function the sort names of amodel are speci�ed.In the parameter list of a concrete function (named by the identi�er in header2) the twoselectors VAL and DESC can appear. The i{th VAL selects the value of the i{th abstractfunction parameter. The i{th DESC selects the descriptor of the i{th abstract functionparameter. Descriptors are only sketched in the sequel.Conditional interpretation can be expressed by a WHEN clause following the real function.header3 de�nes the name and parameters of a LISP condition. In the condition the VALand DESC selectors can be used.Observe that the model interpretation can be viewed as function overloading. The abstractfunctions are sometimes also called generic functions.4.6.4 Example ModelOn the left hand side in a MAP clause appears the abstract function name with sort namesas parameters. On the right hand side after the `->' stands the concrete function namewith VAL and DESC selector parameters.MODEL FIELD;(*Rational numbers are a model for fields. *)(*1*) IMPORT RATIONAL;(*2*) MAP READ(RAT) -> RNDRD();MAP WRITE(RAT) -> RNWRITE(VAL);(*3*) MAP ONE(RAT) -> RNone();MAP ZERO(RAT) -> RNzero();(*4*) MAP PROD(RAT,RAT) -> RNPROD(VAL,VAL);MAP SUM(RAT,RAT) -> RNSUM(VAL,VAL);MAP DIF(RAT,RAT) -> RNDIF(VAL,VAL);MAP NEG(RAT) -> RNNEG(VAL);MAP Q(RAT,RAT) -> RNQ(VAL,VAL);MAP REZIP(RAT) -> RNINV(VAL);(*9*) END FIELD.This reads as follows: the product function PROD is interpreted in the model of rationalnumbers (two rational numbers as parameters RAT) as the concrete function RNPROD (fromthe abstract parameters the values are to be taken according to the VAL selectors).An example using descriptors and conditional interpretation is as follows.MODEL FIELD;(*Modular integers are a model for fields. *)...

4.7. AXIOMS 61(*4*) MAP PROD(MI,MI) -> MIPROD(DESC,VAL,VAL)WHEN EQ(DESC,DESC);...(*9*) END FIELD.MI denotes the modular integer Z=(p) sort. MIPROD denotes the modular integer productwhere the �rst parameter is the modulus p selected by DESC. The WHEN clause speci�es thatonly numbers from the same �nite �eld are to be multiplied (that is their descriptors mustbe equal (EQ)). Descriptors can be speci�ed in VAR declarations provided the speci�cationshave de�ned them.4.7 AxiomsThe axioms part describes conditional rewrite rules.The syntax of the AXIOM declaration is:axioms = "AXIOMS" header ";"{ (sort | import | rule) ";" } "END" ident1header = ident1 ["(" [identlist] ")"]The identi�er ident1 de�nes the name of the speci�cation and of the unit. The speci�ca-tions can be parametrized with formal parameters given by identlist.4.7.1 SORT DeclarationThe syntax of the SORT declaration is:sort = "SORT" identlistThe SORT declaration reserves the names in identlist for use as sorts.4.7.2 IMPORT DeclarationThe syntax of the IMPORT declaration is:import = "IMPORT" header [renamings]renamings = "[" { ident "/" ident ";" } "]"The IMPORT declaration makes the sorts and operations of a speci�cation locally available.Its semantics correspond to the EXPOSE statement.4.7.3 RULE DeclarationThe syntax of the MAP declaration is:rule = "RULE" expression1 "=>" expression2["WHEN" condition]

62 CHAPTER 4. SPECIFICATION COMPONENTThe RULE declaration de�nes a rewrite rule. The meaning is as follows: if the left handside of a rule (expression1 above) can be uni�ed with the expression under consideration,then the variables in the right hand side (expression2 above) are substituted accordingto the uni�cation. Then the right hand side replaces the actual expression.The rules de�ne a reduction relation on the term algebra generated by the sorts andoperations of the speci�cation.Variables need not be declared and are assumed to be universally quanti�ed and unbound.Conditional rewriting can be expressed by a WHEN clause following the right hand side of therewrite rule (condition above). The condition is evaluated with the variables substitutedaccording to the actual uni�cation of the left hand side.Currently there are no facilities to solve conditional equations since there is no back track-ing of unsuccessful rewritings.There are also no provisions to check if the rewrite system is conuent or Noetherian.4.7.4 Example AxiomsThe Peano structure can be speci�ed as follows:SPECIFICATION PEANO;(*Peano structure specification. *)(*1*) SORT nat, bool;(*2*) SIGNATURE null () : nat;SIGNATURE one () : nat;(* SIGNATURE succ (nat) : nat; *)SIGNATURE add (nat,nat) : nat;SIGNATURE prod (nat,nat) : nat;(*3*) SIGNATURE equal (nat,nat) : bool;(*9*) END PEANO.Observe that the succ (successor) constructor need not be de�ned in the speci�cation,since no rule has succ on the �rst functional term in the right hand side expression. ThePeano axioms can then be coded as rewrite rules as follows:AXIOMS PEANO;(*Axioms for Peano system. *)IMPORT PROPLOG;RULE one() => succ(null());(*1*) RULE equal(X,X) => TRUE();RULE equal(succ(X),null()) => FALSE();RULE equal(null(),succ(X)) => FALSE();(*2*) RULE equal(succ(X),succ(Y)) => equal(X,Y);(*3*) RULE add(X,null()) => X;RULE add(null(),X) => X;(*4*) RULE add(X,succ(Y)) => succ(add(X,Y));(*5*) RULE prod(X,null()) => null();RULE prod(null(),X) => null();(*6*) RULE prod(X,succ(Y)) => add(prod(X,Y),X);(*9*) END PEANO.

4.8. EXPOSE STATEMENT 63PROPLOG denotes a propositional logic speci�cation not listed here. There the constantfunctions TRUE() and FALSE() are de�ned. During uni�cation the variables X and Y arebound in the left hand side and then substituted in the right hand side.4.8 EXPOSE StatementOnce this speci�cation apparatus has been setup one wants to see how it works and whatbene�ts are obtained. The language constructs discussed so far modify only the declarationdata base. To access the de�ned functions they must �rst be exposed, that means theymust be made visible.The syntax of the EXPOSE statement is:expose = "EXPOSE" ident ["(" [actualparms] ")"]The identi�er ident de�nes the name of the unit. The actual parameters are given byactualparms and can be any MAS expression which evaluate to an item meaningful inthe unit.During the exposition of an implementation part the actual environment is used to de�nethe procedure closures. This implies that the order of the exposition is important. So onlymodels which have already been exposed are visible in an abstract implementation.For example the earlier de�ned units can be exposed as follows:EXPOSE RATIONAL.EXPOSE PEANO.EXPOSE FIELD.From then on the functions like PROD can be used in expressions or top level statementsand procedures.4.9 Operator OverloadingFor convenience of the users the MAS parser can be instructed to generate generic func-tion names for the arithmetic operators. However some care is needed since then also aspeci�cation of the atoms structure is required to access the built{in primitive arithmetic.This feature of the parser is set by the pragma switch GENPARSE. It activates / inactivatesthe generic code generation of the parser. The operators correspond to the followingfunctions: + to SUM, - to DIF or NEG, * to PROD, / to Q and ^ to EXP. See also the sectionon PRAGMAS 10.2.4.10 Expression EvaluationWe turn now to the evaluation of arbitrary expressions. Expressions are transformed tofunctional terms by the parser. The evaluation of functional terms is de�ned as follows:

64 CHAPTER 4. SPECIFICATION COMPONENT1. If there is a model in which the function has an interpretation and the WHEN{condition on the parameters is ful�lled, then the interpretation of the function inthis model is applied to the interpretation (values) of the arguments.2. If there is an imperative procedure, then the procedure body is evaluated in theprocedure context.3. If the uni�cation with the left hand side of a rewrite rule is possible and the associatedcondition evaluates to true, then the right hand side of the rewrite rule is evaluated.4. Otherwise the functional term is left unchanged.Let us step through the following examples:VAR r, s: RAT. ANS: RAT().r:="2222222222.777777777777777".ANS: "2222222222777777777777777/1000000000000000".s:=r/r. ANS: "1".s:=r^0 + s - "1": RAT. ANS: "1".The �rst line declares the variables r and s to be of type RAT, that is to be rationalnumbers. The second line is a so called generic assignment. Depending on the type ofr the character string on the right hand side is read (or converted to internal form).Recall that the interpretation of READ(RAT) was de�ned as RNDRD() which reads a rationalnumber in decimal representation.Internally an object with type, value and descriptor information is created. This informa-tion is then used by the generic write function WRITE(RAT) for displaying the result in thenext line.The fourth line shows the computation of r/r. According to the type information of rthe corresponding generic function Q(RAT,RAT) is determined. Then RNQ(VAL,VAL) iscomputed where the values of the data objects are substituted. Finally the informationon the output parameters of RNQ namely RAT is used to create a new typed object. Thisobject is then bound to the variable s and �nally it is displayed.The last line shows the computation of the expression r^0 + s - "1": RAT. The term"1": RAT denotes a constant from the rational numbers, namely 1. The contents of thecharacter string are read by the generic function READ(RAT) and a new typed object iscreated. Note further that r^0 is computed by an abstract function (namely EXP) of theabstract RING implementation. Then the computation proceeds as expected.A �nal example for the use of term algebras which explains itself:x:=one(). ANS: succ(null()).x:=add(x,x). ANS: succ(succ(null())).x:=prod(x,x). ANS: succ(succ(succ(succ(null())))).This concludes the discussion of the language constructs used in the speci�cation compo-nent.

Chapter 5List ProcessingIn this section we give an introduction to list processing.De�nition: An atom is a �{integer. A list is a �nite sequence of atoms and / or lists.Atoms and lists are objects.In MAS there is a second kind of lists which can also contain symbols (variables).De�nition: An S{expression is a list where the �rst element is a symbol or the �rstelement is an S{expression. S{expressions may contain further symbols.Empty lists are denoted by the variable NIL. Other lists are denoted by their elementsseparated by commas and enclosed in parenthesis. E. g. (1,a) denotes the list of the twoelements 1 and a.The size of lists is only limited by the available computer memory.5.1 List ConstructionOne way to construct a list is by the LIST function. LIST can be called by any number ofarguments and returns a list of its evaluated arguments.Example:x:=LIST(1,2,3,4). --> (1,2,3,4)y:=LIST(1,LIST(2,3),4). --> (1,(2,3),4)A second function to construct a list is the COMP function (COMPosition). Its �rst argu-ment is an object and the second argument is a list. The object is added as �rst elementto the list.Example:a:=COMP(0,x). --> (0,1,2,3,4)b:=COMP(3,NIL). --> (3) == LIST(3)The length of a list can be determined by the LENGTH function.Two lists can be combined to one list by the CONC and CCONC functions (CONCatenation,Constructive CONCatenation). CONC and CCONC take two lists as arguments and65

66 CHAPTER 5. LIST PROCESSINGreturn the concatenation of the inputs. CONC modi�es the �rst list to produce theconcatenated list and CCONC produces a copy of the �rst input.Example:a:=CCONC(x,y). --> (1,2,3,4,1,(2,3),4)b:=CONC(x,y). --> (1,2,3,4,1,(2,3),4), but x=b5.2 List DestructionThe basic parts of lists are their �rst element and the rest list without the �rst element.The functions FIRST and RED (for REDuctum = rest) access these parts.Example: (with the same lists as before)a:=FIRST(y). --> 1b:=RED(y). --> ((2,3),4)FIRST(RED(y)). --> (2,3)The procedure ADV combines the FIRST and RED function. ADV takes a list as �rstargument; it returns in the second argument the �rst element of the list and in the thirdargument the rest of the list.Example:ADV(y,a,b). --> (), now a=1, b=((2,3),4)a:=a. --> 1b:=b. --> ((2,3),4)When a new list is constructed while an old list is processed, the new list is in most cases inthe wrong order. So there is a need to reverse lists. There are two functions to accomplishthis: INV (INVerse) and CINV (Constructive INVerse).INV modi�es the existing list where CINV constructs a new list.Example: (with the same lists as before)a:=CINV(y). --> a=(4,(2,3),1) y=(1,(2,3),4)a:=INV(y). --> a=(4,(2,3),1) y=(1) !!!5.3 List DiagramsLists are stored in the computer in memory cells which have a �rst �eld and a reductum�eld. These memory cells are often represented as boxes with two �elds:REDFIRSTThe FIRST �eld contains objects. The RED �eld contains the address (called pointer) ofthe next cell of the list or NIL to denote the end of the list.Example: LIST(7). can be represented as:

5.3. LIST DIAGRAMS 67NIL7LIST(0,NIL,LIST(1)). would have the following representation:�0 �! �NIL �! NIL�#NIL1The pointers are shown as `�' and `�!'. `�' indicates that the �eld is occupied by a pointerand `�!' `points' to the next cell of the list.Note that in this representation the cells used to store a list can overlap with other cells:a:=LIST(2). --> (2)b:=COMP(COMP(0,a),COMP(1,a)). --> ((0,2),1,2)The list b contains two pointers to the list a:�� �! �1 �! NIL2# "�0 �! �! �! �Some care is needed when such lists are reversed. If it is done with the INV function, thena pointer circle may be constructed:NIL� � �1 � �2# "�0 �! �! �! �And if this list is printed one would obtain in�nite output:INV(b). --> (2,1,(0,2,1,(0,2, ... infinitelyIn such situations it may be required to use the CINV function to reverse a list.

68 CHAPTER 5. LIST PROCESSING5.4 Exercises1. Construct a list of the numbers 1; : : : ; 100.2. Compute the sum of all numbers in this list.3. Construct an `in�nite' list.4. Write a function which `maps' a function to the elements of a list and returns thelist of function results.Solution to exercise 1:i:=1. w:=NIL.WHILE i <= 100 DO w:=COMP(i,w); i:=i+1 END.w:=w. --> (100, 99, ..., 2, 1)In the WHILE loop the list w is composed from the numbers. The variable i runs from1 to 100. The list w is in the descending order. To get the list in ascending order usew:=INV(w). to reverse the list.Solution to exercise 2:s:=0. u:=w.WHILE u <> NIL DO ADV(u, j,u); s:=s+j END.s:=s. --> 5050u:=u. --> ()In the WHILE loop each element of u is accessed and summed in the variable s. The summust be below � since + is used as sum operator.Solution to exercise 3:w:=NIL. i:=0.WHILE i = 0 DO w:=COMP(i,w) END.-->** Garbage Collection ... nnn cells, 3 sec.** ... GC completed....** fatal error: Garbage Collection: too few cells reclaimed.(a)bort, (b)reak, (c)continue, (d)ebug, <ENTER> ? breakARG: w:=NIL.In this example the WHILE loop will never terminate since the variable i is not incre-mented within the loop. When the available cell space is consumed, a garbage collectiontakes place. This means that unused cells (garbage) are searched to become available forlist processing again. After a while no more or to few free cells are found and the programencounters a fatal error. Typing b for break or <ENTER> returns to the top level interpreterloop and the ARG: prompt is displayed. Finally empty the list by w:=NIL. to free the cellsfor next use.Solution to exercise 4:

5.5. STRINGS 69PROCEDURE mapcar(f,x);(*Map the function f to the elements ofthe list x. *)VAR y, e, r: ANY;BEGIN(*1*) y:=NIL; r:=x;(*2*) WHILE r # NIL DOADV(r, e, r);e:=f(e); y:=COMP(e,y)END;y:=INV(y); RETURN(y);(*9*) END mapcar.a:=LIST(1,2,3,4,5).ANS: (1 2 3 4 5)p:=mapcar(INEG,a).ANS: (-1 -2 -3 -4 -5)Mapcar takes as arguments a function and a list and applies the function to all elements ofthe list. In the statement e:=f(e) the parameter f is used as function. The so constructednew list is returned. In our example the function INEG, i.e. integer negation is applied to(1 2 3 4 5) producing the list (-1 -2 -3 -4 -5) of the negated integers.5.5 StringsAs already mentioned, character strings are internally represented as lists of �{integers.To make such number lists again visible as character sequence the procedure CLOUT canbe used (Character List OUT). CLOUT writes the output to the actual output stream.Example:a:="123". --> (1,2,3)CLOUT(a). --> 123CLOUT("abc"). --> abcBy this list representation of strings it is possible to use all list processing functions alsoon strings.Example:CLOUT(INV("abc")). --> cbaThe string "abc" is �rst converted to the list (11,12,13). Then this list is inverted andthe resulting list is written to the output stream.5.6 Exercises1. Write functions LEFT and RIGHT, which return the left respective right part of astring (list).

70 CHAPTER 5. LIST PROCESSINGLEFT(A,i) returns the i left objects of the list A.RIGHT(A,i) returns the objects of the list A starting from i+ 1.So CONC(LEFT(S,i), RIGHT(S,i)) = S holds.2. Write a function SUBSTR which returns a sub{string of a string.SUBSTR(A,i,j) returns a list of j objects of the list A starting from i+ 1.3. Write a function INDEX which determines the position of one string within anotherstring.INDEX(a,B) returns the position of the list a in the list B if a occurs in B, otherwise0 is returned.Solution to exercise 1:PROCEDURE left(S,i);(*Return the left i elements of the list S.*)VAR s, SP, T, k: LIST;BEGIN(*1*) SP:=S; T:=NIL; k:=0;WHILE (k < i) AND (SP # NIL) DO k:=k+1;ADV(SP,s,SP); T:=COMP(s,T) END;T:=INV(T); RETURN(T);(*9*) END left.To obtain the left part of a list it is necessary to copy the �rst i elements.PROCEDURE right(S,i);(*Return the right elements of the list S,starting from position i+1.*)VAR SP, k: LIST;BEGIN(*1*) SP:=S; k:=0;WHILE (k < i) AND (SP # NIL) DO k:=k+1;SP:=RED(SP) END;RETURN(SP);(*9*) END right.The right part of a list is just the respective reductum of the list. No copying is required.Solution to exercise 2:PROCEDURE sublist(S,i,j);(*Return j elements of the list S,starting from position i+1.*)RETURN(left(right(S,i),j)) sublist.a:=LIST(1,2,3,4,5,6,7,8,9,0).left(a,2). --> (1,2)

5.7. COMPLEXITY 71right(a,7). --> (8,9,0)sublist(a,3,4). --> (4,5,6,7)The substring (list) function can be built by combination of the LEFT and RIGHT func-tions.5.7 ComplexityIn this section we introduce the basic concepts of algorithm complexity. The concepts areapplied to the list processing algorithms in the next section.An important point in the discussion on algorithms is the time and the space used tocompute a given problem. Time and space are `costs' for the usage of an algorithm.The de�nition for the computing time cost function is as follows:De�nition: Let IA denote the set of inputs for an algorithm A and let R be the realnumbers. Then tA : IA 7! R denotes the computing time function for algorithm A. I.e.tA(i) i 2 IA gives the computing time of algorithm A for input i. When A is clear fromthe context, we will shortly write I for IA and t for tA.The space cost function cA is de�ned analog.Since the costs may vary for di�erent inputs it is convenient to distinguish minimal, averageand maximal cost functions:De�nition: Let IA denote the set of inputs for an algorithm A and let n = jIAj. Then1. the minimal computing time function is t� = minft(i) : i 2 Ig,2. the average expected computing time function is t� = 1nPi2I t(i),3. the maximal computing time function is t+ = maxft(i) : i 2 Ig.The following relation holds by de�nition:t� � t� � t+If t� = t+ we denote the computing time function by t.Computing time and memory space usage depend on the data representation, the algorithmand on the actual computer and its disks etc. The computer type is of minor interest,since the same algorithm may be implemented on di�erent machines and we can expectthat the computing time varies by a constant factor from one machine to another.How can computing time and space usage be measured independent of a particular com-puter architecture ?The elementary data type in computer algebra is the list. Therefore it seems naturally tomeasure 'time' as function of the list length of an object. Memory usage can be measuredin terms of cell usage, which is also a function of list length.In the following we will assume that operations on atoms cost 1 time unit and that no cellsare consumed during such an operation. The time cost for the retrieval of an atom fromthe FIRST �eld of a cell will be included in the cost for the operation on the atom. Also

72 CHAPTER 5. LIST PROCESSINGthe time to store an atom after an operation will be included in the cost for an operation.List construction with COMP costs one cell. The list length of an object a will be denotedby L(a).For 'simple' algorithms, like those for list processing or elementary arithmetic, the minimaland maximal computing time coincide. But for other algorithms the times can vary bymagnitudes. E.g. polynomials may have many zero coe�cients. Then the maximal com-puting time must take into account that possibly all coe�cients are non zero whereas theminimal computing time must take into account that only a certain number of coe�cientsis really non zero.In complicated cases where the maximum computing time is to bad and the averagecomputing time is not known, also the real computing time on a speci�c machine is takento get an idea of the complexity of the algorithm.When the computing time functions are determined constant factors or lower order termsare usually of minor interest. The big O notation allows to 'forget' about such details.O(f(n)) means, that there exists a constant c such that O(f(n)) < c � f(n) for all large n.E.g. 7 �L(a) � O(L(a)) or L(a)+3 � O(L(a)). But constant and non constant exponentsare of interest L(a)3, L(a)n or L(a)L(b).5.8 AlgorithmsIn this section we give a more formal summary of list processing functions. We includealso information on the complexity of the algorithms (see section 5.7). The expositionfollows [Loos 1976].Let A = fx 2 Z : jxj < �g be the set of atoms,L = fx 2 Z : � � jxj � � + �g be the set of lists (pointers to cells),O = A [L be the set of objects and Li the set of lists of length � i.The left column contains the algorithm speci�cation. In the right column the type spec-i�cation of the algorithm inputs and outputs and the algorithm function are described.Further the algorithm complexity is discussed.a FIRST (A) a 2 O; A 2 L1. a is the �rst element of the non empty list A. Onecell is accessed, so the computing time is t = 1, c = 0.A0 RED(A) A0 2 L; A 2 L1. A0 is the reductum of the non empty list A, i.e.A without its �rst element. One cell is accessed, so the computingtime is t = 1, c = 0.ADV (A; a;A0) a 2 O; A0 2 L; A 2 L1. a is the �rst element of the non empty listA, A0 is the reductum of A. One cell is accessed, so t = 1, c = 0.B COMP (a;A) a 2 O; A 2 L; B 2 L1. a becomes the �rst element of the nonempty list B, A becomes the reductum of B. One new cell ismade available, so t = 1, c = 1. (Garbage collection is not takeninto account.)n LENGTH(A) 0 � n 2 A; A 2 L. n is the length of A. All cells of the list aretraversed, so t = L(A), c = 0.

5.8. ALGORITHMS 73A LIST (a1; : : : ; an) ai 2 O (1 � i � n); n � 0; A 2 L. A is the list of the objectsa1; : : : ; an. n new cells are made available, so the computing timeis t = n, c = n.B INV (A) A;B 2 L. B is the inverse list of A. The cells of A are used torestructure the list B. The pointer A remains unchanged. Allcells are traversed, so t = L(A), c = 0.B CINV (A) A;B 2 L. B is the constructive inverse list of A. B is a newlist, the cells of A remain unchanged. L(A) new cells are madeavailable, so t = L(A), c = L(A).A CONC(A1; A2) A;A1; A2 2 L. A is the concatenation of the lists A1 and A2. Thecells of A1 are used to built the list A if A1 is not empty. Thepointers A1 and A2 remain unchanged. L(A1) cells are traversed,so t = L(A1), c = 0.A CCONC(A1; A2) A;A1; A2 2 L. A is the constructive concatenation of the lists A1and A2. A is a new list, the cells of A1 and A2 are unchanged.L(A1) new cells are made available, so t = L(A1), c = L(A1).t EQUAL(A;B) A;B 2 O, t 2 f0; 1g. If A and B are equal objects, i.e.atoms or lists with the same structure and same atoms, thent = 1 otherwise t = 0. Maximal the number of cells of thesmaller object are traversed, minimal one test is required: t+ =minfEXTENT (A)+1; EXTENT (B)+1g, t� = 1, c+ = c� = 0.n EXTENT (A) A 2 O, 0 � n 2 A. n is the number of cells of the object A.Overlapping is not counted. For A 2 A, n = 0. All cells of theobject are traversed, so t = EXTENT (A), c = 0.n ORDER(A) A 2 O, 0 � n 2 A. n is the maximal nesting level of lists of theobject A. For A 2 A, n = 0. All cells of the object are traversed,so t = EXTENT (A), c = 0.This concludes the summary of list processing functions.

Chapter 6Basic ArithmeticThe MAS system consists of a kernel with list processing, input / output facilities andan interaction part. The MAS language of the interaction part supports only 'primitive'arithmetic operations i.e. the operators +, -, *, /, etc. are only valid on �{integers (atoms).All further arithmetic functions must be imported from Modula{2 libraries.Available basic arithmetic libraries are:ALDES/SAC{2 Digit Arithmetic System,ALDES/SAC{2 Integer Arithmetic System,ALDES/SAC{2 Rational Number System,ALDES/SAC{2 Modular Integer Arithmetic System,ALDES/SAC{2 Integer Factorization System,ALDES/SAC{2 Set of Integers System,ALDES/SAC{2 Combinatorical System,MAS Arbitrary Precision Floating Point System,MAS Complex Number System,MAS Quaternion Number System,MAS Octonion Number System,MAS Finite Field System,Which functions are accessible from this libraries can be determined by the MAS HELPfunction. The listings of the de�nition modules of these libraries is contained in the folder\HELP on the MAS distribution disk.In the following we will discuss the libraries for arbitrary precision integers, arbitraryprecision rational numbers and arbitrary precision oating point numbers. Polynomialarithmetic will be discussed later.For further reading the following documents are recommended:1. D. E. Knuth: The Art of Computer Programming, Vol. II: Seminumerical Algo-rithms, Chap. 4: Arithmetic.This book contains an in{depth treatment of most basic arithmetic algorithms.74

6.1. INTEGER ARITHMETIC 752. G. E. Collins, M. Mignotte, F. Winkler: Arithmetic in Basic Algebraic Domains. InB. Buchberger, G. E. Collins, R. Loos: Computer Algebra, Computing Supplement4. This article contains an overview on the computational best algebraic algorithms.It is further recommended to look into the original ALDES / SAC{2 algorithm documen-tation or into the translated MAS libraries in Modula{2.6.1 Integer ArithmeticThe arbitrary precision integers are in the following called integers. The small integersare explicitly denoted as �{integers.We will �rst discuss the representation of integers by lists. Although it is not required tounderstand the representation to use the functions on integers, it is required to understandthe algorithms. Further the representation has important inuence on the computing time,i.e. the complexity of the algorithm.The base for the number representation of integers is �.Note: Let A 2 Z, A � 0 then there exist unique numbers n, a0; : : : ; an�1 2 Z, with0 � ai < � (i = 0; : : : ; n� 1) and an�1 6= 0 such that:A = n�1Xi=0 ai�i:For A < 0 the same representation holds under the condition �� < ai � 0 (i = 0; : : : ; n�1)and an�1 6= 0.De�nition: List representation of integers.A = 0 is represented by the atom 0.A 6= 0, jAj < �, is represented by the atom a0, andA 6= 0, jAj � �, is represented by the list (a0; : : : ; an�1).The `least signi�cant' �{digit is the �rst atom in the list representation. The `most signif-icant' digit appears as last element in the list representation. So e.g. A is even i� a0 (the�rst element in the list) is even.Example:� = 0 � �0 + 1 � �1, so n = 2 and the representation is (0; 1).�� = 0 � �0 + (�1) � �1, the list representation is (0;�1).6.1.1 AlgorithmsThe programs of the most important integer algorithms and their complexity are summa-rized next. Therefore let A be the set of atoms, L be the set of lists, O = A [L be theset of objects, I = fx 2 O : x represents an element of Zg be the set of integers andL(I) be the set of lists over integers. Further let L(a) denote the number of �{digits ofa (if a � � then this is equal to the list length of the representation of a). We will alsowrite L(a) for O(L(a)), i.e. we will not count for constant factors. The computing time

76 CHAPTER 6. BASIC ARITHMETICfunctions t; t+; t�; t� are de�ned as before in section 5.7. The time analyses are due to G.E. Collins.b INEG(a) a; b 2 I. b = �a is the negative of a. Every �{digit of a must beprocessed to change the sign, so t = L(a), c = L(a).s ISIGN(a) a 2 I, s 2 f�1; 0; 1g. s is the sign of a. As long as �{digits of aare zero, the list must be processed, so t+ = L(a), t� = 1, t� = 1,c = 0.b IABS(a) a; b 2 I. b = jaj is the absolute value of a. If sign(a) = �1 then amust change the sign, so t+ = L(a), t� = 1, c+ = L(a), c� = 0.s ICOMP (a; b) a; b 2 I, s 2 f�1; 0; 1g. s = sign(a � b) is the sign of a � b. Atmost the smaller number of digits of a and b must be compared, sot+ = minfL(a); L(b)g, t� = 1, c = 0.c ISUM(a; b) a; b; c 2 I. c = a + b is the sum of a and b. At least the smallernumber of digits of a and b must be added, so t� = minfL(a); L(b)g,c� = minfL(a); L(b)g. If always carrys occur, the maximal comput-ing time is proportional to the greater number of digits of a and b,so t+ = maxfL(a); L(b)g, c+ = maxfL(a); L(b)g. However carrysoccur `seldom', so t� = t�, c� = c�.c IDIF (a; b) a; b; c 2 I. c = a � b is the di�erence of a and b. b is negated,then the sum is computed, so t� = L(b), c� = L(b). The maximalcomputing time is proportional to the maximal computing time ofISUM , so t+ = maxfL(a); L(b)g, c+ = maxfL(a); L(b)g.c IPROD(a; b) a; b; c 2 I. c = a � b is the product of a and b. The product iscomputed by the classical method, multiplying each �{digit of aby each �{digit of b, so t+ = L(a) � L(b) = L(a)2 if L(a) = L(b).c+ = L(a) + L(b) since the cells of the result are reused and nottaken from the available cells during summation.c IPRODK(a; b) a; b; c 2 I. c = a � b is the product of a and b. The product is com-puted by Karatsubas method, splitting each integer in two halvesand then using only 3 multiplications, 4 summations and some shift-ing to obtain the product. More precisely if a = a1�+a0, b = b1�+b0where � such that L(a1) � L(a0), thena � b = a1b1�2 + (a1b1 + (a1 � a0)(b0 � b1) + a0b0)� + a0b0:If L(a) = L(b) then t+ = L(a)log2(3) = L(a)1:585:::. However c+ =L(a) � L(b), since the summation algorithms are used explicitly.Trade{o�: IPRODK is only superior to IPROD if the length ofthe integers exceed 55 �{digits, i.e. the integers exceed about 500decimal digits (= 8 lines full of decimal digits on the screen).IQR(a; b; q; r) a; b; q; r 2 I. b 6= 0, q = ba=bc, r = a � q � b. The classical divi-sion method (dividing the leading �{digits and subtracting b timesthe trial quotient digit) has been re�ned to the division of the two

6.1. INTEGER ARITHMETIC 77leading digits and subtracting b times the trial quotient digit. Theadvantage of this re�nement is that the trial quotient digit is innearly all cases the true quotient digit of the quotient, so seldomadjustments of the remainder are necessary. The computing timeis proportional to the time for the computation of the product of band q, so t+ = L(b) � L(q) and c+ = L(b) � L(q).q IQ(a; b) a; b; q 2 I. b 6= 0, q = ba=bc. Internally IQR is called, see IQR forthe computing time.r IREM(a; b) a; b; r 2 I. b 6= 0, r = a � ba=bc � b. Internally IQR is called, seeIQR for the computing time.c IEXP (a; n) a; c 2 I, 0 � n 2 A. c = an is the n{th power of a (exponentia-tion). c is computed by a binary exponentiation method, i.e. c isrecursively computed as (abn=2c)2 �an�bn=2c2. The computing time isproportional to the time for the computation of the `biggest' prod-uct, so t+ = (n � L(a))2, c+ = 2 � n � L(a), 2 because of the classicalmultiplication algorithm.c IGCD(a; b) a; b; c 2 I. c = gcd(a; b) is the greatest common divisor of a andb. The classical Euclidean algorithm uses the invariant gcd(a; b) =gcd(b; rem(a; b)) for the computation of the gcd until b = 0. Assumew.l.o.g. L(a) � L(b), then the maximal computing time is t+ =L(b)�(L(a)�L(gcd(a; b))+1). Thus if gcd(a; b) = 1 and L(a) = L(b)then t+ = L(a)2 and c+ = L(a)2. The number of division steps isbounded by dlog�(p5a)e � 2 � 4:8 log10(a) � 0:32. The averagenumber of division steps is given by 12 ln(2)�2 ln(a) � 1:9 log10(a).c ILCM(a; b) a; b; c 2 I. c = lcm(a; b) is the least common multiple of a andb. c is computed as agcd(a;b) � b. So the maximal computing time ist+ = 2L(a)2.a IRAND(n) 0 � n 2 A, a 2 I. a is a random integer with random sign andjaj < 2n. t = L(a) and c = L(a).a IREAD() a 2 I. An integer a is read from the actual input stream. A con-version from decimal representation to � representation is done, sot+ = L(a)2 and c+ = L(a)2.The syntax for integers is:int = ["+" | "-"]["0" | ... | "9"] { "0" | ... | "9" }Note: No blanks may appear within an integer !IWRITE(a) a 2 I. The integer a is written to the actual output stream. Aconversion from � representation to decimal representation is done,so t+ = L(a)2 and c+ = L(a)2. The syntax is the same as forIREAD.

78 CHAPTER 6. BASIC ARITHMETICILWRIT (a) a 2 L(I). a is a list of integers. Each element of a is written tothe output stream by IWRITE. So t+ = tIWRITE � length(a) andc+ = cIWRITE � length(a).l IFACT (a) a 2 I, l 2 L(I). l is the list of the integer prime factors of a, multiplefactors occur multiple times in l. (e.g. IFACT (8) = (2; 2; 2).) Forlarge L(a) the computing time has exponential growth: t+ = cL(a).l SMPRM() l 2 L(A). l is the list of the prime numbers between 2 and 1000.l DPGEN(m; k) l 2 L(A), m; k 2 A, m and k positive, k � 1000, m+ 2 � k < �. l isthe list of all prime numbers p, such that m � p < m+ 2 � k.This concludes the summary of integer arithmetic functions.Examples:a:=LIST(0,7,3). --> (0 7 3)IWRITE(a). --> 864691132213231616ISIGN(a). --> 1INEG(a). --> (0 -7 -3)ISUM(a,a). --> (0 14 6)b:=IEXP(2,29). --> (0 1)IREM(a,b). --> 0IQ(a,b). --> (7 3)IPROD(a,b). --> (0 0 7 3)ICOMP(a,b). --> 1IFACT(a). --> (2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 22 2 2 2 2 2 2 2 2 2 2 23 70026641)In the example an integer a is set to the list (0; 7; 3). That means a represents the integer0 � �0 + 7 � �1 + 3 � �2. The decimal representation of a is generated in the second line.Since sign(a) = sign(7) = 1 we have a > 0. �a has the representation (0;�7;�3). a + ahas the representation (0; 14; 6).Next b is set to � = 229, represented by the list (0; 1). The remainder by division by b iszero, a rem b = 0, (= the �rst element of the list representation of a). The quotient a=bis the rest list of the representation of a i.e. (7; 3). a � b shifts a one �{digit to the left(0; 0; 7; 3). Since 7 > 1 and the list representation of a is longer than that of b we havesign(a� b) = 1, i.e. a > b.Finally the prime factors of a are computed, since a is divisible by � we must have 29occurrences of 2 in the prime factors. And 7+ 3� seems to have the prime factors 23 and70026641.For illustration we list the algorithms ICOMP and IPROD in Modula{2 in MAS. The functionof the algorithms should be clear from the step comments and the integer representationdiscussed before.PROCEDURE ICOMP(A,B: LIST): LIST;

6.1. INTEGER ARITHMETIC 79(*Integer comparison. A and B are integers. s=SIGN(A-B).*)VAR AL, AP, BL, BP, DL, SL, UL, VL: LIST;BEGIN(*1*) (*A and B single-precision.*)IF (A < BETA) AND (B < BETA) THEN SL:=MASSIGN(A-B);RETURN(SL); END;(*2*) (*A single-precision.*)IF A < BETA THEN SL:=-ISIGNF(B); RETURN(SL); END;(*3*) (*B single-precision.*)IF B < BETA THEN SL:=ISIGNF(A); RETURN(SL); END;(*4*) (*compare corresponding digits.*) SL:=0; AP:=A; BP:=B;REPEAT ADV(AP,AL,AP); ADV(BP,BL,BP); UL:=MASSIGN(AL);VL:=MASSIGN(BL);IF UL*VL = -1 THEN SL:=UL; RETURN(SL); END;DL:=AL-BL;IF DL <> 0 THEN SL:=MASSIGN(DL); END;UNTIL (AP = SIL) OR (BP = SIL);(*5*) (*same length*)IF (AP = SIL) AND (BP = SIL) THEN RETURN(SL); END;(*6*) (*use sign of longer input.*)IF AP = SIL THEN SL:=-ISIGNF(BP); ELSESL:=ISIGNF(AP); END;RETURN(SL);(*9*) END ICOMP;BETA denotes �, MASSIGN denotes the sign function for �{integers. ISIGNF denotes the signfunction for integers in the libraries (for compatibility with the ALDES / SAC{2 libraries).SIL denotes the empty list.PROCEDURE IPROD(A,B: LIST): LIST;(*Integer product. A and B are integers. C=A*B.*)VAR AL, AP, APP, BL, BP, C, C2, CL, CLP, CP, CPP, EL, FL,I, ML, NL, TL: LIST;BEGIN(*1*) (*A or B zero.*)IF (A = 0) OR (B = 0) THEN C:=0; RETURN(C); END;(*2*) (*A and B single-precision.*)IF (A < BETA) AND (B < BETA) THEN DPR(A,B,CLP,CL);IF CLP = 0 THEN C:=CL; ELSE C:=LIST2(CL,CLP); END;RETURN(C); END;(*3*) (*A or B single-precision.*)IF A < BETA THEN C:=IDPR(B,A); RETURN(C); END;IF B < BETA THEN C:=IDPR(A,B); RETURN(C); END;(*4*) (*interchange if B is longer.*) ML:=LENGTH(A); NL:=LENGTH(B);IF ML >= NL THEN AP:=A; BP:=B; ELSE AP:=B; BP:=A; END;(*5*) (*set product to zero.*) C2:=LIST2(0,0); C:=C2;FOR I:=1 TO ML+NL-2 DO C:=COMP(0,C); END;(*6*) (*multiply digits and add products.*) CP:=C;REPEAT APP:=AP; ADV(BP,BL,BP);IF BL <> 0 THEN CPP:=CP; CLP:=0;REPEAT ADV(APP,AL,APP); DPR(AL,BL,EL,FL);CL:=FIRST(CPP); CL:=CL+FL; CL:=CL+CLP;CLP:=CL DIV BETA; TL:=CLP*BETA; CL:=CL-TL;SFIRST(CPP,CL); CLP:=EL+CLP; CPP:=RED(CPP);UNTIL APP = SIL;SFIRST(CPP,CLP); END;CP:=RED(CP);UNTIL BP = SIL;(*7*) (*leading digit zero*)IF CLP = 0 THEN SRED(C2,SIL); END;

80 CHAPTER 6. BASIC ARITHMETICRETURN(C);(*9*) END IPROD;DPR denotes the �{digit product, IDPR denotes the integer product with a �{digit, SFIRST(Set FIRST) and SRED (Set RED) are list modifying functions not available for interactiveuse in MAS.6.1.2 Exercises1. Compute the gcd of 156562431911123 and 442677773754356 in three ways:(a) Use the the built{in algorithm for the gcd.(b) Write an recursive algorithm in MAS and use it for the computation.(c) Write an iterative algorithm in MAS and use it for the computation.(d) � Write an iterative algorithm for the extended gcd.2. Write algorithms to compute the determinant of a square matrix over the integers.Assume that the matrices are represented as lists of lists of integers. Use the Laplacemethod for the expansion of the determinant. Therefore write the following sub{algorithms:(a) Deletion of an element of a vector (represented as list).(b) Deletion of a column of a matrix (represented as list of vectors).(c) Determinant expansion using Laplace's method.(d) An algorithm to generate matrices with respect to a function of the matrixentries.(e) � An algorithm with Gauss's method for the computation of the determinant.(f) � Write the determinant algorithm for other coe�cient domains, e.g. rationalnumbers.The solutions to the exercises are discussed in the sequel.Exercise 1. The built{in gcd algorithm has the name IGCD.For the MAS algorithms we use the euclidean method:gcd(a; b) = � a if b = 0;gcd(b; rem(a; b)) else:With this de�nition the recursive gcd algorithm can be formulated as follows:PROCEDURE ggt(a,b);IF b = 0 THEN RETURN(a)ELSE RETURN(ggt(b,IREM(a,b)))END ggt.The integer remainder is called IREM.The iterative gcd algorithm can be formulated using the WHILE{statement and an addi-tional variable d:

6.1. INTEGER ARITHMETIC 81PROCEDURE GGT(a,b);VAR d: ANY;BEGINWHILE b # 0 DO d:=b;b:=IREM(a,b); a:=d END;RETURN(a) END GGT.The numbers can be converted to internal representation by IREAD. The sample outputwith computing times follows:a:=IREAD(). 156562431911123b:=IREAD(). 442677773754356c:=IGCD(a,b).{0 sec} ANS: 7c:=ggt(a,b).{4 sec} ANS: 7c:=GGT(a,b).{2 sec} ANS: 7The gcd is always 7. The built{in algorithm is the fastest: it needs unmeasurable manyseconds. The recursive algorithm is the slowest: it needs about 4 seconds and the iterativealgorithm need 2 seconds.Exercise 2. Let A = (aij) be a n � n matrix over a commutative ring without zerodivisors. Then the determinant has the following expansion:det(A) = nXi=1(�1)i+j � aij � det(Aij) for some j; (1 � j � n):Where Aij is the matrix A without the i{th row and the j{th column.The computing time can be estimated by the following considerations: The determinant ex-pansion produces n! summands of products of n factors. Assume L(A) = maxfL(aij); 1 �i; j � ng. So t+ = n! � L(A)n and t� = L(A)n, e.g. if the matrix is in triangular form.In contrast it needs about n3 �eld operations and n5 ring operations to transform a matrixto upper triangular from by the Gauss respective the Bareiss algorithm. I.e. the Laplaceexpansion is very slow.The determinant expansion algorithm can be formulated as followsPROCEDURE det(M);(*Determinant. M is a matrix (i.e a listof row lists). The determinant of M is computed. *)VAR i, d, dp, s, N, MP, V, VP, v: LIST;BEGIN(*1*) d:=0;IF M = NIL THEN RETURN(d) END;(*2*) ADV(M,V,MP);

82 CHAPTER 6. BASIC ARITHMETICIF MP = NIL THEN RETURN(FIRST(V)) END;(*3*) s:=1; i:=0;WHILE V # NIL DO ADV(V,v,V); i:=i+1;IF v # 0 THENN:=delcolumn(MP,i); dp:=det(N);dp:=IPROD(v,dp);IF s < 0 THEN dp:=INEG(dp) END;d:=ISUM(d,dp);END;s:=-s; END;(*4*) RETURN(d);(*9*) END det.Step 2 handles the recursion base of a 1�1 matrix. In step 3 the determinant is expandedw.r.t. the �rst row (that is j = 1 in our formula). The test if some aij = 0 (denoted byv) is important, since in this case the expansion of the sub{matrix is useless and muchcomputing time can be saved. Since the �rst row of the matrix has been removed in step2, it is only necessary to remove the i{th column of the matrix. The matrices Ai1 aredenoted by N. The factor (�1)i+1 is handled by a sign ag denoted by s.The vector element deletion algorithm isPROCEDURE delelem(V,i);(*Delete element in list. V is a list. The i-thelement of V is deleted. 0 <= i <= length(V). *)VAR U, VP, v, j: ANY;BEGIN(*1*) IF i <= 0 THEN RETURN(V) END;IF V = NIL THEN RETURN(V) END;(*2*) VP:=V; j:=0; U:=NIL;REPEAT j:=j+1;IF VP = NIL THEN RETURN(V) END;ADV(VP,v,VP); U:=COMP(v,U);UNTIL j = i;(*3*) U:=RED(U); U:=INV(U); U:=CONC(U,VP);RETURN(U);(*9*) END delelem.Step 1 does some precondition checks. In step 2 the beginning of the list is copied toavoid the modi�cation of existing data. In step 3 the (new) beginning is reversed andconcatenated with the rest of the vector.The column delete algorithm is straight forward: for each row the previous algorithm iscalled.PROCEDURE delcolumn(M,i);(*Delete column in matrix. M is a matrix (i.e a listof row lists). In each row the i-th element isdeleted. *)VAR N, MP, V: ANY;BEGIN

6.1. INTEGER ARITHMETIC 83(*1*) IF i <= 0 THEN RETURN(M) END;IF M = NIL THEN RETURN(M) END;(*2*) MP:=M; N:=NIL;WHILE MP # NIL DO ADV(MP,V,MP);V:=delelem(V,i); N:=COMP(V,N);END;(*3*) N:=INV(N); RETURN(N);(*9*) END delcolumn.The sample matrices are:1. the unit matrix E = (eij) with: eij = � 1 if i = j;0 else;2. an upper triangular matrix U = (uij) with: uij = � j if i � j;0 else;3. a lower triangular matrix L = (lij) with: lij = � j if i � j;0 else:The generating functions for the matrices are as follows:PROCEDURE eh(i,j);IF i = j THEN RETURN(1) ELSE RETURN(0) END eh.PROCEDURE ut(i,j);IF i <= j THEN RETURN(j) ELSE RETURN(0) END ut.PROCEDURE lt(i,j);IF i >= j THEN RETURN(j) ELSE RETURN(0) END lt.eh means `Einheitsmatrix' = unit matrix, ut means upper triangular matrix and lt meanslower triangular matrix.The matrix generation procedure takes the generating function f and the dimension k asinput and delivers the appropriate matrix.PROCEDURE mat(f,k);VAR i, j, V, M: LIST;BEGIN(*1*) M:=NIL;IF k <= 0 THEN RETURN(M) END;(*2*) i:=0;WHILE i < k DO i:=i+1; j:=0; V:=NIL;WHILE j < k DO j:=j+1;V:=COMP(f(i,j),V) END;V:=INV(V); M:=COMP(V,M);END;(*4*) M:=INV(M); RETURN(M);(*9*) END mat.

84 CHAPTER 6. BASIC ARITHMETICA sample output follows:A:=mat(ut,5).{4 sec} ANS: ((1 2 3 4 5) (0 2 3 4 5) (0 0 3 4 5)(0 0 0 4 5) (0 0 0 0 5))d:=det(A). {246 sec} ANS: 120A:=mat(lt,10).{14 sec} ANS: ((1 0 0 0 0 0 0 0 0 0) (1 2 0 0 0 00 0 0 0) (1 2 3 0 0 0 0 0 0 0) (1 2 3 4 0 0 0 0 0 0)(1 2 3 4 5 0 0 0 0 0) (1 2 3 4 5 6 0 0 0 0) (1 2 34 5 6 7 0 0 0) (1 2 3 4 5 6 7 8 0 0) (1 2 3 4 5 6 78 9 0) (1 2 3 4 5 6 7 8 9 10))d:=det(A). {64 sec} ANS: 3628800In the �rst example a 5� 5 upper triangular matrix is generated. The determinant is 120and the computation takes 246 seconds.In the second example a 10� 10 lower triangular matrix is generated. The determinant is3628800 and the computing time is 64 seconds.The second computation is much faster, since the determinant is expanded with respectto the �rst row. And the lower triangular matrix has most times zero in these rows.6.2 Rational Number ArithmeticThe elements of Q, fractions of integers are in the following called rational numbers.We will �rst discuss the representation of rational numbers by lists.Note: Let a 2 Q, a = pq , p; q 2 Z, then there exist integers p0; q0 2 Z, with q0 > 0 andgcd(p0; q0) = 1 such that: pq = p0q0 :p and p0 are called denominator and q and q0 are called numerator of the rational numbera.De�nition: List representation of rational numbers.0 2 Q is represented by the atom 0.pq 2 Q, is represented by the list (p0; q0), where p0; q0 are represented as integers.p0; q0 de�ned as before.Example:73 is represented as (7; 3).�12 is represented as (�1; 2).03 is represented as 0.

6.2. RATIONAL NUMBER ARITHMETIC 85The representation of �3 is ((0; 1); 3).��3 is represented as ((0;�1); 3).48 is represented as (1; 2).6.2.1 AlgorithmsThe programs of the most important rational number algorithms and their complexity aresummarized in the following.Let A be the set of atoms, L be the set of lists, O = A [L be the set of objects,I = fx 2 O : x represents an element of Zg, be the set of integers and R = fx 2 O : xrepresents an element of Qg be the set of rational numbers. Further let L(a) denote themaximum of the length of the numerator and denominator of a (L(a) = maxfL(p0); L(q0)g).We will also write L(a) for O(L(a)), i.e. we will not count for constant factors. Thecomputing time functions t; t+; t�; t� are de�ned as before in section 5.7. The methods fore�cient product and sum algorithms are due to P. Henrici. The time analyses are due toG. E. Collins.b RNINT (a) a 2 I, b 2 R. b = a1 is the embedding of the integer a into therational numbers. Since the list (a; 1) is built t+ = 2, c+ = 2,t� = 1, c� = 0.c RNRED(a; b) a; b 2 I, c 2 R. c = ab is the construction of a rational numberfrom an integer numerator and a denominator. a and b are reducedto lowest terms. The list (a0; b0) is built with a0b0 = ab , b0 > 0 andgcd(a0; b0) = 1. t+ = t+IGCD = L(c)2, c+ = L(c)2, t� = 1, c� = 0.b RNDEN(a) a 2 R, b 2 I. a = nb , b is the denominator of a. t = 1, c = 0.b RNNUM(a) a 2 R, b 2 I. a = bd , b is the numerator of a. t = 1, c = 0.b RNNEG(a) a; b 2 R. b = �a is the negative of a. The sign of the denominatormust be changed, so t+ = t+INEG = L(a), c+ = L(a).s RNSIGN(a) a 2 R, s 2 f�1; 0; 1g. s is the sign of a. The sign of the denominatormust be determined, so t+ = t+ISIGN = L(a), c = 0.b RNABS(a) a; b 2 R. b = jaj is the absolute value of a. If sign(a) = �1 then amust change the sign, so t+ = L(a), t� = 1, c+ = L(a), c� = 0.s RNCOMP (a; b) a; b 2 R, s 2 f�1; 0; 1g. s = sign(a � b) is the sign of a � b.Let a = a1a2 , b = b1b2 , then a < b () a1b2 < b1a2. Thereforepossibly integer products must be formed and the computing timeis proportional to integer product and comparison. So if L(a) =L(b) we have t+ = t+IPROD + t+ICOMP = L(a)2, t� = 2t�ISIGN = 2,c+ = 2L(a), c� = 0.

86 CHAPTER 6. BASIC ARITHMETICc RNPROD(a; b) a; b; c 2 R. c = a � b is the product of a and b. Let a = a1a2 , b = b1b2 .The product, de�ned asc = c1c2 = a1a2 � b1b2 = a1 � b1a2 � b2 ;is computed in a way that exploits the precondition that the denom-inator and numerator have gcd = 1. Therefore let d1 = gcd(a1; b2),d2 = gcd(a2; b1) and let a1 = d1a01, b2 = d1b02, b1 = d2b01and a2 = d2a02. So c = a01 � b01a02 � b02 , and we obtain the postcondi-tion gcd(a01b01; a02b02) = 1 without actually computing that gcd. IfL(a) = L(b), the computing time is therefore only t+ = L(a)2 in-stead of (2L(a))2 for the classical method. c+ = L(a)2, t� = 2 andc� = 2.b RNEXP (a; n) a; b 2 R, n 2 N. c = an is the n{th power of a (exponentiation).Like the integer exponentiation c is computed by a binary exponen-tiation method. The computing time is proportional to the timefor the computation of the `biggest' product, so t+ = (n � L(a))2,c+ = 2 � n � L(a). t� = 2 and c� = 2.b RNINV (a) a; b 2 R. b = 1=a is the inverse of a. If a = a1a2 then 1=a = a2a1 . Onlyif the denominator has negative sign, the signs of the denominatorand numerator must be changed. t+ = 2t+INEG = 2L(a), c+ =2c+INEG = 2L(a), t� = 2 and c� = 2.c RNQ(a; b) a; b; c 2 R. c = a=b is the quotient of a and b. The inverse of bis determined and the product of a and 1=b is computed. So thecomputing time is t+ = t+RNINV + t+RNPROD = L(a)2. c+ = L(a)2,t� = 4 and c� = 4.c RNSUM(a; b) a; b; c 2 R. c = a + b is the sum of a and b. Let a = a1a2 , b = b1b2 .The sum is de�ned asc = c1c2 = a1a2 + b1b2 = a1 � b2 + a2 � b1a2 � b2 :We will also exploit the preconditions that the denominator andnumerator have gcd = 1 to minimize the computing time. Thereforelet d = gcd(a2; b2) and let a2 = da02, b2 = db02. Further let t =a1b2 + a2b1, t0 = a1b02 + a02b1 and e = gcd(t0; d). Now observe thatgcd(t; a2b2) = d � gcd(t0; a2b02) = d � gcd(t0; d) = d � e:Since d divides a1b2 + a2b1 and a2b2 the �rst equation holds. Andsince both a02 and b02 have gcd = 1 with a1b02 + a02b1, the sec-ond equation holds. Let t0 = t00e and a2 = a002e then the sum isc = t00a002 � b02 . The postcondition gcd(t00; a002b02) = 1 holds by con-struction of t00 and a002 . If L(a) = L(b) the computing time ist+ = t+IGCDd + 2t+IPRODt0 + t+ISUMt0 + t+IGCDe . t+ = L(a)(L(a) �

6.2. RATIONAL NUMBER ARITHMETIC 87L(d)+1)+2L(a)(L(a)�L(d)+1)+2L(a)+2L(a)(L(d)�L(e)+1).For L(d) = 1 we obtain t+ = L(a)2 +2L(a)2+4L(a) = 3L(a)2 andfor L(d) = L(a), t+ = L(a) + 4L(a) + 2L(a)2 = 3L(a)2. For theclassical method we get t+ = 3L(a)2 + 2L(a) + (2L(a))2 = 7L(a)2.Further c+ = L(a)2, t� = const and c� = 2.c RNDIF (a; b) a; b; c 2 R. c = a � b is the di�erence of a and b. b is negated,then the sum is computed, so t� = L(b), c� = L(b). The maximalcomputing time is proportional to the maximal computing time ofRNSUM , so t+ = maxfL(a); L(b)g, c+ = maxfL(a); L(b)g.a RNREAD() a 2 R. A rational number a is read from the actual input stream. Aconversion from decimal representation to � representation is doneand the numerator and denominator are reduced to lowest terms,so t+ = L(a)2 and c+ = L(a)2.The syntax accepted by RNREAD for rational numbers is:rat = int ["/" int]a RNDRD() a 2 R. Same as RNREAD except for a di�erent syntax. Thesyntax accepted by RNDRD for rational numbers is:rat = int ["/" int| "." unsigned-int ["E" beta-int]]Note: No blanks are allowed before "E".RNWRIT (a) a 2 R. The rational number a is written to the actual outputstream. A conversion from � representation to decimal representa-tion is done, so t+ = L(a)2 and c+ = L(a)2. The syntax is the sameas for RNREAD.RNDWR(a; s) a 2 R, s 2 A. The rational number a is written to the actual outputstream. With s digits following the decimal point. The syntax is:rat = int "." unsigned-int ["+" | "-"]A trailing "+" (or "-") indicates whether the rational number isgreater (or smaller) than the written decimal approximation.a RNRAND(n) 0 � n 2 A, a 2 R. a = a1ja2j+1 reduced to lowest terms is arandom rational number with a1;2 = IRAND(n). t+ = L(a)2 andc+ = L(a)2.This concludes the summary of rational number arithmetic functions.Examples:a:=RNRED(6,-8). --> (-3,4)a:=RNREAD(). 3/4 --> (3,4)

88 CHAPTER 6. BASIC ARITHMETICa:=RNREAD(). 3/-4 --> (-3,4)a:=RNDRD(). 3.4 --> (17,5)a:=RNDRD(). 3.14E7 --> (31400000,1)RNWRIT(a). --> -3/4RNDWR(a,10). --> -0.7500000000RNDWR(a,0). --> -1.-RNDWR(a,1). --> -0.7+The �rst statement shows the normalization of a rational number 6�8 = �34 with gcd(3; 4) =1 and 4 > 0.In the next two statements RNREAD is used to read two rational numbers. Observe that3/-4 has negative numerator which is normalized during input. RNDRD is able to read thedecimal fraction 3.4 which is 3+ 410 = 3+ 25 = 15+25 = 175 as shown. The number 3.14E7is interpreted as (3 + 14100) � 107, which gives the rational number 314000001 .The output routine RNWRIT needs no further explanation. RNDWR writes a rational numberas decimal fraction with speci�ed number of digits after the decimal point. �34 with 10digits after the decimal point is exactly �0:7500000000. With 0 digits after the decimalpoint �1:� is printed, the trailing � indicates that �1: < � 34 . With 1 digit after thedecimal point �0:7+ is printed which indicates that �0:7 > � 34 .For illustration we list the algorithms RNSUM and RNPROD in Modula{2 in MAS. The functionof the algorithms should be clear from the step comments and the integer representationdiscussed before.PROCEDURE RNPROD(R,S: LIST): LIST;(*Rational number product. R and S are rational numbers. T=R*S.*)VAR D1, D2, R1, R2, RB1, RB2, S1, S2, SB1, SB2, T, T1, T2: LIST;BEGIN(*1*) (*r=0 or s=0.*)IF (R = 0) OR (S = 0) THEN T:=0; RETURN(T); END;(*2*) (*obtain numerators and denominators.*) FIRST2(R,R1,R2);FIRST2(S,S1,S2);(*3*) (*r and s integers.*)IF (R2 = 1) AND (S2 = 1) THEN T1:=IPROD(R1,S1);T:=LIST2(T1,1); RETURN(T); END;(*4*) (*r or s an integer.*)IF R2 = 1 THEN IGCDCF(R1,S2,D1,RB1,SB2); T1:=IPROD(RB1,S1);T:=LIST2(T1,SB2); RETURN(T); END;IF S2 = 1 THEN IGCDCF(S1,R2,D2,SB1,RB2); T1:=IPROD(SB1,R1);T:=LIST2(T1,RB2); RETURN(T); END;(*5*) (*general case.*) IGCDCF(R1,S2,D1,RB1,SB2);IGCDCF(S1,R2,D2,SB1,RB2); T1:=IPROD(RB1,SB1); T2:=IPROD(RB2,SB2);T:=LIST2(T1,T2); RETURN(T);(*8*) END RNPROD;FIRST2 accesses the �rst two elements of a list. LIST2 constructs a list of two elements.IGCDCF computes the gcd (4{th (VAR) parameter) together with the cofactors (5-th and 6-th parameter). IPROD is the product of two integers. The correctness of step 5 is discussedin the summary.PROCEDURE RNSUM(R,S: LIST): LIST;(*Rational number sum. R and S are rational numbers. T=R+S.*)VAR D, E, R1, R2, RB2, S1, S2, SB2, T, T1, T2: LIST;

6.2. RATIONAL NUMBER ARITHMETIC 89BEGIN(*1*) (*r=0 or s=0.*)IF R = 0 THEN T:=S; RETURN(T); END;IF S = 0 THEN T:=R; RETURN(T); END;(*2*) (*obtain numerators and denominators.*) FIRST2(R,R1,R2);FIRST2(S,S1,S2);(*3*) (*r and s integers.*)IF (R2 = 1) AND (S2 = 1) THEN T1:=ISUM(R1,S1);IF T1 = 0 THEN T:=0; ELSE T:=LIST2(T1,1); END;RETURN(T); END;(*4*) (*r or s an integer.*)IF R2 = 1 THEN T1:=IPROD(R1,S2); T1:=ISUM(T1,S1);T:=LIST2(T1,S2); RETURN(T); END;IF S2 = 1 THEN T1:=IPROD(R2,S1); T1:=ISUM(T1,R1);T:=LIST2(T1,R2); RETURN(T); END;(*5*) (*general case.*) IGCDCF(R2,S2,D,RB2,SB2);T1:=ISUM(IPROD(R1,SB2),IPROD(RB2,S1));IF T1 = 0 THEN T:=0; RETURN(T); END;IF D <> 1 THEN E:=IGCD(T1,D);IF E <> 1 THEN T1:=IQ(T1,E); R2:=IQ(R2,E); END;END;T2:=IPROD(R2,SB2); T:=LIST2(T1,T2); RETURN(T);(*8*) END RNSUM;ISUM denotes the sum of two integers. IGCD denotes the integer gcd. IQ is the integerquotient. The other algorithms are mentioned in the description of RNPROD. The correctnessof step 5 is discussed in the summary.6.2.2 Exercises1. Write an algorithm to compute the exponential series exp over the rational numbersup to a desired precision " > 0. With this algorithm compute e = exp(1) up to 50decimal digits.The solution to the exercise is discussed in the sequel.The exponential series is de�ned for complex x byexp(x) = 1Xn=1 xnn! :The exponential series can be approximated by PNn=1 xnn! + rN+1(x). Where for the restwe have rN+1(x) < 2 jxjN+1(N + 1)! :Let " > 0 be �xed. We want to approximate exp(x) such that rN+1(x) < ", therefore thesummand must satisfy jxjN+1(N+1)! � j xN+1(N+1)! j < "2 .With this information the algorithm can be formulated as follows:PROCEDURE Exp(x,eps);(*Exponential function. eps is the desired precision. *)VAR s, xp, ep, i, y: ANY;

90 CHAPTER 6. BASIC ARITHMETICBEGIN(*1*) y:=RNINT(1); s:=RNINT(1); i:=0;ep:=RNPROD(eps,RNRED(1,2));(*2*) REPEAT i:=i+1; xp:=RNRED(1,i);y:=RNPROD(y,x); y:=RNPROD(y,xp);s:=RNSUM(s,y)UNTIL RNCOMP(RNABS(y),ep) <= 0;RETURN(s)(*9*) END Exp.The complexity can be estimated as follows: the most expensive operations in theREPEAT{loop are RNPROD(y,x), RNSUM(s,y) and RNCOMP(. ,ep), which have com-puting times proportional to L(:)2. For the `biggest' product xn�1 �x we have t+RNPROD =(nL(x))L(x). For the `biggest' sum (Pn�1i=1 xii!)+ xnn! we have t+RNSUM = (nL(x))2. The com-parison needs also t+RNCOMP = (nL(x))2. By this the computing time for the exponentialseries is t+Exp = (nL(x))2.As an example we are going to compute e = Exp(1) with precision " = 11050 . The sampleoutput follows:dig:=50. Eps:=RNRED(1,IEXP(10,dig)).one:=RNINT(1).e:=Exp(one,Eps).{20 sec} ANS: ((119769761 450433631 444044040 360650700406458113 17125896) (0338539520 159342123356614372 176392732 6300265))BEGIN CLOUT("AbsErr = "); RNDWR(Eps,dig); BLINES(0);CLOUT("Result = "); RNDWR(e,dig); BLINES(0);CLOUT("Result = "); RNWRIT(e); BLINES(0) END.AbsErr = 0.0001Result = 2.71828182845904523536028747135266249775724709369996-Result = 763840519752288597376564549384146889815927382313633/281001223550575979708628521248902313987276800000000The computation needs 20 seconds on an Atari ST. Then the absolute error, e as decimalfraction and e as rational number are printed. Observe that L(e) = 6 by counting the�{integers from the internal representation of e.

6.3. ARBITRARY PRECISION FLOATING POINT ARITHMETIC 916.3 Arbitrary Precision Floating Point ArithmeticThe arbitrary precision oating point numbers are called oating point numbers forshort. We will �rst discuss the representation of oating point numbers by lists.Note: Let a 2 Q, then there exists an integer e 2 Z and a rational number m 2 Q with12 � jmj < 1 such that a = m � 2e:In this case e = blog2(jaj)c+ 1.The binary precision z of a oating point number is the number of binary digits of thefraction part. We call m0 = bm � 2zc 2 Z the fraction part (also called mantissa) of theoating point number a and we call e the exponent of a.De�nition: List representation of oating point numbers.0 2 Q is represented by the list (0; 0).a 2 Q, a 6= 0 with �� < e < �, is represented by the list (e0;m0). e = e0 2 Aand m0 2 I are represented as atom respectively integer. e;m0 de�ned asbefore.For a 2 Q with e � �� or � � e there is no representation de�ned.Recall that � = 2� is a power of 2, � = 29. The binary precision z is determined from thedecimal precision d in the following way. Let� = dlog�(10d)ethen z = blog2(��)c � 1 = �� � 1:The fraction part m0 of a oating point number is then an integer with dlog2(jm0j)e = zand so dlog�(jm0j)e = �.Example:Let d = 20, i.e. the desired decimal precision is 20 decimal digits. Then dlog�(1020)e= 3 = � and we have z = ��� 1 = 29 � 3� 1 = 86.12 = 12 � 20 is represented as (0; (0; 0; 134217728)), since e = 0, and b 12 � 2zc= 0�0 + 0�2 + 134217728�2 which is represented by (0; 0; 134217728).1 = 12 � 21 is represented by (1; (0; 0; 134217728)),14 = 12 � 2�1 is represented by (�1; (0; 0; 134217728))and �2 = �12 � 22 is represented by (2; (0; 0;�134217728)).6.3.1 AlgorithmsThe programs of the most important oating point algorithms and their complexity aresummarized in the following.Let A be the set of atoms, L be the set of lists, O = A [L be the set of objects,I = fx 2 O : x represents an element of Zg be the set of integers, R = fx 2 O : xrepresents an element of Qg be the set of rational numbers and F = fx 2 O : x representsa oating point numberg be the set of oating point numbers. Let � = L(a) denote the

92 CHAPTER 6. BASIC ARITHMETIC�{length of the fraction part m0 of a oating point number a. The length of integersand rational numbers are de�ned as in the previous section. We will also write L(a)for O(L(a)), i.e. we will not count for constant factors. The computing time functionst; t+; t�; t� are de�ned as before in section 5.7.APSPRE(n) n 2 A. The precision of oating point numbers is set to n decimaldigits. t+ = t+IEXP = n2 = O(�2), c+ = 2n = O(2�).b APFINT (a) a 2 I, b 2 F . b = m02e0 is the embedding of the integer a into theoating point numbers. Since a is shifted t+ = L(a) + jL(a)�L(b)j= maxfL(a); �g, c+ = �, t� = L(a), c� = 0.b APFRN(a) a 2 R, b 2 F . b = m02e0 is the embedding of the rational numbera into the oating point numbers. The numerator and denominatorof a are converted to oating point numbers, then their quotient isformed. t+ = 2t+APFINT+ t+APQ = 2maxfL(a); �g+�2, c+ = 2�+�2.b RNFAP (a) a 2 F , b 2 R. b = m2�e is the the rational number b which corre-sponds to the oating point number a. b is reduced to lowest terms.t+ = t+IEXP + t+RNRED = e2 +maxf�; e� g2, c+ = e2 +maxf�; e� g2.b APNEG(a) a; b 2 F . b = �a is the negative of a. The fraction part of a isnegated, so t = tINEG = �, c = �.s APSIGN(a) a 2 F , s 2 f�1; 0;+1g. s = sign(a) is the sign of a. The integersign of the fraction part of a is determined, so t+ = �, t� = 1, c = 0.b APABS(a) a; b 2 F . b = jaj is the absolute value of a. The fraction part of a ispossibly negated, so t+ = t+APNEG = �, c+ = �. t� = 1, c� = 0.s APCMPR(a; b) a; b 2 F , s 2 f�1; 0;+1g. s = sign(a�b) is the sign of the di�erenceof a and b. The fraction part of a and b must be compared if thesigns of the fraction parts and the exponents are equal, so t+ = �,t� = 1, c = 0.c APPROD(a; b) a; b; c 2 F . c = a � b is the product of a and b. The fraction partsof a and b are multiplied the result is then truncated, so t = �2,c = �2.c APQ(a; b) a; b; c 2 F . c = a=b is the quotient of a and b. The fraction partof a is shifted by 2z and then an integer quotient is computed, sot = 2�2, c = �2.c APSUM(a; b) a; b; c 2 F . c = a+ b is the sum of a and b. The fraction part of a orb is shifted to bring the decimal points in the same place, then theintegers are added and normalized. Let ea and eb be the exponentsof a and b respectively. Assume further that jea � ebj < z, sinceotherwise nothing is to be done, then t+ = t+IMP2+ t+ISUM+ t+APFINT= L(2jea�ebj) + 2�+ 2� = O(2�). c+ = 2�, t� = �, c� = �.

6.3. ARBITRARY PRECISION FLOATING POINT ARITHMETIC 93c APDIFF (a; b) a; b; c 2 F . c = a� b is the di�erence of a and b. b is negated, thenthe sum of a and �b is computed. t+ = t+APSUM, t� = �.b APEXP (a; n) a; b 2 F , n 2 A. b = an is the n-th power of a (exponentiation).The binary exponentiation method is used as described with IEXP .Since the length of the products are always � we have to count thenumber of products and so t+ = log2(n)�2.b APROOT (a; n) a; b 2 F , n 2 A. b = npa is the n-th root of jaj. b is computed byNewtons method. The most expensive part is the computation ofan, so t+ = log2(n)�2.a APPI() a 2 F . a = �. � is computed by the method of Salamin using thearithmetic{geometric mean approximation for an elliptic integralrepresentation of �. t+ = const�2, since square roots are computed.a APREAD() a 2 F . APREAD is be de�ned as APFRN(RNDRD()) and theaccepted syntax is that of RNDWR.APWRIT (a) a 2 F . The oating point number a is written to the current outputstream. The syntax is:rat = int "." unsigned-int["E" unsigned-beta-int]This syntax is accepted by RNDRD for input.This concludes the summary of oating point number arithmetic functions.Note: When the precision of the oating point numbers is changed, then the alreadyexisting numbers are not automatically converted to the new precision. The conversioncan be accomplished by �rst converting the oating point number to a rational number.Then change the precision and �nally reconvert the rational number to a oating pointnumber.Example: Assume the current decimal precision is d2 and we want to convert numberswhich are represented in precision d1. The following algorithm does the conversion:PROCEDURE Crep(a,d1,d2);(*Change the representation of thefloating point number a, with precision d1 toprecision d2.*)VAR r: LIST;BEGIN(*1*) (*set old precision and convert. *)APSPRE(d1); r:=RNFAP(a);(*2*) (*set new precision and convert. *)APSPRE(d2); r:=APFRN(r);RETURN(r);(*3*) END Crep.

94 CHAPTER 6. BASIC ARITHMETICFor illustration we list the algorithms APFINT and APSUM in Modula{2 in MAS. The functionof the algorithms should be clear from the step comments and the oating point numberrepresentation discussed before.PROCEDURE APFINT(N: LIST): LIST;(*Arbitrary precision floating point from integer.The integer N is converted to the arbitrary precisionfloating point number A.*)VAR A, EL, FL, ML: LIST;BEGIN(*1*) (*n=0.*)IF N = 0 THEN A:=APCOMP(0,0); RETURN(A); END;(*2*) (*normalize.*) EL:=ILOG2(N); FL:=EL-1-APPR2; (*1=log2(2).*)IF FL >= 0THEN ML:=IDP2(N,FL); (*truncate*)ELSE ML:=IMP2(N,-FL); (*fill up*) END;(*3*) (*round.*) ML:=ISUM(ML,1);ML:=IDP2(ML,1);(*4*) (*finish.*) A:=APCOMP(ML,EL); RETURN(A);(*6*) END APFINT;APCOMP denotes the composition of an exponent and the fraction part of a oating pointnumber. ILOG2 means the integer logarithm base 2, IDP2 denotes `integer division bypower of 2' and IMP2 denotes `integer multiplication by power of 2'. All three algorithmsexploit the � representation of integers and the fact, that � is itself a power of 2. ISUMdenotes integer sum. APPR2 means the number z of binary digits of the representation.PROCEDURE APSUM(A,B: LIST): LIST;(*Arbitrary precision floating point sum.A, B and C are arbitrary precision floating point numbers.C is the sum of A and B. C=A+B.*)VAR C, EL, EL1, EL2, ML, ML1, ML2: LIST;BEGIN(*1*) (*A or B zero.*)ML1:=APMANT(A); ML2:=APMANT(B);IF ML1 = 0 THEN RETURN(B) END;IF ML2 = 0 THEN RETURN(A) END;(*2*) (*check exponent range.*)EL1:=APEXPT(A); EL2:=APEXPT(B);EL:=MASABS(EL1-EL2);IF EL > APPR2 THENIF EL1 > EL2 THEN RETURN(A) ELSE RETURN(B) END;END;(*3*) (*normalize mantisa and add.*)EL:=IMIN(EL1,EL2);ML1:=IMP2(ML1,EL1-EL); ML2:=IMP2(ML2,EL2-EL);ML:=ISUM(ML1,ML2); C:=APFINT(ML);(*4*) (*shift.*) EL:=EL-APPR2; C:=APSHFT(C,EL);(*5*) (*finish.*) RETURN(C);(*6*) END APSUM;APEXPT and APMANT extract the exponent and the fraction part (mantissa) of a oatingpoint number. MASABS determines the absolute value of the argument. IMP2, IMIN andISUM denote integer multiplication by power of 2, integer minimum and integer sum respec-tively. APSHFT adds the second parameter to the exponent of the oating point numberand checks the exponent for overow or underow.

6.3. ARBITRARY PRECISION FLOATING POINT ARITHMETIC 956.3.2 Exercises1. Let R denote the real numbers. Use Newtons method to write an algorithm toapproximate a zero of a function f : R �! R up to a desired precision " > 0. Withthis algorithm compute a zero of the function f(x) = x2� 2 up to 50 decimal digits.The Newton iteration is de�ned as:xn+1 = xn � f(xn)f 0(xn) ; for xn 2 R; n 2 N:Recall the properties of the Newton iteration:Proposition: Let D = [a; b] � R be a closed and bounded interval in the real numbersand let f : D �! R be a two times continuous di�erentiable function on D with1. f(a) � f(b) < 0,2. f 0(�) 6= 0 for all � 2 D,3. f 00(�) � 0 or f 00(�) � 0 for all � 2 D.If further x1 2 D, then the Newton sequence fxngn2N converges for all x0 2 (a; b)monotonous against the unique zero � of f .With the conditions of the proposition we obtain three terminating conditions:1. If n is greater than a maximal allowable number of iterations, then condition 1) isnot ful�lled in the neighbourhood of x0, i.e. there is possibly no zero near x0.2. If f 0(xn) < ", then condition 2) is not ful�lled i.e. there is possibly a singularity nearxn.3. jxn+1 � xnj < " i.e. j f(xn)f 0(xn) j < ". Then xn+1 is an approximation for �.With this information the algorithm can be formulated as follows:dig:=50. APSPRE(dig).AbsErr:=APFRN(RNRED(1,IEXP(10,dig/2))).MaxIter:=100.PROCEDURE Newton(f,fp,x);(*Newton iteration. f and fp are functions.x is the starting value for iteration. A fix pointof x-f(x)/fp(x) is returned. *)VAR i, y, z, zp, w: ANY;BEGIN(*1*) i:=0; y:=x;(*2*) WHILE i < MaxIter DO i:=i+1;z:=f(y); zp:=fp(y);IF APCMPR(APABS(zp),AbsErr) <= 0 THENCLOUT("Derivation becommes zero.");BLINES(1); RETURN(y) END;

96 CHAPTER 6. BASIC ARITHMETICw:=APQ(z,zp); y:=APDIFF(y,w);IF APCMPR(APABS(z),AbsErr) <= 0 THENRETURN(y) END;END;CLOUT("Maximal number of iterations reached.");BLINES(1); RETURN(y);(*9*) END Newton.The maximal allowed number of iterations is set to 100 (variable MaxIter). The absoluteerror is to be no greater than 10�50 (variable AbsErr). If one of the terminating conditions1) or 2) is reached, a message is printed and the computation is stopped. Otherwise thealgorithm terminates by condition 3) and returns an approximation of the zero of f .The function f(x) = x2 � 2 with derivation f 0(x) = 2x can be formulated as algorithm asfollows:zwei:=APFINT(2).PROCEDURE E(x);(*Expression function. An expression is evaluated at x. *)VAR y: ANY;BEGIN(*1*) (* x**2 - 2 *)y:=APEXP(x,2); y:=APDIFF(y,zwei);RETURN(y);(*9*) END E.PROCEDURE Ep(x);(*Expression function derivation. The derivation ofan expression is evaluated at x. *)VAR y: ANY;BEGIN(*1*) (* 2 x *)y:=APPROD(x,zwei);RETURN(y);(*9*) END Ep.A sample output follows:start:=APFINT(1).{0 sec} ANS: (1 (0 0 0 0 0 134217728))b:=Newton(E,Ep,start).{6 sec} ANS: (1 (202854696 513744239 228305493 18243426133414089 189812531))BEGIN CLOUT("AbsErr = "); APWRIT(AbsErr); BLINES(0);CLOUT("Result = "); APWRIT(b); BLINES(0);CLOUT("W2 = "); APWRIT(APROOT(zwei,2));BLINES(0) END.

6.3. ARBITRARY PRECISION FLOATING POINT ARITHMETIC 97AbsErr = 0.100E-24Result = 0.141421356237309504880168872420969807856967187537694E1W2 = 0.141421356237309504880168872420969807856967187537694E1First the starting point for the iteration is set to 1. Then the function Newton is calledwith the function E, its derivation Ep and the starting point as input. The computationneeds 6 seconds on an Atari ST. Finally the absolute error, the zero and for comparisonthe square root of 2 are printed.

Chapter 7Polynomial SystemsBesides the integers and rational numbers the most important data types are polynomials.Polynomials are always represented in some (internal) canonical form and not as generalLISP S{expressions. The most important canonical representations are:� recursive representation,� distributive (or distributed) representation,� dense representation.These representations will be discussed in the following sections. For every representationthere are algorithms to read and write polynomials, select parts of polynomials, constructpolynomials and to perform basic arithmetic of polynomials (like sum, product, remainder,evaluation, substitution).For more advanced methods like polynomial greatest common divisors or multivariatepolynomial factorization there are algorithms for the recursive polynomial repesentation.For Gr�obner bases and polynomial ideal decomposition or solving systems of polynomialequations there are algorithms for the distributive polynomial representation. The denserepresentation is mainly used for algorithms for fast univariate polynomial remainder com-putations.There is a varity of application dependent `�ne tunings' of representations to optimizespace, time or programming complexity of the algorithms which are not discussed here(and which are only partly available in the current system).Program libraries are composed from the ALDES / SAC-2 system [Collins, Loos 1982]and from the DIP system [Gebauer, Kredel 1983] which is based on the former. Thecollection of algorithms and global variables are called `systems'. The systems are brokeninto modules according to speci�c characteristics of subcollections of the algorithms.The available ALDES / SAC{2 polynomial libraries are the following:ALDES / SAC{2 Polynomial System,ALDES / SAC{2 Algebraic Number System,ALDES / SAC{2 Polynomial GCD and Resultant System,ALDES / SAC{2 Polynomial Factorization System,ALDES / SAC{2 Real Root System. 98

7.1. COEFFICIENT RINGS 99The available DIP polynomial libraries are the following:DIP Common Distributive Polynomial System,DIP Distributive Integral Polynomial System,DIP Distributive Rational Polynomial System,DIP Distributive Arbitrary Domain Polynomial System,DIP Buchberger Algorithm System (Gr�obner bases),DIP Polynomial Ideal Dimension System,DIP Zero{dimensional Polynomial Ideal Decomposition System,DIP Zero{dimensional Polynomial Ideal Real Root System.As extension to the DIP system there are libraries for non{commutative polynomial ringsof solvable type:MAS Non{commutative Rational Distributive Polynomial System,MAS Non{commutative Gr�obner Base System,MAS Non{commutative Polynomial Center System.Further libraries areMAS Comprehensive Gr�obner Base System,MAS Syzygy and Module Gr�obner Base System,7.1 Coe�cient RingsAlthough the representation of polynomials is independent of the representation of thecoe�cients the algorithms are implemented for speci�c coe�cient rings.Programms that work independently of the coe�cient ring start with the program pre�x `P'in case of the recursive polynomial representation and with `DI' in case of the distributivepolynomial representation.For the recursive representation there are algorithms for the following coe�cient rings:� integral numbers: Z, program pre�x `IP' for `integral polynomial'� rational numbers: Q, program pre�x `RP' for `rational number polynomial'� integral numbers modulo m: Z=(m), program pre�x `MIP' for `modular integralpolynomial'� algebraic numbers over the rational numbers: Q[X]=(m�(X)), where m�(X) denotesthe minimal polynomial of � over Q, program pre�x `AFP' for `algebraic number�eld polynomial'.In the section on the recursive polynomial representation we will discuss only polynomialsover the integers.For the distributive representation there are algorithms for the following coe�cient rings:� integral numbers: Z, program pre�x `DIIP' for `distributive integral polynomial'

100 CHAPTER 7. POLYNOMIAL SYSTEMS� rational numbers: Q, program pre�x `DIRP' for `distributive rational number poly-nomial'In the so called `distributive arbitrary domain polynomial system' there are algorithms forfurther coe�cient rings. The common program pre�x is `DIP' for `distributive arbitrarydomain polynomial'.� integral numbers modulo m: Z=(m),� rational complex numbers,� rational quaternion numbers (yielding a non-commutative polynomial ring),� rational octonion numbers (yielding a non-commutative, non-associative polynomialring),� �nite �eld numbers GF (p; n), n > 1,� algebraic numbers over the rational numbers: Q[X]=(m�(X)), where m�(X) denotesthe minimal polynomial of � over Q,� polynomial functions in n variables over the integers: Z[X1; : : : ; Xn],� rational functions in n variables over the integers:Quot(Z[X1; : : : ; Xn]) �= Q(X1; : : : ; Xn),� rational polynomials in n variables modulo a polynomial ideal:Q[X1; : : : ; Xn]=(m1;:::;mk).In the section on the distributive polynomial representation we will discuss only polyno-mials over the rational numbers.7.2 Recursive Polynomial SystemLet R be a commutative ring with 1 and let S = R[X1; : : : ; Xr] denote a (commutative)polynomial ring in r � 0 variables (indeterminates) X1; : : : ; Xr. S is isomorphic to anunivariate polynomial ring over a polynomial ring with one less variable:S0 = (: : : ((R[X1])[X2]) : : :)[Xr]:The elements of S0 are univariate polynomials in the main variable Xr with coe�cientsbeing polynomials in the ring (: : : (R[X1]) : : :)[Xr�1] when r � 1.De�nition: Let A(X1; : : : ; Xr) 2 S0, A 6= 0 and r � 1, thenA(X1; : : : ; Xr) = kXi=1 Ai(X1; : : : ; Xr�1)Xeirwith Ai 6= 0 for i = 1; : : : ; k and ek > ek�1 > : : : > e2 > e1. The recursive representa-tion of A is the list � = (ek; �k; : : : ; e2; �2; e1; �1)

7.2. RECURSIVE POLYNOMIAL SYSTEM 101where the �i denote the recursive representations of the Ai and the ei are non{negative�{integers, i = 1; : : : ; k. If A = 0 then � = 0 and if r = 0 then � is de�ned by therepresentation of the base coe�cient ring.Notes:1. The variables X1; : : : ; Xr are not stored in the representing list. This is di�erent toother computer algebra systems like REDUCE or muMATH.2. The representation is sparse in the sence, that only coe�cients 6= 0 are stored.Examples:1. Let S = Z[X], that is R = Z and r = 1. LetA = 3X4 + 5;then k = 2 and e2 = 4; A2 = 3; e1 = 0; A1 = 5. The representation is then� = (4; 3; 0; 5):2. Let S = Z[X;Y], that is R = Z and r = 2. LetA = (3X + 2)Y 2 + 5X;then k = 2 and e2 = 2; A2 = 3X + 2; e1 = 0; A1 = 5X . The representation is then� = (2; (1; 3; 0; 2); 0; (1; 5)):3. Let S = Q[X;Y], that is R = Q and r = 2. LetA = 14X2Y � 35then k = 2 and e2 = 1; A2 = 14X2; e1 = 0; A1 = �35 X0. The representation is then� = (1; (2; (1; 4)); 0; (0; (�3; 5))):7.2.1 AlgorithmsThe programs of the most important recursive polynomial algorithms and their complexityare summarized in the following. First the main complexity numbers are de�ned and thenintegral polynomial programs are discussed.As the recursive de�nition of the polynomial ring and the recursive representation suggeststhe algorithms will be constructed in the following way:1. Check for recursion base, case r = 0. Perform the desired operations on the basecoe�cients.2. If r � 1 then loop on the exponents in the main variable and call the algorithmrecursively on the coe�cients. Construct resulting polynomials.

102 CHAPTER 7. POLYNOMIAL SYSTEMS3. Return the results.The complexity of polynomial algorithms will therefore depend mainly on three factors:1. the size of the base coe�cients,2. the degree of the polynomials and3. the number of variables.These quantities are de�ned precisely as follows.Let A 2 S = R[X1; : : : ; Xr], r � 0, A(X1; : : : ; Xr) = Pki=1 Ai(X1; : : : ; Xr�1)Xeir . Thendegi(A) denotes the degree of the polynomial A in the variable Xi for i = 1; : : : ; r. Thatis degi(A) = 8<: 0 if A = 0 or r = 0ek if i = rmaxfdegi(Aj) j j = 1; : : : ; kg otherwise:Further de�ne d = deg(A) = maxfdegi(A) j i = 1; : : : ; rg.With L(A) we will denote the maximum of the length of the base coe�cients. That isL(A) = � L(A1) if r = 0maxfL(Aj) j j = 1; : : : ; kg otherwise:The length of integers and rational numbers are de�ned as in section 5.7. Further letL(A;B) = maxfL(A); L(B)g.Since only coe�cients 6= 0 are stored in the polynomials one would like to measure thenumber of terms in the polynomials. This gives a more precise indication of the complexityin view of the size of the base coe�cients. So we de�neterm(A) = � 1 if r = 0Pkj=1 term(Aj) otherwise:Clearly it is bounded by term(A) � (deg(A) + 1)r = (d+ 1)r:We will continue to write L(a) for O(L(a)), i.e. we will not count for constant factors.The computing time functions t; t+; t�; t� are de�ned as before in section 5.7.Let A be the set of atoms, L be the set of lists, O = A [L be the set of objects,I = fx 2 O : x represents an element of Zg be the set of integers, Pr = fx 2 O : xrepresents a multivariate polynomial in r variables g be the set of recursive polynomials,IPr = fx 2 O : x represents a multivariate polynomial over Z in r variables g be the setof integral polynomials.We will �rst summarize selector functions which are independent of the base coe�cientring and then turn to the algorithms for integral polynomials. For decomposition andconstruction of polynomials the list processing functions ADV 2, FIRST2 and COMP2are used and will not be discussed here.e PDEG(A) A 2 Pr, e 2 A. e = degr(A) = ek is the degree of A in the mainvariable. In recursive representation t = 1, c = 0.

7.2. RECURSIVE POLYNOMIAL SYSTEM 103a PLDCF (A) A 2 Pr, a 2 Pr�1. a = ldcf(A) = Ak is the leading coe�cientof A. In recursive representation t = 2, c = 0.A0 PRED(A) A 2 Pr, A0 2 Pr. A0 = red(A) = Pi=1;:::;k�1 AiXeir is thepolynomial reductum of A. t = 2, c = 0.a PTRCF (A) A 2 Pr, a 2 Pr�1. a = trcf(A) = A1 is the trailing coe�cientof A. t+ = 2degr(A), c = 0. The factor 2 comes in because alsothe exponents are stored in the representing list of a polynomial.a PLBCF (r; A) A 2 Pr, a 2 P0. a is the leading base coe�cient of A de�ned asa = lbcf(r; A) = � ldcf(A) if r = 1lbcf(ldcf(A)) if r > 1:t = 2r, c = 0.a PTBCF (r; A) A 2 Pr, a 2 P0. a is the trailing base coe�cient of A de�ned asa = tbcf(r; A) = � trcf(A) if r = 1tbcf(trcf(A)) if r > 1:t+ = 2r deg(A), c = 0.We turn now to the discussion of polynomial algorithms which depend on the base coe�-cient �eld. Only integer base coe�cients will be treated.s IPSIGN(r; A) A 2 IPr, s 2 f�1; 0;+1g. s = ISIGN(lbcf(A)) is the signof the leading base coe�cient of A. In recursive representationt+ = 2r+ t+ISIGN = r+L(A), c = 0; t� = 2r+ t�ISIGN = r+1 =O(r).A0 IPNEG(r; A) A;A0 2 IPr. A0 = �A is the negation of A. t+ = term(A) �t+INEG � deg(A)rL(A) = drL(A), c+ = drL(A).A0 IPABS(r; A) A;A0 2 IPr. If sign(lbcf(A)) = �1 then A0 = �A else A0 = A.t� = t�IPSIGN = r, c� = 0; t+ = t+IPNEG � drL(A), c+ =c+IPNEG � drL(A).C IPSUM(r; A;B) A;B;C 2 IPr. C = A + B is the sum of A and B. Letl = maxfterm(A); term(B)g, d = maxfdeg(A); deg(B)g thent+ = l � t+ISUM � drL(A;B), c+ = drL(A;B).C IPDIF (r; A;B) A;B;C 2 IPr. C = A � B is the di�erence of A and B. Thecomputing times are the same as for IPSUM .C IPPROD(r; A;B) A;B;C 2 IPr. C = A � B is the product of A and B. Letl = maxfterm(A); term(B)g, d = maxfdeg(A); deg(B)g thent+ = l3 � t+IPROD � d2rL(A;B)2, c+ = d2rL(A;B)2.

104 CHAPTER 7. POLYNOMIAL SYSTEMSIPQR(r; A;B;C;D) A;B;C;D 2 IPr. C = A=B is the quotient of A and B if itexists, in this case D = 0 and A = CB. (A su�cient conditionis that ldcf(B) is a unit in the coe�cient ring.) If the quotientdoes not exist, then D is a polynomial of minimal degree (notnecessarily degr(D) < degr(B), but degr(D) � degr(A)) suchthat A = CB + D. Assume that the quotient exists, then thecomputing time is proportional to that of the product of C andB. The method used is also called trial division, since it is nota priori guaranteed that it succeeds.C IPPSR(r; A;B) A;B;C 2 IPr. C is the pseudo remainder of A and B. Thepseudo remainder allways exists and is de�ned asldcf(B)� �A = Q � B + Cwhere � � degr(A) � degr(B) and degr(C) < degr(B). Thecomputing time is proportional to that of the product of Q andB.IPREAD(; r; A; V) A 2 IPr, V a variable list. The polynomial A, the numberof variables r and the variable list V are read from the inputstream. The accepted syntax is:coeff = (integer | poly)term = coeff "*" identifier "**" atompoly = "(" term { ("+" | "-") term } ")"With the context conditions:1. all identifiers in the terms of a polynomial must beequal,2. the atoms must be non{negative and given in strictly de-creasing order.Note further that there are no optional parts in this de�nition !Due to this restricted syntax it is often more convienient to usedistributed representation for input and output and to convertthe polynomials between the representations.IPWRIT (r; A; V) A 2 IPr, V a variable list. The polynomial A is written to theoutput stream. The output syntax is equal to the input syntaxof IPREAD.This concludes the summary of integral polynomial arithmetic functions.For illustration we list the algorithms IPPROD and IPPGSD in Modula{2 in MAS. Thefunction of the algorithms should be clear from the step comments and polynomial repre-sentation discussed before.

7.3. DENSE POLYNOMIAL SYSTEM 105PROCEDURE IPPROD(RL,A,B: LIST): LIST;(*Integral polynomial product. A and B are integralpolynomials in r variables, r ge 0. C=A*B.*)VAR AL, AP, AS, BL, BS, C, C1, CL, EL, FL, RLP: LIST;BEGIN(*1*) (*a or b zero.*)IF (A = 0) OR (B = 0) THEN C:=0; RETURN(C); END;(*2*) (*rl=0.*)IF RL = 0 THEN C:=IPROD(A,B); RETURN(C); END;(*3*) (*general case.*) AS:=CINV(A); BS:=CINV(B); C:=0;RLP:=RL-1;REPEAT ADV2(BS, BL,FL,BS); AP:=AS; C1:=SIL;REPEAT ADV2(AP, AL,EL,AP);IF RLP = 0 THEN CL:=IPROD(AL,BL);ELSE CL:=IPPROD(RLP,AL,BL); END;C1:=COMP2(EL+FL,CL,C1);UNTIL AP = SIL;C:=IPSUM(RL,C,C1);UNTIL BS = SIL;RETURN(C);(*6*) END IPPROD;The constructors and selectors for polynomials are the list processing functions COMP2 andADV2. CINV means the constructive inverse list of its argument. IPROD denotes the integerproduct. IPSUM is the polynomial sum.PROCEDURE IPPGSD(RL,A: LIST): LIST;(*Integral polynomial primitive greatest squarefree divisor.A is an integral polynomial in r variables. If A=0 then B=0.Otherwise B is the greatest squarefree divisor of the primitivepart of A.*)VAR B, BP, C, D: LIST;BEGIN(*1*) (*a=0.*)IF A = 0 THEN B:=0; RETURN(B); END;(*2*) (*a ne 0.*) B:=IPPP(RL,A);IF FIRST(B) > 0 THEN BP:=IPDMV(RL,B);IPGCDC(RL,B,BP, C,B,D); END;RETURN(B);(*5*) END IPPGSD;IPPP denotes the algorithm which computes the primitive part of its argument. IPDMVstands for derivation in the main variable and IPGCDC means greatest common divisor andcofactors. In abuse FIRST is used to determine the degree of the polynomial B.7.2.2 ExercisesSince in the recursive polynomial system are only clumsy input / output facilities, we deferthe exercises to the next section. There we will discuss also the conversions between thepolynomial representations.7.3 Dense Polynomial SystemA short description of the data structures of the dense polynomial system is contained inthis section. No algorithms and no exercises will be presented.

106 CHAPTER 7. POLYNOMIAL SYSTEMSAgain let R be a commutative ring with 1 and let S = R[X1; : : : ; Xr] denote a (commuta-tive) polynomial ring in r � 0 variables (indeterminates) X1; : : : ; Xr. S is isomorphic toan univariate polynomial ring over a polynomial ring with one less variable:S0 = (: : : ((R[X1])[X2]) : : :)[Xr]:The elements of S0 are univariate polynomials in the main variable Xr with coe�cientsbeing polynomials in the ring (: : : (R[X1]) : : :)[Xr�1] when r � 1.De�nition: Let A(X1; : : : ; Xr) 2 S0, A 6= 0 and r � 1, thenA(X1; : : : ; Xr) = kXi=0 Ai(X1; : : : ; Xr�1)X irwith Ak 6= 0. The dense representation of A is the list� = (k; �k; : : : ; �1; �0)where the �i denote the dense representations of the Ai, i = 0; : : : ; k. If A = 0 then � = 0and if r = 0 then � is de�ned by the representation of the base coe�cient ring.Notes:1. The variables X1; : : : ; Xr are not stored in the representing list. This is di�erent toother computer algebra systems.2. The representation is dense in the sence, that all coe�cients, even those which are= 0, are stored.Examples:1. Let S = Z[X], that is R = Z and r = 1. LetA = 3X4 + 5;then k = 4, A4 = 3; A0 = 5 the other Ai = 0. The representation is then� = (4; 3; 0; 0; 0; 5):2. Let S = Z[X;Y], that is R = Z and r = 2. LetA = (3X + 2)Y 2 + 5X;then k = 2, A2 = 3X + 2; A1 = 0; A0 = 5X . The representation is then� = (2; (1; 3; 2); 0; (1; 5; 0)):3. Let S = Q[X;Y], that is R = Q and r = 2. LetA = 14X2Y � 35then k = 1, and A1 = 14X2; A0 = �35 X0. The representation is then� = (1; (2; (1; 4); 0; 0); (0; (�3; 5))):We will not discuss algorithms for the dense polynomial representation since they are onlyused in special situations.

7.4. DISTRIBUTIVE POLYNOMIAL SYSTEM 1077.4 Distributive Polynomial SystemAgain let R be a commutative ring with 1 and let S = R[X1; : : : ; Xr] denote a (commuta-tive) polynomial ring in r � 0 variables (indeterminates) X1; : : : ; Xr. The elements of Sare sums of monomials, where each monomial is a product of a base coe�cient and aterm (power product).De�nition: Let A(X1; : : : ; Xr) 2 S, A 6= 0 and r � 1, thenA(X1; : : : ; Xr) = kXi=1 aiXei11 � : : : �Xeirr = kXi=1 aiXeiwith ai 6= 0 for i = 1; : : : ; k and natural numbers eij for i = 1; : : : ; k and j = 1; : : : ; r.Xei is an abreviation for Xei11 � : : : �Xeirr . k is the number of terms of A. For r > 0 therepresentation of an exponent vector ei = (ei1; : : : ; ei;r�1; eir) is the list�i = (eir; : : : ; ei2; ei1):For r = 0 let � = (), the empty list. The distributive representation of A is the list� = (�k; �k; : : : ; �2; �2; �1; �1)where the �i denote the representations of the ai and the �i are the representation of theexponent vectors, i = 1; : : : ; k. If A = 0 then � = 0 and if r = 0 then � = ((); �1).Notes:1. The variables X1; : : : ; Xr are not stored in the representing list. This is di�erent toother computer algebra systems like REDUCE or muMATH.2. The representation is sparse in the sence, that only base coe�cients 6= 0 are stored.3. The representation of the exponent vectors is dense in the sence, that also exponents= 0 are stored.4. The number of variables r can be determined from the length of an exponent vector(representation).Examples:1. Let S = Z[X], that is R = Z and r = 1. LetA = 3X4 + 5;then k = 2 and e2 = (4); a1 = 3; e1 = (0); a2 = 5. The representation is then� = ((4); 3; (0); 5):2. Let S = Z[X;Y], that is R = Z and r = 2. LetA = (3X + 2)Y 2 + 5X = 3XY 2 + 2Y 2 + 5X;then k = 3 and e3 = (1; 2); a3 = 3; e2 = (0; 2); a2 = 2; e1 = (1; 0); a1 = 5. Therepresentation is then � = ((2; 1); 3; (2; 0); 2; (0; 1); 5):

108 CHAPTER 7. POLYNOMIAL SYSTEMS3. Let S = Q[X;Y], that is R = Q and r = 2. LetA = 14X2Y � 35 ;then k = 2 and e2 = (2; 1); a2 = 14 ; e1 = (0; 0); a1 = �35 . The representation is then� = ((1; 2); (1; 4); (0; 0); (�3; 5)):4. Let S = Z[X1; X2; X3; X4; X5], that is R = Z and r = 5. LetA = 5X2X3 + 7X21 ;then k = 2 and e2 = (0; 1; 1; 0; 0); a2 = 5; e1 = (2; 0; 0; 0; 0); a1 = 7. The representa-tion is then � = ((0; 0; 1; 1; 0); 5; (0; 0; 0; 0; 2); 7):Up to now we have assumed that there is a unique way to determine the ordering and thesequence of the terms in a polynomial. In general there are many (contiuum many) totalorderings of the set of terms, which are in addition compatible with the multiplication ofterms. Such term orders are called admissible. We will now turn to the explicit de�nitionof some important term orders and then give a general characterization by linear forms.7.4.1 Term OrdersRecall that T denotes the set of terms u = Xe11 � : : : �Xerr = Xe where the ei; (i = 1; : : : ; r)are nonnegative integers.The degree of a term u = Xe11 � : : : � Xerr is de�ned as deg(u) = Pri=1 ei: For exponentvectors e and l de�ne e� l = (e1 � l1; : : : ; er � lr) (an vector of integers). The degree ofan exponent vector is de�ned as deg(e) = deg(Xe):For an arbitrary total ordering >T on power products we de�ne u >T v () Xe >TX l () e >T l () e � l >T 0 = (0; : : : ; 0). We write u <T v if v >T u. The termorderings are called admissible, if they are monoton with respect to multiplication ofpower products and if 1 = X0 is the smallest element. That is1. For u 2 T , u 6= 1 it holds 1 <T u.2. For u; v; t 2 T with u <T v it holds ut <T vt.In the sequel > denotes the natural ordering on the integers. The currently implementedterm orders can be checked with the procedure EVOWRITE.Buchberger's term orderIn 1965 Buchberger gave the de�niton of the term ordering used by him for Gr�obner basescalculation [Buchberger 1965, Buchberger 1970]. It can be de�ned as:e >B 0() deg(e) > 0 or 8<: deg(e) = 0ande >BL 0

7.4. DISTRIBUTIVE POLYNOMIAL SYSTEM 109Where >BL is de�ned in the following way:e >BL 0() 8<: 9k 2 f1; : : : ; rgwith ej = 0 for j = 1; : : : ; k � 1and ek < 0Note that >BL alone is not an admissible term order. This ordering was implemented byWinkler in the SAC-1 computer algebra system [Winkler et al. 1985].DIP term orderIf the ordering on the power products in distributed representation is choosen to be com-patible with the ordering induced by recursive representation one arrives at the so called'inverse lexicographical' term order [Gebauer, Kredel 1983].e >L 0() 8<: 9k 2 f1; : : : ; rgwith ej = 0 for j = r; r � 1; : : : ; k + 1and ek > 0From this we derive the `inverse graduated' ordering:e >G 0() deg(e) > 0 or 8<: deg(e) = 0ande >L 0Which is the same as: e >G 0() (e; deg(e)) >L (0; deg(0))The examples in [B�oge et al. 1986] are based on these orderings. And they are also usedin REDUCE 3.3 Gr�obner basis package, and by Trinks, [Hearn 1987, Trinks 1978].Scratchpad II term orderThe `newdistributed polynomial' representation in the Scratchpad II System uses the fol-lowing `lexicographical' termordering:e >S 0() 8<: 9k 2 f1; : : : ; rg withej = 0 for j = 1; : : : ; k � 1and ek > 0[Jenks et al. 1984]. This termordering is also used by Robbiano [Robbiano 1985]. With a`graduation' it was also implemented by Schrader [Schrader 1976] in ALGOL 60.e >SG 0() deg(e) > 0 or 8<: deg(e) = 0ande >S 0Which is the same as: e >SG 0() (deg(e); e) >S (deg(0); 0)

110 CHAPTER 7. POLYNOMIAL SYSTEMSExampleWe include an example from Jenks [Jenks et al. 1984], to illustrate the di�erent Gr�obnerbases with respect to the di�erent term orderings. The computation was done using theSAC{2 computer algebra system on an IBM 3090{200 VF. Let R = Q(A;B) and letS = R[X;Y; Z; T]. Consider the following set of polynomials(((A+1)/B X**2 Y - 1),((-B-1)/A X**2 Z + Y**3),(- 12 X**2 T + Z**3)).The Gr�obner bases with respect to di�erent term orderings are:inverse lexicographical term order(X**2 Y - B /(A +1))(Z -(A**2 + A)/(B**2 + B) Y**4)(T -(A**7 +4 A**6 +6 A**5 +4 A**4 + A**3)/(12 B**7 +36 B**6 +36 B**5 +12 B**4) Y**13)executed in 750 milliseconds, 16058 cells used.inverse graduated term order(X**2 Y - B /(A +1))(X**2 Z - A /(B +1) Y**3)(X**2 T - 1 / 12 Z**3)(Y**4 -(B**2 + B)/(A**2 + A) Z)(Y Z**3 - 12 B /(A +1) T)(Y**3 T -(B +1)/ 12 A Z**4)(Z**7 - 144 A B /(A B + B + A +1) Y**2 T**2)executed in 960 milliseconds, 17154 cells used.Buchberger total degree term order(X**2 Y - B /(A +1))(Y**3 -(B +1)/ A X**2 Z)(Z**3 - 12 X**2 T)(X**4 Z - A B /(A B + B + A +1) Y**2)(X**6 T - A B /(12 A B +12 B +12 A +12) Y**2 Z**2)executed in 530 milliseconds, 7965 cells used.Note also that the computing times vary for di�erent term orders. A rule of thumb howto obtain `optimal' term orders will be discussed in a seperate section.7.4.2 Description of term orders by linear formsThe explicit characterizations of admissible term orders in the previous section are easyto implement and run fast. However there exist much more admissible orders on the setof terms. In this section a uniform way to describe all admissible term orders will bediscussed. Although the implementation is much more involved, the running time is stillacceptable. The increase of computing time is `only' 50 % in typical examples.Observe that the admissible linear orders <N on exponent vectors e 2 Nn can be extendedto admissible linear orders <Q on Qn such that <N=<Q \Nn.

7.4. DISTRIBUTIVE POLYNOMIAL SYSTEM 111Let S = R[t] be the polynomial ring in one variable t over the real numbers R. De�ne alinear order on S byf > 0() ldcf(f) >R 0 and f > g () f � g >R 0;for f; g 2 S. For this order t 2 S is larger than all elements of R, that is t > a for alla 2 R.Let AL = fa = (a1; : : : ; an) 2 Sng such that the ai, i = 1; : : : ; n are strictly positive andlinear independent over the rational numbers Q (� R).Then it has been shown by Robbiano and Weispfenning that any a 2 AL induces anadmissible linear order < on Qn and any addmissible linear order on Qn is induced bysuch an a 2 AL in the following wayx < y () a � x < a � y;where x = (x1; : : : ; xn), y = (y1; : : : ; yn) 2 Qn anda � x = nXi=1 aixi 2 S:[Robbiano 1985, Weispfenning 1987]For the term orders <T de�ned in the previous section the correspending aT 2 AL are asfollows:1. Buchberger's graduated (total degree) lexicographical term order <B :aB = (tn � tn�1; tn � tn�2; : : : ; tn � t2; tn � t; tn � 1):2. Inverse lexicographical term order <L:aL = (1; t; t2; : : : ; tn�2; tn�1):3. Inverse graduated (total degree) term order <G:aG = (1 + tn; t+ tn; t2 + tn; : : : ; tn�2 + tn; tn�1 + tn):4. Scratchpad II lexicographical term order <S :aS = (tn�1; tn�2; : : : ; t2; t; 1):5. Scratchpad II graduated (total degree) lexicographical term order <SG:aSG = (tn�1 + tn; tn�2 + tn; : : : ; t2 + tn; t+ tn; 1 + tn):6. Splitted inverse lexicographical term orders <T= (<T1 ; <T2) on T = T1 �T2, de�nedas u1u2 �T v1v2 () u2 <T2 v2 or (u2 = v2 and u1 �T1 v1), where u1; v1 2 T1 andu2; v2 2 T2. If aT1 = (a1; : : : ; ai) and aT2 = (ai+1; : : : ; an) for some 1 � i � n, thenaT = (a1; : : : ; ai; ai+1 � tn0 ; : : : ; an � tn0);where n0 > deg(aj), j = 1; : : : ; i.

112 CHAPTER 7. POLYNOMIAL SYSTEMS7. Varying term orders for <T with aT = (a1; : : : ; an) and where n0 > deg(aj), j =1; : : : ; n: for i = 0; : : : ; n0 letaTi = (a1 + biti; : : : ; an + biti);where bi 2 R such that aTi 2 AL. Then we have aT0 = aT (for b0 = 0) and aTn0 atotal degree term order (for bn0 = 1).The currently implemented term orders can be checked with the procedure EVOWRITE. Howthese term orders can be speci�ed in MAS is discussed in the next section.7.4.3 AlgorithmsThe programs of the most important distributive polynomial algorithms and their com-plexity are summarized in the following. The main complexity numbers are as de�ned inthe previous section. Only rational polynomial programs are discussed.As the de�nition of the polynomial ring and the distributive representation suggests thealgorithms will be constructed in the following way:1. Loop on the monomials in the polynomials:(a) perform operations on the base coe�cients,(b) perform operations on exponent vectors,Construct resulting polynomials.2. Return the results.The complexity of polynomial algorithms will therefore depend mainly on three factors:1. the size of the base coe�cients,2. the number of terms,3. the number of variables.These quantities are as de�ned in the section on the recursive representation algorithms.The number of terms is now easily determined as half of the length of the polynomial indistributive representation.We will continue to write L(a) for O(L(a)), that means we will not count for constantfactors. The computing time functions t; t+; t�; t� are de�ned as before in section 5.7.Let A be the set of atoms, L be the set of lists, O = A [L be the set of objects,R = fx 2 O : x represents an element of Qg be the set of rational numbers, B = fx 2O : x represents an element of a base coe�cient ring g be the set of base coe�cients,Dr = fx 2 O : x represents a multivariate polynomial in r variables g be the set ofdistributive polynomials, DRr = fx 2 O : x represents a multivariate polynomial over Qin r variables g be the set of distributive rational polynomials.We will �rst summarize selector functions which are independent of the base coe�cientring and then turn to the algorithms for rational polynomials.

7.4. DISTRIBUTIVE POLYNOMIAL SYSTEM 113e DIPDEG(A) A 2 Dr, e 2 A. e = degr(A) = ekr is the degree of A in the mainvariable. In distributive representation t = 2, c = 0.e DIPEV L(A) A 2 Dr, e 2 Ar. e is the exponent vector of the highest term. Indistributive representation t = 1, c = 0.a DIPLBC(A) A 2 Dr, a 2 B. a = ak is the leading base coe�cient. t = 2, c = 0.DIPMAD(A; a; e; A0) A;A0 2 Dr, e 2 A, a 2 B. Monomial advance. e = ek is theexponent vector of the highest term. a = ak is the leading basecoe�cient. t = 2, c = 0.A0 DIPMCP (a; e; A) A;A0 2 Dr, e 2 A, a 2 B. Monomial composition. e becomesthe exponent vector of the highest term of A0. a becomes theleading base coe�cient of A0. t = 2, c = 2.A DIPFMO(a; e) A 2 Dr, e 2 A, a 2 B. Polynomial from monomial. e becomes theexponent vector of the highest term of A. a becomes the leadingbase coe�cient of A. t = 2, c = 2.DIPBSO(A) A 2 Dr. Polynomial (bubble) sort. The terms (which must be dis-tinct) in A are sorted by the actual term order, the representing listis modi�ed. There are other sorting algorithms which also allowfor equal terms in A, but then coe�cient arithmetic is required.We turn now to the discussion of polynomial algorithms which depend on the base coe�-cient �eld. Only rational numbers as base coe�cients will be treated.s DIRPSG(A) A 2 DRr, s 2 f�1; 0;+1g. s is the sign of the leading basecoe�cient of A. In our representation t+ = 2 + t+RNSIGN = 2 +L(A), t� = 2 + t�RNSIGN = 2 + 2 = 4 , c = 0.A0 DIRPNG(A) A;A0 2 DRr. A0 = �A is the negative of A. t+ = term(A) �t+RNNEG = kL(A), c+ = term(A) � c+RNNEG = kL(A). (In dis-tributive representation no operations on exponent vectors are re-quired.)A0 DIRPAB(A) A;A0 2 DRr. A0 = jAj is the absolute value of A, that issign(A0) � 0. t+ = t+DIRPNG = kL(A), c+ = c+DIRPNG = kL(A);t� = 2 + t�RNSIGN = 2 + 1 = 3, c� = 0.C DIRPSM(A;B) A;B;C 2 DRr. C = A + B is the sum of A and B. Let l =maxfterm(A); term(B)g. t+ = 2l�t+RNSUM+t+expon = 2lL(A;B)2+2lr, c+ = 2l � c+RNSUM + c+expon = 2lL(A;B)2 + 2l. t+ecomp denotesthe time for comparing exponent vectors for term merge. If theset of terms of A and B are disjoint a pure merge is performed. Inthis case no operations on base coe�cients are required and thent+ = 2lr, c+ = 2l. Although the exponent vectors are processed,they need not be reconstructed, thus c+ = 2l instead of 2lr.

114 CHAPTER 7. POLYNOMIAL SYSTEMSC DIRPDF (A;B) A;B;C 2 DRr. C = A � B is the di�erence of A and B. Thecomputing times are the same as for DIRPSM .C DIRPPR(A;B) A;B;C 2 DRr. C = A � B is the product of A and B. Letl = maxfterm(A); term(B)g. t+ = l2 � t+RNPROD + t+expon =l2L(A;B)2 + l2r, c+ = l2 � c+RNPROD + c+expon = l2L(A;B)2 + l2r.The summations of intermediate polynomials are aranged to needonly l log2(l) summations of terms.B DIRPNF (P;A) A;B 2 DRr, P 2 LDRr. B = normal formP (A) is the nor-mal form or completely reduced form of A with respect to P .Let l = term(A). If A is irreducible then t� = l, c� = l. Aone step reduction requires a monomial with polynomial prod-uct and one polynomial di�erence, thus t+1 = 2lL(A;P)2 + lr,c+1 = 2lL(A;P)2 + lr. The maximal computing time dependsstrongly on the used term order. As a worst case estimate con-sider d = maxfdeg(HT(p)) j p 2 Pg, d0 = maxfdeg(p) j p 2 Pgand let d00 = deg(A). Then B will contain at most dr terms. Incase of a total degree term order probably m = d00r � dr termswill need reduction. So t+ = mt+1 = m2lL(A;P) � d00r2lL(A;P),c+ � d00r2lL(A;P). In case of a lexicographical termorder aftereach reduction step d00 may increase so termination can only beassured by Noetherian induction.Q DIRLIS(P) P;Q 2 LDRr. Q is the irreducible set of P , that is every p 2 Q isirreducible with respect to Q n fpg.G DIRPGB(P; t) P;G 2 LDRr, t 2 f0; 1; 2g. G is the Gr�obner base of P . t is the`trace ag', t = 0 if no intermediate output is required, t = 1 ifthe reduced S{polynomials are to be listed and t = 2 for maximalinformation.This concludes the summary of distributive rational polynomial arithmetic functions. Fi-nally we will summarize input / output functions and some often needed conversion func-tions.P PREAD() P 2 LDRr. A list of distributive rational polynomials togetherwith the variable list and a term order are read from the actualinput stream. The accepted syntax (with start symbol bunch) is:bunch = varlist termord polylistvarlist = "(" ident { "," ident } ")"termord = ("L" | "G" | linform)linform = "(" univpoly { "," univpoly } ")"polylist = "(" poly { "," poly } ")"poly = "(" term { ("+"|"-") term } ")"term = power { ["*"] power }power = factor ["**" atom]factor = (rational | ident | "(" poly ")")

7.4. DISTRIBUTIVE POLYNOMIAL SYSTEM 115With the context conditions:1. the atoms must be nonnegative,2. idents appearing in poly must be declared in varlist,3. the right most variable in the variable list denotes the mainvariable,4. univpoly must be an univariate poly in the variable "T"(=ident) over the rational numbers,5. linform must be a valid linear form 2 AL,6. the number of univariate polynomials must be equal to thenumber of variables in the variable list.Examples will be discussed in the exercise section.PWRITE(P) P 2 LDRr. A list of distributive rational polynomials togetherwith the variable list and a term order are written to the actualoutput stream. The output syntax of the polynomial list is equalto the input syntax of PREAD.B DIIFRP (A) A 2 DRr, B 2 Dr. B = d � A is converted to integral dis-tributive representation, where d is the least common multipleof all denominators of base coe�cients of A. Let l = term(A).t+ = l � t+ILCM + l � t+RNPROD = l2L(A)2 + lL(A)2 = 3lLA()2,c+ = l � c+ILCM + l � c+RNPROD = l2L(A)2 + lL(A)2 = 3lLA()2.B DIRFIP (A) A 2 Dr, B 2 DRr. B = 1d �A is converted to rational distributiverepresentation, where d = lbcf(A). Let l = term(A). t+ = l �t+RNRED = lL(A)2, c+ = l � c+RNRED = lL(A)2.B DIPFP (r; A) A 2 Pr, B 2 Dr. A in recursive representation is converted to B indistributive representation. Let l = term(A). t+ = 2lr, c+ = 2lrsince no operations on base coe�cients are required.PFDIP (A; r; B) A 2 Dr, B 2 Pr. A in distributed representation is converted to Bin recursive representation. Let l = term(A). t+ = 2lr, c+ = 2lrsince no operations on base coe�cients are required.This concludes the summary of distributive polynomial functions.For illustration we list the algorithms DIRPNF and DIRLIS in Modula{2 in MAS. Thefunction of the algorithms should be clear from the step comments and the polynomialrepresentation discussed before.PROCEDURE DIRPNF(P,S: LIST): LIST;(*Distributive rational polynomial normal form. P is a listof non zero polynomials in distributive rationalrepresentation in r variables. S is a distributive rationalpolynomial. R is a polynomial such that S is reducible to Rmodulo P and R is in normalform with respect to P. *)VAR AP, APP, BL, FL, PP, Q, QA, QE, QP, R, SL, SP, TA, TE: LIST;BEGIN(*1*) (*s=0. *)

116 CHAPTER 7. POLYNOMIAL SYSTEMSIF (S = 0) OR (P = SIL) THEN R:=S; RETURN(R); END;(*2*) (*reduction step.*) R:=SIL; SP:=S;REPEAT DIPMAD(SP, TA,TE,SP);IF SP = SIL THEN SP:=0; END;PP:=P;REPEAT ADV(PP, Q,PP); DIPMAD(Q, QA,QE,QP);SL:=EVMT(TE,QE);UNTIL (PP = SIL) OR (SL = 1);IF SL = 0 THEN R:=DIPMCP(TE,TA,R);ELSEIF QP <> SIL THEN FL:=EVDIF(TE,QE);BL:=RNQ(TA,QA);AP:=DIPFMO(BL,FL); APP:=DIRPPR(QP,AP);SP:=DIRPDF(SP,APP); END;END;UNTIL SP = 0;(*3*) (*finish.*)IF R = SIL THEN R:=0; ELSE R:=INV(R); END;(*6*) RETURN(R); END DIRPNF;In the outer REPEAT{loop all terms of the polynomial S are considered for reduction.In the inner REPEAT{loop the head terms of polynomials in P are tested if they divide(EVMT exponent vector multiple test) the actual term of S. The IF{statement checks if adivisor was found, in which case the reduction is applied, or if the term was irreducible,in which case the term is copied to the result polynomial R.PROCEDURE DIRLIS(P: LIST): LIST;(*Distributive rational polynomial list irreducible set.P is a list of distributive rational polynomials,PP is the result of reducing each p element of P modulo P-(p)until no further reductions are possible. *)VAR EL, FL, IRR, LL, PL, PP, PS, RL, RP, SL: LIST;BEGIN(*1*) (*initialise. *) PP:=P; PS:=SIL;WHILE PP <> SIL DO ADV(PP, PL,PP); PL:=DIRPMC(PL);IF PL <> 0 THEN PS:=COMP(PL,PS); END;END;RP:=PS; PP:=INV(PS); LL:=LENGTH(PP); IRR:=0;IF LL <= 1 THEN RETURN(PP); END;(*2*) (*reduce until all polynomials are irreducible. *)LOOP ADV(PP, PL,PP); EL:=DIPEVL(PL); PL:=DIRPNF(PP,PL);IF PL = 0THEN LL:=LL-1;IF LL <= 1 THEN EXIT END;ELSE FL:=DIPEVL(PL); SL:=EVSIGN(FL);IF SL = 0 THEN PP:=LIST1(PL); EXIT END;SL:=EQUAL(EL,FL);IF SL = 1 THEN IRR:=IRR+1; ELSE IRR:=0;PL:=DIRPMC(PL); END;PS:=LIST1(PL); SRED(RP,PS); RP:=PS; END;IF IRR = LL THEN EXIT END;END;(*3*) (*finish. *) RETURN(PP);(*6*) END DIRLIS;In the �rst step the polynomials in P are made monic (DIRPMC), that is their leadingbase coe�cient is 1. In the main loop in step 2 all polynomials are reduced with respectto the rest of the polynomials. Then several case distinctions are made to check if the

7.4. DISTRIBUTIVE POLYNOMIAL SYSTEM 117polynomial reduced to 0 or if its head term EL, FL was reduced or not. The loop terminatesif the number of head term irreducible polynomials (IRR) is equal to the total number ofpolynomials (LL). (The correctness proof is not totally trivial.)7.4.4 ExercisesLet S = Q[X1; X2; X3; X4] and let p1 = X1 +X2 +X3 +X4 2 S.1. Read the polynomial p1 in distributive rational representation (using the inverselexicographical term order).2. Compute p2 = p31 and print the result.3. Convert p1 to distributive integral representation and then to integral recursive re-presentation q1.4. Compute q2 = q31 . Compute the polynomial gcd q of q1 and q2. Is q equal to q1 ?5. Convert q2 to distributive integral representation and then to distributive rationalrepresentation p3. Is p2 equal to p3 ?6. Use the following linear from L = (1; t; t2; t3; t4; t5) to compute a Gr�obner base of(45P +35S�165B�36; 35P +40Z+25T �27S; 15W +25SP +30Z�18T �165B ��2;�9W+15TP+20SZ; PW +2TZ�11B ��3; 99W�11BS+3B ��2) with respectto this term order in Q[B;S; T; Z; P;W]Solution to step 1:We use the function PREAD to input a list of polynomials, namely (p1), in distributiverational representation. Then we take the �rst element of this list p1. In addition we printthe polynomial list. For the term order we use the inverse lexicographical term order L.The polynomial list can be printed by PWRITE. The variable list and the term order areremembered from the last call of PREAD.P:=PREAD().(x1,x2,x3,x4) L((x1 + x2 + x3 + x4))PWRITE(P).p1:=FIRST(P).The result shows also the polynomials in distributive representation.Enter polynomial list:ANS: (((1 0 0 0) (1 1) (0 1 0 0) (1 1)(0 0 1 0) (1 1) (0 0 0 1) (1 1)))Polynomial in the variables: (x1,x2,x3,x4)Term ordering: inverse lexicographical.Polynomial list:(x4 + x3 + x2 + x1)ANS: ((1 0 0 0) (1 1) (0 1 0 0) (1 1) (0 0 1 0) (1 1)(0 0 0 1) (1 1))

118 CHAPTER 7. POLYNOMIAL SYSTEMSSolution to step 2:The polynomial exponentiation function is called DIRPEX, t is the desired power. To printthe result we reconstruct a polynomial list and use PWRITE.t:=3.p2:=DIRPEX(p1,t).Q:=LIST(p2).PWRITE(Q).And this is the output of the second and fourth statement:ANS: ((3 0 0 0) (1 1) (2 1 0 0) (3 1) (2 0 1 0) (3 1)(2 0 0 1) (3 1) (1 2 0 0) (3 1) (1 1 1 0) (6 1)(1 1 0 1) (6 1) (1 0 2 0) (3 1) (1 0 1 1) (6 1)(1 0 0 2) (3 1) (0 3 0 0) (1 1) (0 2 1 0) (3 1)(0 2 0 1) (3 1) (0 1 2 0) (3 1) (0 1 1 1) (6 1)(0 1 0 2) (3 1) (0 0 3 0) (1 1) (0 0 2 1) (3 1)(0 0 1 2) (3 1) (0 0 0 3) (1 1))Polynomial in the variables: (x1,x2,x3,x4)Term ordering: inverse lexicographical.Polynomial list:(x4**3 +3 x3 x4**2 +3 x2 x4**2 +3 x1 x4**2 +3 x3**2 x4 +6 x2 x3 x4 +6 x1 x3 x4 +3 x2**2 x4 +6 x1 x2 x4 +3 x1**2 x4 + x3**3 +3 x2 x3**2 +3 x1 x3**2 +3 x2**2 x3 +6 x1 x2 x3 +3 x1**2 x3 + x2**3 +3 x1 x2**2 +3 x1**2 x2 + x1**3)Solution to step 3:DIIFRP converts a distributive rational polynomial into a distributive integral polynomial.PFDIP converts then to a recursive integral polynomial. Since PFDIP is no function, wemust use the sequence r:=r. q1:=q1. to display the results.q1:=DIIFRP(p1).PFDIP(q1,r,q1). r:=r. q1:=q1.The resulting output is:ANS: ((1 0 0 0) 1 (0 1 0 0) 1 (0 0 1 0) 1 (0 0 0 1) 1)ANS: 4ANS: (1 (0 (0 (0 1))) 0 (1 (0 (0 1)) 0 (1 (0 1) 0 (1 1))))Solution to step 4:IPEXP denotes the integral polynomial exponentiation function. r is the number of vari-ables as determined by PFDIP. The polynomial gcd function is called IPGCDC. It computesthe gcd(q1; q2) = q and the cofactors of the gcd (that is q1 = qy and q2 = qz). To displaythe results we need the sequence q:=q. y:=y. z:=z.q2:=IPEXP(r,q1,t).IPGCDC(r,q1,q2,q,y,z).q:=q. y:=y. z:=z.The output shows that gcd(q1; q2) = q1 as expected. The cofactors are z = p21 and y = 1.

7.4. DISTRIBUTIVE POLYNOMIAL SYSTEM 119ANS: (3 (0 (0 (0 1))) 2 (1 (0 (0 3)) 0 (1 (0 3)0 (1 3))) 1 (2 (0 (0 3)) 1 (1 (0 6) 0 (1 6))0 (2 (0 3) 1 (1 6) 0 (2 3))) 0 (3 (0 (0 1))2 (1 (0 3) 0 (1 3)) 1 (2 (0 3) 1 (1 6) 0 (2 3))0 (3 (0 1) 2 (1 3) 1 (2 3) 0 (3 1))))ANS: (1 (0 (0 (0 1))) 0 (1 (0 (0 1)) 0 (1 (0 1) 0 (1 1))))ANS: (0 (0 (0 (0 1))))ANS: (2 (0 (0 (0 1))) 1 (1 (0 (0 2)) 0 (1 (0 2)0 (1 2))) 0 (2 (0 (0 1)) 1 (1 (0 2) 0 (1 2)) 0(2 (0 1) 1 (1 2) 0 (2 1))))Solution to step 5:To suppress unwanted output we use a BEGIN{block. DIFIP converts a recursive polyno-mial to a distributive polynomial and DIRFIP converts to distributive rational representa-tion. The resulting polynomial is put into a list and writen by PWRITE. Finally we test theequality of p2 and q3 with the function EQUAL.BEGIN p3:=DIPFP(r,q2);p3:=DIRFIP(p3);Q:=LIST(p3);PWRITE(Q);IF EQUAL(p2,p3) = 1 THEN CLOUT("equal")ELSE CLOUT("not equal") END;END.The resulting output is as follows:Polynomial in the variables: (x1,x2,x3,x4)Term ordering: inverse lexicographical.Polynomial list:(x4**3 +3 x3 x4**2 +3 x2 x4**2 +3 x1 x4**2 +3 x3**2 x4 +6 x2 x3 x4 +6 x1 x3 x4 +3 x2**2 x4 +6 x1 x2 x4 +3 x1**2 x4 + x3**3 +3 x2 x3**2 +3 x1 x3**2 +3 x2**2 x3 +6 x1 x2 x3 +3 x1**2 x3 + x2**3 +3 x1 x2**2 +3 x1**2 x2 + x1**3)equalSolution to step 6:We use the function PREAD to input a list of polynomials together with the linear formin distributive rational representation. The name T for the variable in the linear form is�xed and cannot changed. With the given linear form, the variable B becomes the lowestvariable.P:=PREAD().(B,S,T,Z,P,W) (1, T, T**2, T**3, T**4, T**5)((45 P + 35 S - 165 B - 36),(35 P + 40 Z + 25 T - 27 S),(15 W + 25 S P + 30 Z - 18 T - 165 B**2),(- 9 W + 15 T P + 20 S Z),(P W + 2 T Z - 11 B**3),(99 W - 11 B S + 3 B**2)(B**2 + 33/50 B + 2673/10000))

120 CHAPTER 7. POLYNOMIAL SYSTEMSPWRITE(P).Q:=DIRPGB(P,1).PWRITE(Q).The resulting output is as follows:LFCHECK: LF linearly independent.Polynomial in the variables: (B,S,T,Z,P,W)Term ordering:1TT**2T**3T**4T**5Polynomial list:(45 P +35 S -165 B -36)(35 P +40 Z +25 T -27 S)(15 W +25 S P +30 Z -18 T -165 B**2)(-9 W +15 T P +20 S Z)(P W +2 T Z -11 B**3)(99 W -11 B S +3 B**2)Note, that the linear form is checked if it is really linearly independent over the rationalnumbers to avoid mistakes.The Gr�obner base is as follows:Polynomial in the variables: (B,S,T,Z,P,W)Term ordering:1TT**2T**3T**4T**5Polynomial list:(B**2 +33/50 B +2673/10000)(S -5/2 B -9/200)(T -37/15 B +27/250)(Z +49/36 B +1143/2000)(P -31/18 B -153/200)(W +19/120 B +1323/20000)This concludes the discussion of the exercises.7.5 Interface to the MAS languageIn section 7.4.3 on algorithms for distributive polynomials we introduced the proceduresPREAD and PWRITE. These procedures perform conversions between strings (input /output streams) and (lists) of distributive rational polynomials.In this section we will discuss mainly two other conversion procedures:

7.5. INTERFACE TO THE MAS LANGUAGE 121� POLY converts a list of MAS expressions to a list of distributive rational polyno-mials, if the MAS expressions have a meaning as polynomials.� TERM converts a list of distributive rational polynomials to a (quoted) MAS ex-pression, if the polynomials have a meaning as MAS expression.These two procedures improve the interactive usage of the distributive polynomial system.As a distinguishing feature the user of POLY need no more worry about specifying avariable list, since all variables in the expressions are automaticaly added to the variablelist, if not allready there. Acompanying procedures are available which set the desiredterm order and the variable list.Recall some de�nitions: Let L be the set of lists, O be the set of objects, S = fx 2 O : xrepresents a S{expression g be the set of S{expressions (they are the output of the MASparser), DRr = fx 2 O : x represents a multivariate polynomial over Q in r variables gbe the set of distributive rational polynomials.The interface functions are de�ned as follows:P POLY (p1; : : : ; pn) pi 2 S for i = 1; : : : ; n and P 2 LDRr. The MAS expressions piare converted to distributive rational polynomials. All variablesoccuring in the pi's, which are not in the system variable list areadded to it as small variables. The actual de�ned term order isused. The syntax de�nition of POLY is:ident ":=" "POLY(" expr { "," expr } ")"Where expr is an ordinary MAS expression which is inter-pretable as a polynomial over the rational numbers. That isthe following context conditions apply:1. Only the operators "+", "-", "*", "**", "^" and "/" mayappear.2. The division operator "/" may only by used between num-bers (atoms).3. String constants may occur and (the string contents) areinterpreted as rational numbers.4. The identi�ers occuring in expr are per de�nition disjointto identi�ers used as MAS variables even if they have thesame name.5. No function names may apear in the MAS expressions.POLY is implemented by DIP2SYM .T TERM(P) P 2 LDRr and T 2 S. P is a list of distributive rationalpolynomials. T is a quoted list of S{expressions, that is a listof terms, which are marked that they are not to be evaluatedby the MAS interpreter. For the variable names the names fromthe actual variable list are used. TERM is implemented bySYM2DIP .

122 CHAPTER 7. POLYNOMIAL SYSTEMSV 0 DIPV DEF (V) V; V 0 2 L. V and V 0 are variable lists. The list V is convertedto a variable list and stored in the global variable V ALIS. Thenew variable list is returned in V 0.t0 DIPTODEF (t) t; t0 2 L. t and t0 are term order indicators as de�ned in theglobal variable EV ORD. t becomes the new term order, the oldterm order t0 is returned. Possible values for t are:1 invers lexicographical term order ascending order,2 invers lexicographical term order descending order, 2 corre-sponds to the term order letter "L" in PREAD,3 invers graded lexicographical term order ascending order,4 invers graded lexicographical term order descending order, 4corresponds to the term order letter "G" in PREAD,5 lexicographical term order ascending order,6 lexicographical term order descending order,7 total degree Buchberger lexicographical term order ascendingorder,8 total degree Buchberger lexicographical term order descendingorder,L a linear form, L is a list L = (l1; : : : ; ln) where each li 2 IP1,i = 1; : : : ; n is an univariate recursive integral polynomial.Note: The orders with even indicator numbers are admissibleterm orders, the others are in general not admissible.EV OWRITE(t) t 2 L. t is a term order indicator, the meaning of this indicatoras term order is written to the output stream.Since the argument expressions to POLY are not evaluated, there is no way substitute avalue for a variable in such an expression. (Substitution in polynomials can only performedby the library functions like DIRPSM or DIRPSV .) This is di�erent to other computeralgebra systems like REDUCE where the polynomial variables are identi�ed with theprogramming language variables.The reason for this behavior lies in the MAS view of polynomials: they are constants fromsome algebraic structure and do not belong to the programming (meta) language.Examples:Let S = Q[X1; X2; X3; X4] and let p; q 2 S, p = X1 + X2 + X3 + X4, q = 3=4X21 . Wewill �rst discuss some examples for the use of POLY , then of TERM and �naly someexamples for DIPV DEF and DIPTODEF .P:=POLY(x1+x2+x3+x4).Variable(s) added to VALIS: x4, x3, x2, x1ANS: (((1 0 0 0) (1 1) (0 1 0 0) (1 1)(0 0 1 0) (1 1) (0 0 0 1) (1 1)))p:=FIRST(POLY(x1 + x2 + x3 + x4)).

7.5. INTERFACE TO THE MAS LANGUAGE 123ANS: ((1 0 0 0) (1 1) (0 1 0 0) (1 1)(0 0 1 0) (1 1) (0 0 0 1) (1 1))q:=SECOND(POLY(x1 + x2 + x3 + x4, 3/4 x1^2)).ANS: ((2 0 0 0) (3 4))In the �rst example the variables x1, x2, x3, x4 have not been in the variable list. Amessage is printed that they are added to the variable list. Note that the order of the (selfdetected) variables can not be precisely determined, since it depends on the expressiontree structure of the parsed MAS expression. If the order is important use DIPV DEFto set the variables explicitly. Observe that POLY allways produces a list of distributivepolynomials. So in order to obtain one polynomial any list selector function can be used.The operands of "/" must be atoms, so 3/4 is ok.P:=POLY("11111/33").ANS: (((0 0 0 0) (11111 33)))String constants can be used in POLY . The string contents are interpreted as rationalnumbers (read by RNDRD).P:=POLY((x1+x2)^2).ANS: (((2 0 0 0) (1 1) (1 1 0 0) (2 1)(0 2 0 0) (1 1)))During the conversion from MAS expressions the distributive polynomials are expanded(or distributed as their name suggests).In the opposite direction we will convert P back to a MAS expression.T:=TERM(P).ANS: QUOTE(((x1^2+2*x1*x2)+x2^2))Observe that the MAS expressions have a tree structure, which is visible by the (useless)inner parenthesis around the �rst two summands.T:=TERM(POLY(3/4)).ANS: QUOTE((3/4))This shows, that atoms are printed correctly, however integers are not printed correctly:T:=TERM(POLY("111111111111111111111111111111/2")).ANS: QUOTE(((197423559 458992985 3)/2))Lists of atoms are not printed as integers but as lists of atoms.Some further examples for the use of DIPV DEF and DIPTODEF .V:=DIPVDEF(LIST("x4", "x9", "x12", "x3")).ANS: ((62 4) (62 9) (62 12) (62 3))Polynomial variable names can be speci�ed as character strings. "x3" now becomes thenew main variable. The new variable list is returned. To extend (or modify) an existingvariable list any list processing function can be used.

124 CHAPTER 7. POLYNOMIAL SYSTEMSV:=CCONC(V,LIST("x5", "x6", "x7", "x8")).ANS: ((62 4) (62 9) (62 1 2) (62 3)(62 5) (62 6) (62 7) (62 8))DIPVDEF(V).ANS: ((62 4) (62 9) (62 1 2) (62 3)(62 5) (62 6) (62 7) (62 8))A �nal example is concerned with selection of term orders.DIPTODEF(6).ANS: 2This call of DIPTODEF switches to lexicographical term order. The old term orderwas 2 = inverse lexicographical. Setting a linear form de�ned term order is a bit moreinvolved since there is at the moment no function wich converts a list of rational distributivepolynomials into a list of integral recursive polynomials. But this will soon be available.This concludes the overview of the MAS language to distributive polynomial interface.7.6 Optimization of the Term OrderIn most applications the computating time for a Gr�obner Basis is strongly dependend onthe chosen variable ordering and term ordering. (See the example below, table 7.6.) To�nd an `optimal' variable ordering one looks at the reduced univariate polynomials:De�nition: Let f(x1; : : : ; xr) 2 R, then the reduced univariate polynomial correspondingto f for the variable xi(1 � i � r) is de�ned by:pi(xi) = g(1; :::; 1; xi; 1; :::; 1) 2 N[xi]with g =Px(i) when f =P a(i)x(i). The reduced polynomial for a set of polynomials isthe sum over all reduced polynomials corresponding to the elements of the set.Experience: Tests for computing times of Gr�obner bases and factorizing of multivariatepolynomials have shown: The variable ordering is optimal ifp1(x) � : : : � pr(x):where the univariate polynomials are ordered according to the inverse lexicographicalordering of their coe�cient vectors, that means:h(x) > 0() ldcf(h) > 0 and h(x) > k(x)() h(x)� k(x) > 0The computation of the reduced univariate polynomials itself and the reordering of thevariables is not much time consuming. So this optimization will in many cases lead tofaster Gr�obner bases computation.There is an algorithm DIPV OP in the distributive polynomial system which does thiskind of term order optimization. Its speci�cation isDIPV OP (P; V ;P 0; V 0) with P; P 0 2 Dr and V; V 0 are variable lists. The representationof the polynomials in P and the variable list V are changed ac-cording to the optimization heuristics. P 0 is the new polynomiallist and V 0 is the new variable list.

7.6. OPTIMIZATION OF THE TERM ORDER 125variable time timeordering term order = L term order = GBSTZPW 1.95 10.92SBTZPW 27.99 16.37STBZPW 110.27 18.74STZPBW 115.35 16.37STZPWB 247.03 20.81SZPWBT 67.68 19.78PWBTSZ 103.16 20.61ZWBSTP > 3 600.00 32.31TZPWBS tfc 50.50ZPWBST > 3 600.00 39.32PWBSTZ 37.18 20.88WBSTZP 34.98 10.81Computing time in seconds on IBM 370/168. 'tfc' = 'to fewcells reclaimed', that means not enough storage was available.From [B�oge et al. 1986].Table 7.1: Computing times for di�erent term orderingsM DIPDEM(p) for one polynomial p 2 Dr, andM DIPLDM(P) for a list of polynomials P 2 LDr determine the tuples of reducedunivariate polynomials M 2 LIP1.Example:To demonstrate the inuence of the term order on the computation of Gr�obner baseswe include the following example of an ideal generated by 7 polynomials in 6 variables[Trinks 1978]. Let R = Q, S = R[B;S; T; Z; P;W] and let the polynomials be(+ 45 P + 35S -165B -36 ,+ 35 P +40 Z + 25 T -27 S ,+ 15 W + 25 P S + 30 Z - 18 T - 165 B**2 ,- 9 W + 15 P T + 20 Z S ,W P + 2 Z T - 11 B**3 ,99 W - 11 S B + 3 B**2 ,B**2 + 33/50 B + 2673/10000)In table 7.6 the dependence is clearly visible. The reduced univariate polynomial forvariable B has degree 3, so a term order where B is smaller than all other variables will bemost desirable. Observe that as more right B stands in the variable list as worst becomethe computing times.Note that especially the inverse lexicograpbical term order is very sensitive against re-ordering of variables, the inverse graduated term order is less sensitive. However in someapplications (like ideal elimination theory) Gr�obner bases are required with respect to theinverse lexicographical term order .

126 CHAPTER 7. POLYNOMIAL SYSTEMS7.7 Non-commutative Solvable Polynomial SystemA solvable polynomial ring is an ordinary commutative polynomial ring R = K[X1; : : : ;Xn] equipped with a new non-commutative multiplication �. The �eld K is assumedto be commutative and to commute with the indeterminates X1; : : : ; Xn. The set T ofterms (power-products of indeterminates) is supposed to be linearly ordered by an ad-missible order <T such that the order is compatible with the new multiplication �. Theaxioms of solvable polynomial rings are discussed in section 8.6 and where �rst de�ned by[Kandri-Rody, Weispfenning 1988]. In the implementation we use the ordinary commuta-tive distributive polynomial representation. The non-commutative product � is de�ned viarelations, which are elements of a free associative algebra. These relations are representedas triples (u; v; p)of commutative terms u; v 2 T and a commutative polynomial p 2 R, such thatu � v = pand p is of the form c � u � v + p0with 0 6= c 2 K and p0 2 R, where p0 <T u � v. A table (implemented as list) of theserelations is required as input parameter for most algorithms for solvable polynomials.7.7.1 AlgorithmsThe programs of the most important non-commutative solvable type distributive polyno-mial algorithms are summarized in the following. Only rational polynomial programs arediscussed.As the de�nition of the solvable polynomial ring and the distributive representation sug-gests the algorithms will be constructed in the following way:1. Loop on the monomials in the polynomials:(a) perform operations on exponent vectors by recursive application of the non-commutative product algorithm, using and updating the relation table,(b) perform operations on the base coe�cients of the term and the non-commutativeproduct polynomial,Construct resulting polynomials.2. Return the results.The complexity of polynomial algorithms will therefore depend mainly on �ve factors:1. the size of the base coe�cients of the polynomials,2. the size of the base coe�cients of the commutator relations,3. the number of terms of the polynomials,4. the degree and the number of terms of the commutator relations,

7.7. NON-COMMUTATIVE SOLVABLE POLYNOMIAL SYSTEM 1275. the number of variables.These quantities are as de�ned in the section on the recursive representation algorithms.We will continue to write L(a) for O(L(a)), that means we will not count for constantfactors. The computing time functions t; t+; t�; t� are de�ned as before in section 5.7.Let A be the set of atoms, A+ be the set of non-negative atoms, L be the set of lists,O = A[L be the set of objects, R = fx 2 O : x represents an element of Qg be the set ofrational numbers, B = fx 2 O : x represents an element of a base coe�cient ring g be theset of base coe�cients, Dr = fx 2 O : x represents a multivariate polynomial in r variablesg be the set of distributive polynomials, DRr = fx 2 O : x represents a multivariatepolynomial over Q in r variables g be the set of distributive rational polynomials. CRr =fx 2 O : x represents triples of multivariate polynomials over Q in r variables g be theset of commutator relations of distributive rational polynomials.The programs are summarized in the following tableC DINPPR(T;A;B) T 2 CRr, A;B;C 2 DRr. C = A � B is the non-commutativeproduct of A and B in a solvable polynomial ring with commu-tator relations T .C DINCCO(T;A;B) T 2 CRr, A;B;C 2 DRr. C = A�B�B�A is the commutatorof A and B in a solvable polynomial ring with commutatorrelations T .B DINPEX(T;A; n) T 2 CRr, A;B 2 DRr, n 2 A. B = An is the non-commutativen-th power of A in a solvable polynomial ring with commutatorrelations T .P NPREAD(T) T 2 CRr, P 2 LDRr. A list of distributive rational polyno-mials is read from the actual input stream. All multiplicationsof variables mean the non-commutative �-product, even if � isnot explicitly written. The accepted syntax (with start symbolpolylist) is:polylist = "(" [poly { "," poly }] ")"poly = "(" term { ("+"|"-") term } ")"term = power { ["*"] power }power = factor ["**" atom]factor = (rational | ident | "(" poly ")")With the context conditions:1. the `atoms' must be nonnegative,2. `ident's which appear in `poly' must be declared in theitem `varlist' of PREAD during the input of T ,Examples will be discussed in the exercise section.B DINLNF (T; P;A) T 2 CRr, A;B 2 DRr, P 2 LDRr. B is the left normalform of A with respect to P in a solvable polynomial ring withcommutator relations T : B = left� normalformP (A).

128 CHAPTER 7. POLYNOMIAL SYSTEMSQ LIRRSET (T; P) andQ DINLIS(T; P) T 2 CRr, P;Q 2 LDRr. Q is the left irreducible set of P ina solvable polynomial ring with commutator relations T . Thatmeans every p 2 Q is monic and irreducible with respect toQ n fpg.G LGBASE(T; P; t) andG DINLGB(T; P; t) T 2 CRr, P;G 2 LDRr, t 2 f0; 1; 2g. G is the left Gr�obner baseof P in a solvable polynomial ring with commutator relations T .t is the `trace ag', t = 0 if no intermediate output is requred,t = 1 if the reduced S{polynomials are to be listed and t = 2for maximal information.G TSGBASE(T; P; t) andG DINCGB(T; P; t) T 2 CRr, P;G 2 LDRr, t 2 f0; 1; 2g. G is the two-sidedGr�obner base of P in a solvable polynomial ring with commu-tator relations T . t is the `trace ag', t = 0 if no intermediateoutput is requred, t = 1 if the reduced S{polynomials are to belisted and t = 2 for maximal information.P CenterPol(T;E) andP DINCCPpre(T;E) T 2 CRr, E 2 L(A+r), P 2 LDRr. P is a list of polynomialsin r variables, where the terms are contained in E (T (p) � E,p 2 P) and each p 2 P is in the center of a solvable polynomialring with commutator relations T . Moreover the polynomialsin P are written to the actual output stream.p DINCCP (T;E) T 2 CRr, E 2 L(A+r), p 2 LDRr+s. p is a polynomial in r+ svariables, 0 � s � jEj, where the s `new' variables indicateparametric coe�cients, and the `old' terms are contained in E(T (p) � E). For any specialization of the parameters to Q, thespecialized polynomial p is in the center of a solvable polynomialring with commutator relations T .E EV LGTD(r; d; L) r; d 2 A+, L 2 L(A+r), E 2 LL(A+r). r is the number ofvariables, d is the total degree and L is a list of already com-puted terms (used for internal recursion, and initially calledwith L empty). It returns a list E = (E0; : : : ; Ed) where eachEi, 1 � i � d, is a list of exponents of terms in r variables oftotal degree exactly i.E EV LGIL(D) D 2 A+r, E 2 L(A+r). D = (d1; : : : ; dr) is a list of non-negative atoms and E is a list of of terms, such that for any(e1; : : : ; er) 2 E, 0 � ei � di holds for 1 � i � r.For examples see section 8.6.2.

7.8. ARBITRARY DOMAIN SYSTEM 1297.8 Arbitrary domain systemThe arbitrary domain system consists of two parts:1. the distributive polynomial system algorithms over arbitrary domain coe�cients2. and the arbitrary domain algorithms themselves.Distributive polynomials with arbitrary domain coe�cients are represented in the sameway as distributive polynomials, except that the representation of the base coe�cients isdi�erent. So all distributive polynomial algorithms which do not depend on the base coef-�cient ring can be applied to distributive polynomials with arbitrary domain coe�cients.Let AD denote the set of arbitrary domain elements and let ADd denote the set of arbitrarydomain elements from domain d. Then the representation of an arbitrary domain elementa 2 ADd is the list (nd; a0; : : :):Where nd 2 A is a unique atom which identi�es the domain d, a0 is the representationof a domain element (e.g. a rational number or an integer) and the rest of the list (: : :)represents internal information of the domain. The value nd is uniquely assigned to adomain during programm initialization and may thus vary from one MAS run to another.The domain descriptor read functions associate the domain number with the externaldomain speci�cation. The actually available domains depend on the totally availabledomains and the compiled version of MAS.The available domains are discussed later together with examples for each domain. Weturn now to the description of the algorithms.7.8.1 AlgorithmsWe �rst summarize the programs of the most important distributive arbitrary domainpolynomial algorithms and then we summarize the programs of the most important arbi-trary domain algorithms.Let A be the set of atoms, L be the set of lists, O = A [L be the set of objects,AD = fx 2 O : x represents an element of an arbitrary domain base coe�cient ringg be the set of arbitrary domain base coe�cients, DADr = fx 2 O : x represents amultivariate polynomial in r variables over arbitrary domain coe�cients g be the set ofdistributive arbitrary domain polynomials. Dr = fx 2 O : x represents a multivariatepolynomial in r variables g be the set of distributive polynomials.We discuss now the polynomial algorithms which depend on the base coe�cient �eld. Thepolynomial algorithms which do not depend on the base coe�cient ring are the same asdiscussed in the section on distributive polynomials.A0 DIPNEG(A) A;A0 2 DADr. A0 = �A is the negative of A.C DIPSUM(A;B) A;B;C 2 DADr. C = A+B is the sum of A and B.C DIPDIF (A;B) A;B;C 2 DADr. C = A�B is the di�erence of A and B.C DIPROD(A;B) A;B;C 2 DADr. C = A �B is the product of A and B.

130 CHAPTER 7. POLYNOMIAL SYSTEMSB DIPNOR(P;A) A;B 2 DADr, P 2 LDADr. B = normalformP (A) is the normalform or completely reduced form of A with respect to P . AD mustbe a �eld.Q DILIS(P) P;Q 2 LDADr. Q is the irreducible set of P , that is every p 2 Qis irreducible with respect to Q n fpg. AD must be a �eld.G DIPGB(P; t) P;G 2 LDADr, t 2 f0; 1; 2g. G is the Gr�obner base of P . t isthe `trace ag', t = 0 if no intermediate output is requred, t = 1 ifthe reduced S{polynomials are to be listed and t = 2 for maximalinformation. AD must be a �eld.B DIIFNF (P;A0; A) A;A0; B 2 DADr, P 2 LDADr. B = normalformP (A) is thenormal form or completely reduced form of A with respect to P .A0 is a polynomial which has already been reduced. AD mustbe the ring of integers or integral functions and the polynomialA0 and the polynomial A are multiplied by the head terms of thepolynomials p 2 P which are used for reduction.Q DIIFLS(P) P;Q 2 LDADr. Q is the irreducible set of P , that is every p 2 Qis irreducible with respect to Q n fpg. AD must be the ring ofintegers or integral functions.G DIIFGB(P; t) P;G 2 LDADr, t 2 f0; 1; 2g. G is the Gr�obner base of P . t isthe `trace ag', t = 0 if no intermediate output is requred, t = 1 ifthe reduced S{polynomials are to be listed and t = 2 for maximalinformation. AD must be the ring of integers or integral functions.B DIFIP (A; d) A 2 DIr, B 2 DADr, d 2 ADd. The distributive integral poly-nomial is converted to a distributive arbitrary domain polynomialwith speci�ed domain d.P DILRD(V; d) P 2 LDADr. A list of distributive rational polynomials with thevariable list V , d 2 ADd and term order as de�ned in EVORD areread from the actual input stream. The accepted syntax (withstart symbol polylist) is:polylist = "(" poly { "," poly } ")"poly = "(" term { ("+"|"-") term } ")"term = power { ["*"] power }power = factor ["**" atom]factor = (ident | "(" domain element ")")With the context conditions:1. the atoms must be nonnegative,2. idents appearing in poly must be declared in varlist,3. the right most variable in the variable list denotes the mainvariable,

7.8. ARBITRARY DOMAIN SYSTEM 1314. domain element must be a valid element of the domain asde�ned by d.Examples will be discussed later.DILWR(P; V) P 2 LDADr. A list of distributive rational polynomials is writtento the actual output stream using the variable list V . The outputsyntax of the polynomial list is similar to the input syntax ofDILRD.This concludes the summary of the distributive arbitrary domain polynomial functions.We turn now to the summary of the programs of the most important arbitrary domainalgorithms. As before let AD = fx 2 O : x represents an element of an arbitrary domainbase coe�cient ring g be the set of arbitrary domain base coe�cients.s ADONE(A) A 2 AD, s 2 A. s = 1 if A = 1AD otherwise s 6= 1. If the domainhas no one-test function de�ned an error occurs.s ADSIGN(A) A 2 AD, s 2 A. s = 1 if A >AD 0, s = 0 if A =AD 0 and s = �1if A <AD 0. If the domain has no sign function de�ned an erroroccurs.s ADINV T (A) A 2 AD, s 2 A. s = 1 if A is invertible in AD otherwise s = 0.If the domain has no invertibility test function de�ned an erroroccurs.s ADCNST (A) A 2 AD, s 2 A. s = 1 if A is a constant in AD otherwise s 6= 1. Ifthe domain has no constant test function de�ned an error occurs.The meaning of a constant depends on the domain. In polynomiallike domains a constant is in general a polynomial of degree zero.A0 ADNEG(A) A;A0 2 AD. A0 = �A is the negative of A. If the domain has nonegation function de�ned an error occurs.A0 ADINV (A) A;A0 2 AD. A0 = A�1 is the multiplicative inverse of A. If Ais not invertible in the domain AD or the domain has no inverseelement function de�ned an error occurs.C ADDIF (A;B) A;B;C 2 AD. C = A � B is the di�erence of A and B. If Aand B are not elements the same domain or the domain has nodi�erence function de�ned an error occurs.C ADSUM(A;B) A;B;C 2 AD. C = A + B is the sum of A and B. If A andB are not elements the same domain or the domain has no sumfunction de�ned an error occurs.C ADPROD(A;B) A;B;C 2 AD. C = A �B is the product of A and B. If A and Bare not elements the same domain or the domain has no productfunction de�ned an error occurs.

132 CHAPTER 7. POLYNOMIAL SYSTEMSC ADQUOT (A;B) A;B;C 2 AD. C = A=B is the quotient of A and B. If A and Bare not elements the same domain or the domain has no quotientfunction de�ned or if the quotient does not exist an error occurs.B ADEXP (A; n) A;B 2 AD, n 2 A+. B = An is the n-th power of A. If thedomain has no product function or no `one' function de�ned (incase n = 0) an error occurs.C ADGCD(A;B) A;B;C 2 AD. C = gcd(A;B) is the greatest common divisor ofA and B. If the domain has no greatest common divisor functionde�ned an error occurs.ADGCDC(A;B;C;A0 ; B0) A;B;C;A0; B0 2 AD. C = gcd(A;B) is the greatest commondivisor of A and B. A0 and B0 are the cofactors of A and Brespectively, i.e. A � A0 = C = B � B0. If C = 0 then alsoA0 = B0 = 0. If the domain has no greatest common divisorfunction de�ned an error occurs.ADGCDE(A;B;C;A0 ; B0) A;B;C;A0; B0 2 AD. C = gcd(A;B) is the greatest commondivisor of A and B. A0 and B0 are elements of AD such that thegcd C is a linear combination of A and B with factors A0 andB0, i.e. C = A � A0 + B � B0. If C = 0 then also A0 = B0 = 0.If the domain has no extended greatest common divisor functionde�ned an error occurs.C ADLCM(A;B) A;B;C 2 AD. C = lcm(A;B) is the least common multiple ofA and B. If the domain has no least common multiple functionde�ned an error occurs.L ADFACT (A) A 2 AD, L 2 LAD. L is a list of prime respectively irreduciblefactors of A. If the domain has no factorization function de�nedan error occurs.B ADCONV (A; d) A 2 AD, d;B 2 ADd. B = Ad. A is converted to an element ofdomain ADd. If the conversion is not de�ned an error occurs.B ADFI(d;A) A 2 I, d;B 2 ADd. B = Ad. An integer A is converted to anelement of domain ADd. If the conversion is not de�ned an erroroccurs.B ADFIP (d;A) A 2 IPr, d;B 2 ADd. B = Ad. An integral polynomial A isconverted to an element of domain ADd. The number of variablesof the domain ADd must be equal to r. If the conversion is notde�ned an error occurs.B ADTOIP (A; l) B 2 IPr, A 2 ADd, l 2 IPr. l is the least common multiple ofthe coe�cient-denominators. An domain element A is convertedto an integral polynomial. If the conversion is not de�ned an erroroccurs.A ADREAD(d) d;A 2 ADd, A domain element A is read from the actual inputstream. If no input function is de�ned an error occurs.

7.8. ARBITRARY DOMAIN SYSTEM 133ADWRIT (A) A 2 AD. A domain element A is written to the actual outputstream. If no output function is de�ned an error occurs.d ADDDREAD() d 2 ADd is a domain element. A domain descriptor is read fromthe actual input stream and an element (in general 0) of the do-main ADd is returned. If no input function is de�ned an erroroccurs. The accepted syntax (with start symbol spec) is:spec = dsymbol ddescriptiondsymbol = ("INT" | "RN" | "MI" | "MD" | "APF" |"IP" | "RP" | "RF" | "AF" |"C" | "Q" | "O" | "FF")With the context conditions:1. ddescription depends on the domain symbol and the syn-tax is discussed in the next subsection;2. not all dsymbols may always be available and the availableones are discussed in the next subsection.ADDDWRIT (d) d 2 ADd is a domain element. The domain descriptor of elementd is written to the actual output stream. If no output function isde�ned an error occurs.V ADV LDD(d) d 2 ADd is a domain element. V gets the variable list fromdomain element d. If the element has no variable list, or if novariable list function is de�ned an error occurs.This concludes the summary of the arbitrary domain functions.7.8.2 Available DomainsThe general format of a domain speci�cation is as de�ned in the syntax of ADDDREAD:<domain symbol> <domain description>Where <domain symbol> is a unique short name of a domain and <domain description>is a partly optional list of further speci�cations which are meaningful for the particulardomain. The available domains are discussed in the this subsection. In the followingsubsections we discuss the various domains in more detail together with the speci�cationsand with some examples.Supported domains and domain symbols are:INT Integral NumbersRN Rational NumbersMI Integral Numbers modulo an IntegerMD Integral Digits modulo a Digit

134 CHAPTER 7. POLYNOMIAL SYSTEMSAPF Arbitrary Precision Floating Point NumbersIP Integral PolynomialsRP Rational PolynomialsRF Rational FunctionsAF Algebraic NumbersFF Finite Field NumbersC Complex NumbersQ Quaternion NumbersO Octonion NumbersThe acutally available domains can be listed by the `DOMAINS' command.DOMAINS. (*show available domains*)The output shows all de�ned domains (in the order in which they are de�ned to thesystem).List of all defined domainsAF Algebraic NumberINT IntegerIP Integral PolynomialMD Modular DigitMI Modular IntegerFF Finite FieldRF Rational FunctionRN Rational NumberC Complex NumberQ Quaternion NumberO Octonion NumberRP Rational PolynomialAPF Arbitrary Precision Floating Point13 defined domains.The domain descriptions for some of the di�erent domains are discussed in the next sub-sections together with some examples.7.8.3 Integral NumbersINTFor integral numbers there are no further options. If the computation requires to takequotients of integral numbers and the remainder is non{zero, an error message is displayedand the user is asked for interaction.In the following example we read a list of distributive polynomials over the integral numberand compute the 3-rd power of the �rst polyomial. First we read the domain symbol `INT'

7.8. ARBITRARY DOMAIN SYSTEM 135with the domain descriptor read function `ADDDREAD' and also print the descriptor with`ADDDWRIT'. Then we setup a variable list using the `LIST' function on strings of variablenames `V:=LIST("x","y","z")'. A list of two polynomials `(7 y x**4 z ...)' and`(y + ...)' is then read by `DILRD', which requires as inputs a variable list `V' and adomain descriptor `dp'. The polynomials are then printed by `DILWR'. Next the 3-rd powerof the �rst polynomial is computed using the `DILEX' function. Finally this polynomial isput into a list and printed on the output stream.(*Integer ----------------------------------- *)(*domain descriptor *)dp:=ADDDREAD(). INTADDDWRIT(dp).(*variable list *)V:=LIST("x","y","z").(*Polynomials *)P:=DILRD(V,dp).((7 y x**4 z + 9 + 13 z**3 - x),(y + z**5 + 77))DILWR(P,V).(* computations *)p:=FIRST(P). q:=DIPEXP(p,3).Q:=LIST(q). DILWR(Q,V).Next we discuss the output as produced by the above example. `(2 0)' is the in-ternal representation of the interger domain descriptor. `INT (* Integer *)' is theprinted domain descriptor, the comment gives a more verbose description of the domain.`((56) (58) (60))' is the internal representation of the variable list. Then the input poly-nomials are printed. Finally the time for computing the 3-rd power of the �rst polynomialis printed followed by the resulting polynomial itself.ANS: (2 0)MAS: INT (* Integer *)ANS: ((56) (58) (60))(13 z**3 +7 x**4 y z - x +9)(z**5 + y +77)Time: read = 16, eval = 34, print = 16, gc = 0.(2197 z**9 +3549 x**4 y z**7 -507 x z**6 +4563 z**6 +1911 x**8 y**2 z**5 -546x**5 y z**4 +4914 x**4 y z**4 +343 x**12 y**3 z**3 +39 x**2 z**3 -702 x z**3 +3159 z**3 -147 x**9 y**2 z**2 +1323 x**8 y**2 z**2 +21 x**6 y z -378 x**5 y z +1701 x**4 y z - x**3 +27 x**2 -243 x +729)7.8.4 Rational NumbersRN [s]

136 CHAPTER 7. POLYNOMIAL SYSTEMSFor rational numbers there is one option, the so called decimal ag `s'. It controls theprintout of the rational numbers as follows:If `s = �1' (this is the default) the rational numbers are printed as fractions of integralnumbers (e.g. 33/100). If `s � 0' the rational numbers are approximated by the nearestdecimal fractions with s decimal digits following the decimal point (e.g. if s=5, 2/3 isprinted as 0.66667). More precisely the decimal fraction approximation d:d1d2 : : : ds�1dswere d 2 Z, di 2 f0; 1; : : : ; 9g (1 � i � s) for a rational number a means:ja� d:d1d2 : : : ds�1dsj � 12 � 10s :In the following example we read a list of distributive polynomials over the rational num-bers, to be printed with 10 places after the decimal point, and compute the 3-rd powerof the �rst polyomial. First we read the domain symbol `RN' and the decimal ag s as 10with the domain descriptor read function `ADDDREAD' and also print the descriptor with`ADDDWRIT'. The rest of the example is as in the previous example with integer coe�cients.(*Rational Number ---------------------------- *)(*domain descriptor <print precision> *)dp:=ADDDREAD(). RN 10ADDDWRIT(dp).(*variable list *)V:=LIST("x","y","z").(*Polynomials *)P:=DILRD(V,dp).((7 y x**4 z + 9 + 13 z**3 - x),(y + z**5 + 77))DILWR(P,V).(* computations *)p:=FIRST(P). q:=DIPEXP(p,3).Q:=LIST(q). DILWR(Q,V).Next we discuss the output as produced by the above example. `(7 0 10)' is the in-ternal representation of the rational number domain descriptor with decimal ag 10.`RN 10 (* Rational Number *)' is the printed domain descriptor, the comment givesa more verbose description of the domain. The rest of the example is as in the previousexample with integer coe�cients except that all numbers are printed with 10 places afterthe decimal point.ANS: (7 0 10)MAS: RN 10 (* Rational Number *)ANS: ((56) (58) (60))(13.0000000000 z**3 +7.0000000000 x**4 y z - x +9.0000000000)(z**5 + y +77.0000000000)

7.8. ARBITRARY DOMAIN SYSTEM 137Time: read = 0, eval = 50, print = 17, gc = 0.(2197.0000000000 z**9 +3549.0000000000 x**4 y z**7 -507.0000000000 x z**6 +4563.0000000000 z**6 +1911.0000000000 x**8 y**2 z**5 -546.0000000000 x**5 y z**4 +4914.0000000000 x**4 y z**4 +343.0000000000 x**12 y**3 z**3 +39.0000000000 x**2z**3 -702.0000000000 x z**3 +3159.0000000000 z**3 -147.0000000000 x**9 y**2 z**2 +1323.0000000000 x**8 y**2 z**2 +21.0000000000 x**6 y z -378.0000000000 x**5y z +1701.0000000000 x**4 y z - x**3 +27.0000000000 x**2 -243.0000000000 x +729.0000000000)7.8.5 Modular Integers and DigitsMI mMD mIntegral numbers or digits modulo the integer `m'. `MI' uses the long integer arithmeticand `MD' uses arithmetic of �-digits only. During input of the domain descriptor it ischecked whether `m' is prime or not and the result of this check is printed in a comment.If the computation requires to take inverses modulo `m' and they do not exist in the caseof `m' beeing not prime, an error message is displayed and user interaction is requested.In the following two examples we read a list of distributive polynomials over modular digitswith modulus 7 respectively over modular integers with modulus 19 and compute the 3-rdpower of the �rst polyomial. First we read the domain symbol `MD' and the modulus 7respectively `MI' and the modulus 19 with the domain descriptor read function `ADDDREAD'and also print the descriptor with `ADDDWRIT'. The rest of the example is as in the previousexamples with integer or rational number coe�cients.(*Modular Digit ----------------------------- *)(*domain descriptor <modulus> *)dp:=ADDDREAD(). MD 7ADDDWRIT(dp).(*variable list *)V:=LIST("x","y","z").(*Polynomials *)P:=DILRD(V,dp).((7 y x**4 z + 9 + 13 z**3 - x),(y + z**5 + 717))DILWR(P,V).(* computations *)p:=FIRST(P). q:=DIPEXP(p,3).Q:=LIST(q). DILWR(Q,V).(*Modular Integer ----------------------------- *)(*domain descriptor <modulus> *)dp:=ADDDREAD(). MI 19ADDDWRIT(dp).

138 CHAPTER 7. POLYNOMIAL SYSTEMS(*variable list *)V:=LIST("x","y","z").(*Polynomials *)P:=DILRD(V,dp).((7 y x**4 z + 13 + 19 z**3 - x),(y + z**5 + 77))DILWR(P,V).(* computations *)p:=FIRST(P). q:=DIPEXP(p,3).Q:=LIST(q). DILWR(Q,V).Next we discuss the output as produced by the above examples. `(4 0 7 1)' is the internalrepresentation of the modular digit domain descriptor with modulus 7. (1 indicates that 7is a prime number.) `MD 7 (* prime. *) (* Modular Digit *)' is the printed domaindescriptor for modulus 7. The �rst comment `(* prime. *)' indicates, that the modulusis a prime number and the second comment gives a more verbose description of the domain.The rest of the example is as in the previous examples with integer or rational numbercoe�cients. The di�erences to the previous examples is that the coe�cients of the inputpolynomials are reduced modulo 7, respectively 19 and thus some might have been becomezero and the respective terms disappear. E.g. `7 y x**4 z' reduces to zero, and `19 z**3'reduces to `6 z**3' modulo 7.ANS: (4 0 7 1)MAS: MD 7 (* prime. *) (* Modular Digit *)ANS: ((56) (58) (60))(6 z**3 +6 x +2)(z**5 + y +3)Time: read = 0, eval = 17, print = 16, gc = 0.(6 z**9 +4 x z**6 +6 z**6 +4 x**2 z**3 +5 x z**3 +2 z**3 +6 x**3 +6 x**2 +2 x+1)ANS: (5 0 19 1)MAS: MI 19 (* prime. *) (* Modular Integer *)ANS: ((56) (58) (60))(7 x**4 y z +18 x +13)(z**5 + y +1)Time: read = 17, eval = 17, print = 16, gc = 0.(x**12 y**3 z**3 +5 x**9 y**2 z**2 +11 x**8 y**2 z**2 +2 x**6 y z +5 x**5 y z+15 x**4 y z +18 x**3 + x**2 +6 x +12)7.8.6 Arbitrary precision oating point numbersAPF [s]

7.8. ARBITRARY DOMAIN SYSTEM 139Arbitrary precision oating point numbers. The ag `s' de�nes the precision of the num-bers, i.e. the minimal number of decimal digits in the internal representation.In the following example we read a list of distributive polynomials over arbitrary precisionoating point numbers with precision 50 and compute the 3-rd power of the �rst polyomial.First we read the domain symbol `APF' and the precision 50 with the domain descriptorread function `ADDDREAD' and also print the descriptor with `ADDDWRIT'. The rest of theexample is as in the previous examples with integer or rational number coe�cients.(*Arbitrary precision floating point -------- *)(*domain descriptor <precision> *)dp:=ADDDREAD(). APF 50ADDDWRIT(dp).(*variable list *)V:=LIST("x","y","z").(*Polynomials *)P:=DILRD(V,dp).((7 y x**4 z + 9 + 13 z**3 - x),(y + z**5 + 77))DILWR(P,V).(* computations *)p:=FIRST(P). q:=DIPEXP(p,3).Q:=LIST(q). DILWR(Q,V).Next we discuss the output as produced by the above examples. The �rst line indicatesthat the precision is de�ned to be at least 50 decimal digits and exactly 173 binary dig-its. `(8 (0 0) 50)' is the internal representation of the arbitrary precision oating pointnumber domain descriptor with precision 50.`APF 50 (* Arbitrary Precision Floating Point *)' is the printed domain descrip-tor for precision 50. The comment gives a more verbose description of the domain. The restof the example is as in the previous examples with integer or rational number coe�cients.MAS: Floating point precision set to 50 digits = 173 bits.ANS: (8 (0 0) 50)MAS: APF 50 (* Arbitrary Precision Floating Point *)ANS: ((56) (58) (60))(0.13000E2 z**3 +0.700E1 x**4 y z -0.100E1 x +0.9000E1)(0.100E1 z**5 +0.100E1 y +0.77000E2)Time: read = 0, eval = 234, print = 50, gc = 0.(0.2197000E4 z**9 +0.3549000000000

140 CHAPTER 7. POLYNOMIAL SYSTEMS00000000000000000000000000000000000000E4 x**4 y z**7 -0.50699E3 x z**6 +0.4563000E4 z**6 +0.1911000E4 x**8 y**2 z**5 -0.54599E3 x**5 y z**4 +0.4914000E4 x**4 y z**4 +0.34300E3 x**12 y**3 z**3 +0.38999E2 x**2 z**3 -0.70199E3 x z**3 +0.3159000E4 z**3 -0.14699E3x**9 y**2 z**2 +0.1323000E4 x**8 y**2 z**2 +0.20999E2 x**6 y z -0.37799E3 x**5 y z +0.1701000E4 x**4 y z - x**3 +0.26999E2 x**2 -0.24299E3 x +0.72900E3)7.8.7 Integral PolynomialsIP (x1,...,xr)For the integral polynomial domain the variables need to be speci�ed in the variable list`(x1,...,xr)'. The `xi' denote variable names (starting with a letter, followed by lettersand/or decimal digits). The elements are represented as multivariate polynomials withintegral coe�cients. On input the coe�cients should be enclosed in parenthesis: `(p)'where p denotes a multivariate polynomial with integer coe�cients. If the computationrequires to take quotients of integral numbers and the remainder is non{zero, an errormessage is displayed and user interaction is requested.In the following example we read a list of distributive polynomials over integral polynomialsin the variables a; b; c and compute the 3-rd power of the �rst polyomial. First we readthe domain symbol `IP' and the list of variables `(a,b,c)' with the domain descriptorread function `ADDDREAD' and also print the descriptor with `ADDDWRIT'. As usual therightmost variable `c' de�nes the main variable. The rest of the example is as in theprevious examples with integer or rational number coe�cients except that we use newpolynomials. The coe�cients `(a + b + c)' and `(a)' are enclosed in parenthesis toallow the distributive polynomial input routines to switch to integral polynomial inputroutines for the input of the coe�cients.(*Integral Polynomial ----------------------- *)(*domain descriptor <var list> *)dp:=ADDDREAD(). IP(a,b,c)ADDDWRIT(dp).(*variable list 2 *)V:=LIST("x","y","z").(*Polynomials *)P:=DILRD(V,dp).(((a + b + c) z**3 - x),(y + z**5 + (a)))DILWR(P,V).

7.8. ARBITRARY DOMAIN SYSTEM 141(* computations *)q:=DIPEXP(FIRST(P),3).DILWR(LIST(q),V).Next we discuss the output as produced by the above examples.`(3 0 3 ((10) (12) (14)))' is the internal representation of the integral polynomialdomain descriptor. `((10) (12) (14)))' is the internal representation of the variable list`(a,b,c)' and the second `3' denotes, that the integral polynomials are in 3 variables. Thecomment gives a more verbose description of the domain. The rest of the example is as inthe previous examples with integer or rational number coe�cients.ANS: (3 0 3 ((10) (12) (14)))MAS: IP(a,b,c) (* Integral Polynomial *)ANS: ((56) (58) (60))((c + b + a) z**3 - x)(z**5 + y + a)Time: read = 16, eval = 34, print = 33, gc = 0.((c**3 +3 b c**2 +3 a c**2 +3 b**2 c +6 a b c +3 a**2 c + b**3 +3 a b**2 +3a**2 b + a**3) z**9 -(3 c**2 +6 b c +6 a c +3 b**2 +6 a b +3 a**2) x z**6 +(3 c +3 b +3 a) x**2 z**3 - x**3)7.8.8 Rational PolynomialsRP (x1,...,xr)For the rational polynomial domain the variables need to be speci�ed in the variable list`(x1,...,xr)'. The `xi' denote variable names (starting with a letter, followed by lettersand/or decimal digits). The elements are represented as multivariate polynomials withrational coe�cients. On input the coe�cients should be enclosed in parenthesis: `(p)'where p denotes a multivariate polynomial with rational coe�cients. If the computationrequires to take quotients and the remainder is non{zero, an error message is displayedand user interaction is requested.In the following example we read a list of distributive polynomials over rational polynomialsin the variables a; b; c and compute the 3-rd power of the �rst polyomial. First we read thedomain symbol `RP' and the list of variables `(a,b,c)' with the domain descriptor readfunction `ADDDREAD' and also print the descriptor with `ADDDWRIT'. As usual the leftmostvariable `c' de�nes the main variable. The rest of the example is as in the previousexample over integral polynomials. The coe�cients `(a + b + c)' and `(a)' areenclosed in parenthesis to allow the distributive polynomial input routines to switch torational polynomial input routines for the input of the coe�cients.(*Rational Polynomial ----------------------- *)(*domain descriptor <var list> *)dp:=ADDDREAD(). RP(a,b,c)ADDDWRIT(dp).

142 CHAPTER 7. POLYNOMIAL SYSTEMS(*variable list 2 *)V:=LIST("x","y","z").(*Polynomials *)P:=DILRD(V,dp).(((a + b + c) z**3 - x),(y + z**5 + (a)))DILWR(P,V).(* computations *)q:=DIPEXP(FIRST(P),3).DILWR(LIST(q),V).Next we discuss the output as produced by the above examples.`(8 0 3 ((10) (12) (14)))' is the internal representation of the rational polynomialdomain descriptor. `((10) (12) (14)))' is the internal representation of the variable list`(a,b,c)' and the second `3' denotes, that the rational polynomials are in 3 variables. Thecomment gives a more verbose description of the domain. The rest of the example is as inthe previous example with integral polynomial coe�cients.ANS: (8 0 3 ((10) (12) (14)))MAS: RP(a,b,c) (* Rational Polynomial *)ANS: ((56) (58) (60))((c + b + a) z**3 - x)(z**5 + y + a)Time: read = 16, eval = 34, print = 50, gc = 0.((c**3 +3 b c**2 +3 a c**2 +3 b**2 c +6 a b c +3 a**2 c + b**3 +3 a b**2 +3a**2 b + a**3) z**9 -(3 c**2 +6 b c +6 a c +3 b**2 +6 a b +3 a**2) x z**6 +(3 c +3 b +3 a) x**2 z**3 - x**3)7.8.9 Rational FunctionsRF (x1,...,xr)For the rational function domain the variables need to be speci�ed in the variable list`(x1,...,xr)'. The `xi' denote variable names (starting with a letter, followed by lettersand/or decimal digits). The rational functions are fractions of multivariate integral poly-nomials reduced to lowest terms. I.e. gcd(denominator,nominator) = 1 and leading basecoe�cient (nominator) > 0. On input the denominators and nominators should be en-closed in parenthesis: `(p)/(q)' where p and q denote multivariate polynomials with integercoe�cients.In the following example we read a list of distributive polynomials over rational functionsin the variables a; b; c and compute the 3-rd power of the �rst polyomial. First we read thedomain symbol `IP' and the list of variables `(a,b,c)' with the domain descriptor readfunction `ADDDREAD' and also print the descriptor with `ADDDWRIT'. As usual the leftmost

7.8. ARBITRARY DOMAIN SYSTEM 143variable `c' de�nes the main variable. The rest of the example is as in the previousexamples with integer or rational number coe�cients except that we use new polynomials.The coe�cients `(a + b + c)(a**2 - 4)/' and `(a)' are enclosed in parenthesisto allow the distributive polynomial input routines to switch to rational function inputroutines for the input of the coe�cients.(*Rational Function ----------------------- *)(*domain descriptor <var list> *)dp:=ADDDREAD(). RF(a,b,c)ADDDWRIT(dp).(*variable list 2 *)V:=LIST("x","y","z").(*Polynomials *)P:=DILRD(V,dp).(((a + b + c)/(a**2 - 4) z**3 - x),(y + z**5 + (a)))DILWR(P,V).(* computations *)q:=DIPEXP(FIRST(P),3).DILWR(LIST(q),V).Next we discuss the output as produced by the above examples.`(6 (3 0) ((10) (12) (14)))' is the internal representation of the rational function do-main descriptor. `((10) (12) (14)))' is the internal representation of the variable list`(a,b,c)'. The comment gives a more verbose description of the domain. The rest of theexample is as in the previous examples with integer or rational number coe�cients.ANS: (6 (3 0) ((10) (12) (14)))MAS: RF(a,b,c) (* Rational Function *)ANS: ((56) (58) (60))((c + b + a)/(a**2 -4) z**3 - x)(z**5 + y + a)Time: read = 17, eval = 333, print = 33, gc = 0.((c**3 +3 b c**2 +3 a c**2 +3 b**2 c +6 a b c +3 a**2 c + b**3 +3 a b**2 +3a**2 b + a**3)/(a**6 -12 a**4 +48 a**2 -64) z**9 -(3 c**2 +6 b c +6 a c +3b**2 +6 a b +3 a**2)/(a**4 -8 a**2 +16) x z**6 +(3 c +3 b +3 a)/(a**2-4) x**2 z**3 - x**3)7.8.10 Algebraic NumbersAF (x, p(x), [(l,r) [, s]])Algebraic numbers, i.e. elements of Q[x]=(p(x)), are represented as univariate polynomialsmodulo an univariate polynomial p 2 Q[x], together with an optional isolating intervall

144 CHAPTER 7. POLYNOMIAL SYSTEMS(l; r) for the algebraic number � with p(�) = 0 and � 2 (l; r). If p is irreducible, thenQ[x]=(p(x)) = Q(�) is a �eld. `x' denotes the variable name, in which the algebraicnumbers are written. `p(x)' denotes the polynomial modulo which the computation isto be done. `(l,r)' is an optional isolating intervall, (l; r) 2 Q �Q, for the real algebraicnumber � 2 (l; r] � R. `s' is the optional decimal ag. If `s = �1' the algebraic numbers areprinted as polynomials in `x'. If `s � 0' decimal approximations for the algebraic numbersare printed. As with the case of the decimal approximation of the rational numbers wehave: j� � d:d1d2 : : : ds�1dsj � 12 � 10s :for � 2 Q(�), and d 2 Z, di 2 f0; 1; : : : ; 9g (1 � i � s). The isolating intervall is onlyrequired if the decimal ag `s' is non-negative.The polynomial `p' is checked whether it is (1) not squarefree, (2) squarefree or (3) ir-reducible. The result of this check is printed together with the domain descriptor in acomment. It depends on the package if the computation can proceed correctly, e.g. realroot isolation requires `p' to be squarefree or Gr�obner bases computation requires inversesin Q(�), so `p' must be irreducible over Q. If the computation requires to take inversesmodulo `p' and they do not exist in the case of `p' beeing not irreducible, an error messageis displayed and user interaction is requested.In the following three examples we read a list of distributive polynomials over three dif-ferent algebraic number �elds and compute the 3-rd power of the �rst polyomial. First weread the domain symbol `AF' and the speci�cation of the algebraic number ring with thedomain descriptor read function `ADDDREAD' and also print the descriptor with `ADDDWRIT'.The rest of the example is as in the previous examples with integer or rational numbercoe�cients except that we use new polynomials. The coe�cients enclosed in parenthesisto allow the distributive polynomial input routines to switch to rational function inputroutines for the input of the coe�cients.The �rst algebraic number ring is the �eld Q(i), where i is the imaginary number. Thespeci�cation `(i, (i**2 + 1))' de�nes the variable `i' and the de�ning irreduciblepolynomial `(i**2 + 1)' for `i'.(*Complex Algebraic Number ----------------------- *)(*domain descriptor <var> <minimal polynomial> *)dp:=ADDDREAD(). AF(i, (i**2 + 1))ADDDWRIT(dp).(*variable list 2 *)V:=LIST("x","y","z").(*Polynomials *)P:=DILRD(V,dp).(((3 + 4 i) z**3 - x),(y + z**5 + (i**2 + 2)))DILWR(P,V).(* computations *)q:=DIPEXP(FIRST(P),3).

7.8. ARBITRARY DOMAIN SYSTEM 145DILWR(LIST(q),V).Next we discuss the output as produced by the above example.`(1 0 (2 (1 1) 0 (1 1)) (2 1 0 1) 1 ((26)) () -1)' is the internal representationof the algebraic number domain descriptor. `((26))' is the internal representation of thevariable list `(i)'. `()' denotes an empty isolating interval and `-1' denotes the decimal ags = �1 (which are the defaults). `(2 (1 1) 0 (1 1))' is the rational minimal polynomialand `(2 1 0 1)' is the integral minimal polynomial. `1' denotes that the polynomials areirreducible. The �rst comment `(* prime *)' indicates that the polynomial is prime andthe second comment gives a more verbose description of the domain. The rest of theexample is as in the previous examples with integer or rational number coe�cients.ANS: (1 0 (2 (1 1) 0 (1 1)) (2 1 0 1) 1 ((26)) () -1)MAS: AF(i, (i**2 +1)) (* prime *) (* Algebraic Number *)ANS: ((56) (58) (60))((4 i +3) z**3 - x)(z**5 + y + 1)Time: read = 0, eval = 33, print = 17, gc = 0.((44 i -117) z**9 -(72 i -21) x z**6 +(12 i +9) x**2 z**3 - x**3)The second example is a real algebraic number ringQ[�], where � is a root of (X2�2)(X�3). The speci�cation `(w2, ((w2**2 - 2) (w2 - 3)))' de�nes the variable `w2' andthe de�ning squarefree polynomial `(w2**3 -3 w2**2 -2 w2 +6)' for `w2'. `(1, 2)'de�nes the isolating interval (1; 2] for p2 and `10' de�nes the decimal ag to be 10.(*Real Algebraic Number 1---------------------- *)(*domain descriptor (<var>, <minimal polynomial>[, (r1,r2)[, s]]) *)dp:=ADDDREAD(). AF(w2, ((w2**2 - 2) (w2 - 3)), (1, 2), 10)ADDDWRIT(dp).(*variable list 2 *)V:=LIST("x","y","z").(*Polynomials *)P:=DILRD(V,dp).(((1 + w2) z**3 - x),(y + z**5 + (w2**2 + 32)))DILWR(P,V).(* computations *)q:=DIPEXP(FIRST(P),3).DILWR(LIST(q),V).Next we discuss the output as produced by the above example.`((1 0 (3 (1 1) 2 (-3 1) 1 (-2 1) 0 (6 1)) (3 1 2 -3 1 -2 0 6) 2

146 CHAPTER 7. POLYNOMIAL SYSTEMS((54 2)) ((1 1) (2 1)) 10)' is the internal representation of the algebraic numberdomain descriptor. `((54 2))' is the internal representation of the variable list `(w2)'.`((1 1) (2 1))' is the internal representation of the isolating intervall (1; 2] and `10' de-notes the decimal ag s = 10. `(3 (1 1) 2 (-3 1) 1 (-2 1) 0 (6 1))' is the rationalminimal polynomial and `(3 1 2 -3 1 -2 0 6)' is the integral minimal polynomial. `2'denotes that the polynomials are irreducible. The �rst comment `(* squarefree *)' in-dicates that the polynomial is squarefree and the second comment gives a more verbosedescription of the domain. The rest of the example is as in the previous examples withinteger or rational number coe�cients, only the polynomial coe�cients are printed with10 places after the decimal point.MAS: (w2**3 -3 w2**2 -2 w2 +6)ANS: (1 0 (3 (1 1) 2 (-3 1) 1 (-2 1) 0 (6 1)) (3 1 2 -3 1 -2 0 6) 2((54 2)) ((1 1) (2 1)) 10)Time: read = 17, eval = 216, print = 0, gc = 0.MAS: AF(w2, (w2**3 -3 w2**2 -2 w2 +6), (1, 2), 10)(* squarefree *) (* Algebraic Number *)ANS: ((56) (58) (60))(2.4142135624 z**3 - x)(z**5 + y +34.0000000000)Time: read = 0, eval = 766, print = 0, gc = 0.(14.0710678119 z**9 -17.4852813742 x z**6 +7.2426406871 x**2 z**3 - x**3)The third example is a real algebraic number ring Q[�], where � is a root of (X2�2)(X�3)2. The speci�cation `(w2, ((w2**2 - 2) (w2 - 3)**2))' de�nes the variable `w2'and the de�ning reducible and non squarefree polynomial`(w2**4 -6 w2**3 +7 w2**2 +12 w2 -18)' for `w2'. `(1, 2)' de�nes the isolatinginterval (1; 2] for p2. No decimal ag is speci�ed.(*Real Algebraic Number 2---------------------- *)(*domain descriptor (<var>, <minimal polynomial>[, (r1,r2)[, s]]) *)dp:=ADDDREAD(). AF(w2, ((w2**2 - 2) (w2 - 3)**2), (1, 2))ADDDWRIT(dp).(*variable list 2 *)V:=LIST("x","y","z").(*Polynomials *)P:=DILRD(V,dp).(((1 + w2) z**3 - x),(y + z**5 + (w2**2 + 32)))DILWR(P,V).(* computations *)q:=DIPEXP(FIRST(P),3).DILWR(LIST(q),V).

7.8. ARBITRARY DOMAIN SYSTEM 147Next we discuss the output as produced by the above example.`(1 0 (4 (1 1) 3 (-6 1) 2 (7 1) 1 (12 1) 0 (-18 1))(4 1 3 -6 2 7 1 12 0 -18) 0 ((54 2)) ((1 1) (2 1)) -1)' is the internal represen-tation of the algebraic number domain descriptor. `((54 2))' is the internal representationof the variable list `(w2)'. `((1 1) (2 1))' is the internal representation of the isolatingintervall (1; 2] and `-1' denotes the decimal ag s = �1.`(4 (1 1) 3 (-6 1) 2 (7 1) 1 (12 1) 0 (-18 1))' is the rational minimal polyno-mial and `(4 1 3 -6 2 7 1 12 0 -18)' is the integral minimal polynomial. `0' de-notes that the polynomials are reducible and not squarefree. The �rst comment`(* reducible *)' indicates that the polynomial is reducible and not squarefree and thesecond comment gives a more verbose description of the domain. The rest of the exampleis as in the previous examples with integer or rational number coe�cients. The polynomialcoe�cients are printed as polynomials in `w2', since the decimal ag was �1 by default.MAS: (w2**4 -6 w2**3 +7 w2**2 +12 w2 -18)ANS: (1 0 (4 (1 1) 3 (-6 1) 2 (7 1) 1 (12 1) 0 (-18 1))(4 1 3 -6 2 7 1 12 0 -18) 0 ((54 2)) ((1 1) (2 1)) -1)Time: read = 16, eval = 50, print = 17, gc = 0.MAS: AF(w2, (w2**4 -6 w2**3 +7 w2**2 +12 w2 -18), (1, 2))(* reducible *) (* Algebraic Number *)ANS: ((56) (58) (60))((w2 +1) z**3 - x)(z**5 + y +(w2**2 +32))Time: read = 0, eval = 16, print = 0, gc = 0.((w2**3 +3 w2**2 +3 w2 +1) z**9 -(3 w2**2 +6 w2 +3) x z**6 +(3 w2 +3)x**2 z**3 - x**3)7.8.11 Gr�obner bases over various domainsIn this section we list two examples of Gr�obner base computations over the domainsof modular digits and rational functions. The input that follows is as described in theexamples before, except that the algorithm for Gr�obner base computation `DIPGB' is called.(*Modular Digit ----------------------------- *)(*domain descriptor <modulus> *)dp:=ADDDREAD(). MD 17ADDDWRIT(dp).(*variable list *)V:=LIST("B","S","T","Z","P","W"). xxx:=DIPVDEF(V).(*Polynomials *)P:=DILRD(V,dp).((45 P + 35 S - 165 B - 36),(35 P + 40 Z + 25 T - 27 S),(15 W + 25 S P + 30 Z - 18 T - 165 B**2),(- 9 W + 15 T P + 20 S Z),(P W + 2 T Z - 11 B**3),

148 CHAPTER 7. POLYNOMIAL SYSTEMS(99 W - 11 B S + 3 B**2))(*Syntax: <polynomial list> *)DILWR(P,V).(* computations *)Q:=DIPGB(P,1).DILWR(Q,V).The computation takes place in the statement `Q:=DIPGB(P,1).' `P' is the list of inputpolynomials and `1' is the trace ag, which requests intermediate output of the reducedS-polynomials.ANS: (4 0 17 1)MAS: MD 17 (* prime. *) (* Modular Digit *)ANS: ((13) (47) (49) (61) (41) (55))(11 P + S +5 B +15)(P +6 Z +8 T +7 S)(15 W +8 S P +13 Z +16 T +5 B**2)(8 W +15 T P +3 S Z)(P W +2 T Z +6 B**3)(14 W +6 B S +3 B**2)2216 ms, 326 cells,1 crit3, 1 crit4, 1 spoly, 1 hpoly,15 pairs, 14 restp, 0.933+ quot.H=(15 Z +3 T +8 S +12 B +2)4466 ms, 752 cells,3 crit3, 2 crit4, 1 spoly, 1 hpoly,20 pairs, 17 restp, 0.850 quot.H=(13 S T +5 B T +15 T +15 S**2 +8 S +10 B**2)...40066 ms, 41062 cells,152 crit3, 14 crit4, 4 spoly, 4 hpoly,152 pairs, 0 restp, 0.000 quot.Time: read = 0, eval = 42800, print = 100, gc = 0.(11 B**10 +13 B**9 +13 B**8 +8 B**7 +2 B**6 + B**5 +14 B**4 +4 B**3 +8 B**2 +6B +3)(11 S +12 B**8 +2 B**7 +14 B**6 +9 B**5 +11 B**4 +12 B**3 +16 B**2 +5 B +6)(5 T +12 B**9 +5 B**8 +13 B**7 +7 B**6 +5 B**5 +15 B**4 +2 B**3 +13 B**2+11 B +9)(15 Z +3 B**9 +13 B**8 +13 B**7 +2 B**6 +9 B**5 +8 B**3 +9 B**2 +3 B +8)(11 P +2 B**8 +6 B**7 +8 B**6 +10 B**5 +16 B**4 +2 B**3 +14 B**2 +3 B +16)(14 W +12 B**9 +2 B**8 +14 B**7 +9 B**6 +11 B**5 +12 B**4 +16 B**3 +8 B**2+6 B)In the next example we compute a Gr�obner base over the rational function �eld in 4variables. Except of the domain descriptor and the input polynomials, the example is asthe previous example.

7.8. ARBITRARY DOMAIN SYSTEM 149(*Rational Function ----------------------- *)(*domain descriptor <var list> *)dp:=ADDDREAD(). RF(A1,A2,A3,A4)ADDDWRIT(dp).(*variable list 2 *)V:=LIST("X1","X2","X3","X4"). xxx:=DIPVDEF(V).(*Polynomials *)P:=DILRD(V,dp).((X4 - (A4 - A2)),(X1 + X2 + X3 + X4 - (A1 + A3 + A4)),(X1 X3 + X1 X4 + X2 X3 + X3 X4 - (A1 A4 + A1 A3 + A3 A4)),(X1 X3 X4 - (A1 A3 A4)))DILWR(P,V).(* computations *)Q:=DIPGB(P,1).DILWR(Q,V).The output is as follows.ANS: (6 (4 0) ((11 1) (11 2) (11 3) (11 4)))MAS: RF(A1,A2,A3,A4) (* Rational Function *)ANS: ((57 1) (57 2) (57 3) (57 4))ANS: ((13) (47) (49) (61) (41) (55))(X4 -(A4 - A2))(X4 + X3 + X2 + X1 -(A4 + A3 + A1))(X3 X4 + X1 X4 + X2 X3 + X1 X3 -(A3 A4 + A1 A4 + A1 A3))(X1 X3 X4 - A1 A3 A4)1950 ms, 389 cells,1 crit3, 1 crit4, 1 spoly, 1 hpoly,6 pairs, 5 restp, 0.833+ quot.H=(X3 + X2 + X1 -(A3 + A2 + A1))...14584 ms, 63521 cells,24 crit3, 6 crit4, 1 spoly, 1 hpoly,24 pairs, 0 restp, 0.000 quot.Time: read = 0, eval = 16316, print = 117, gc = 0.(X1**3 -(A3 A4 + A1 A4 + A1 A3)/(A4 - A2) X1**2 +(A1 A3 A4**2 + A1 A3**2 A4 + A1**2 A3 A4)/(A4**2 -2 A2 A4 + A2**2) X1 - A1**2 A3**2 A4**2 /(A4**3 -3 A2 A4**2 +3 A2**2 A4 - A2**3))(X2 +(A4**2 -2 A2 A4 + A2**2)/ A1 A3 A4 X1**2 -(A3 A4**2 + A1 A4**2 -A2 A3 A4 - A1 A2 A4 - A1 A2 A3)/ A1 A3 A4 X1 +(A4 - A2))(X3 -(A4**2 -2 A2 A4 + A2**2)/ A1 A3 A4 X1**2 +(A3 A4**2 + A1 A4**2 -A2 A3 A4 + A1 A3 A4 - A1 A2 A4 - A1 A2 A3)/ A1 A3 A4 X1 -(A4 + A3 + A1))

150 CHAPTER 7. POLYNOMIAL SYSTEMS(X4 -(A4 - A2))Time: read = 17, eval = 66, print = 0, gc = 0.This is the end of the examples and so the end of the section on the arbitrary domainsystem.

Chapter 8PackagesIn this chapter we give an overview and describe the usage of several software packagesfrom commutative and non-commutative algebra and algebraic geometry. For more infor-mation see the books by [Becker, Weispfenning 1993] on Gr�obner Bases and commutativecomputational algebra, by [Geddes et al. 1992] on algorithms for computer algebra andby [Knuth 1981] on seminumerical algorithms as well as the original papers cited below.8.1 Gr�obner BasesLet R = K[X1; : : : ; Xn] be a commutative polynomial ring in n � 0 variables X1; : : : ; Xnover a �eld K. Let I be an ideal of R (a subset of R closed under addition and multipli-cation by arbitrary elements of R). Ideals arise in the algebraic methods used for solvingsystems of multivariate non-linear (but polynomial) equations.The �rst important problem in computational ideal theory is the ideal membership problem:given I � R and f 2 R, is f 2 I ?It is known by Hilbert's basis theorem, that any ideal I in a polynomial ring over a �eld is�nitely generated. So let I be generated by m 2 N polynomals p1; : : : ; pm 2 R, notationI = ideal(p1; : : : ; pm). Then f 2 I means, that there exist polynomials h1; : : : ; hm 2 R,such that f = mXi=1 hipi:Then f 2 I can be decided, i� one can �nd the polynomials h1; : : : ; hm. In case R is aunivariate polynomial ring or in case the generating polynomials of the ideal are all linear,the solution to this problem has been known since several hundered years and the methodsare named after Euclid and Gauss. In the general case the solution method is named afterGr�obner and an algorithm by Buchberger. The solutions are as follows:1. univariate case: R = K[X] is a so called euclidean domain, i.e. there exists a divisionwith remainder and as a consequence every ideal is generated by exactly one element.This element p can be computed by means of the euclidean algorithm, then I =151

152 CHAPTER 8. PACKAGESideal(p1; : : : ; pm) = ideal(p). Then f 2 I i� f = hp for some h 2 R, i.e. f 2 I i� pdivides f , which solves the problem.2. linear case: If f is linear and the p1; : : : ; pm are linear too, then by gaussian elim-ination it can be checked if f is a K-linear combination of the p1; : : : ; pm. So theproblem is again solved.3. general case: The method is in some sense similar to the above two:�rst transform the generating set for the ideal to a suitable form, called Gr�obnerbase, by Buchberger's algorithm,second check if f can be written as polynomial combination of the elements fromthe Gr�obner base.The second step can be computed by a form of multi-polynomial division with re-mainder called polynomial reduction and if f reduces to zero, then f 2 I . Thedi�culty is that for arbitrary generating sets of ideals the polynomial reduction doesin general not reduce a polynomial in the ideal to zero. Only for reduction withrespect to a Gr�obner base the polynomial reduces to zero if it is in the ideal.Once the ideal membership problem can be solved, many other problems in ideal theorycan be solved by computational methods. To de�ne Gr�obner bases more precisely we needsome preparations about reduction relations.Let �! be a relation on R, (i.e. �!� R � R) then �! is called a reduction relation ifit is a strictly anti-symmetric relation. An element a 2 R is called irreducible if for allb 2 R (a; b) 62�!. A reduction relation �! is called Noetherian if there does not exist anin�nite reduction sequence.Let �! be a reduction relation on R, then �!� denotes the reexive, transitive closureof �!; !� denotes the reexive, transitive closure of the symmetric closure of �!; forf; g; h 2 R f # g denotes that f and g reduce to a common element, that is there exists hwith f �!� h and g �!� h. In this case f !� g.Reduction relations are in general not conuent; this means that two di�erent reductionsof the same element may lead to two di�erent irreducible elements. Let �! be a reductionrelation on R, a; b; c; d 2 R. Then �! is conuent if a �!� c and a �!� d implies c # d;�! is locally conuent if a �! c and a �! d implies c # d; �! has the Church-Rosserproperty if a !� b implies a # b; �! has unique normal forms if a �!� b, a �!� c andb, c are irreducible implies b = c.Now Newmann's lemma tells us that for a Noetherian reduction relation �! on R, �! isconuent i� �! is locally conuent i� �! has unique normalforms.For polynomial ring R = K[X1; : : : ; Xn], with respect to an admissible ordering <, over a�eld K a reduction relation can be de�ned as follows. Recall that a linear order < on theset of terms T = T (X1; : : : ; Xn) is called admissible if1. 1 < t for all t 2 T and2. u < v implies that ut < vt for all u; v; t 2 T .Recall that HT(f) denotes the highest term of f with respect to the given term order <and that HC(f) denote the coe�cient of HT(f) in f . Let p 2 R, t 2 T and let f; f 0 2 R,

8.1. GR �OBNER BASES 153t 2 T (f) then f �!t;p f 0i� there exists u 2 T such that t = uHT(p) andf 0 = f � aup;where a 2 K n f0g is the unique element of K such that HC(f) = aHC(up). Furthermorewe de�ne f �!p f 0 if f �!t;p f 0 for some t in T (f), and for a set P of polynomials wede�ne f �!P f 0 if for some p 2 P , f �!p f 0. By Dicksons lemma it can be shown, thatthe reduction relation �!P is Noetherian for any P � R.Let R = K[X1; : : : ; Xn] be a polynomial ring, with respect to an admissible ordering, overa �eld K. Let G � R be a �nite subset of polynomials of R. If the reduction relation�!G is conuent, then G is called a Gr�obner base.For the computation of a Gr�obner base in �nitely many steps we need one more de�nition.For f; g 2 R, the S-polynomial of f and g is de�ned asSP (f; g) = auf � bvg;where u; v 2 T (X1; : : : ; Xn) are de�ned such that uHT(f) = vHT(g) = w with w =lcm(HT(f);HT(g)) and a; b 2 K are de�ned such that HC(auf) = HC(bvg).Theorem 8.1.1 Let R = K[X1; : : : ; Xn] be a polynomial ring, with respect to an admis-sible ordering, over a �eld K. Let G � R be a �nite subset of polynomials of R. Then thefollowing assertions are equivalent.1. G is a Gr�obner base.2. For all f 2 ideal(G), f �!�G 0.3. For all h 2 H = fSP (f; g) : f; g 2 G; f 6= gg, h �!�G 0.Observe, that 3) is a �nite condition whether an ideal base G is a Gr�obner base or not.And the main idea of the Buchberger algorithm is, in case the test for a Gr�obner base fails,to adjoin a �!G normalform of the S-polynomial to the base G and to repeat the test. Bya theorem we know, that for any �nite F � R of polynomials this repeated adjunction ofnormalforms of S-polynomials must eventualy terminate, so one can construct a Gr�obnerbase G of ideal(F). The proof of this theorem presents the Buchberger algorithm forconstructing Gr�obner bases. For a complete treatment of the theory of Gr�obner basessee [Becker, Weispfenning 1993].8.1.1 Algorithms and ExamplesThe algorithms for the computation of Gr�obner bases are taken from the `The BuchbergerAlgorithm System', BAS as developed by [Gebauer, Kredel 1983]. Their implementationfollows [Winkler et al. 1985] and contains various improvments to computing strategy ande�ciency.The package contains also several subroutines which are of independent interest: S-polynomials, polynomial reduction and normalforms, irreducible sets, minimal Gr�obner

154 CHAPTER 8. PACKAGESbases, optimization of termorderings, augmented computation of Gr�obner bases, test forzero-dimensionality of ideals, construction of univariate polynomials of minimal degreein the ideal and others. There are also several packages which are buildt on top of theGr�obner base package or use it for precomputations: ideal dimension, zero-dimensionalideal decomposition, zero-dimensional ideal real root �nding, syzygies and systems of lin-ear polynomial equations and others.The programs are mostly available for polynomials with rational, integer and arbitrarydomain coe�cients. The programs are contained in the Modula-2 libraries DIPRNGB,DIPZ, DIPTOO, DIPIGB and DIPGB.Examples for Gr�obner base computations have been given in several sections (e.g. section7.4.3 or the next section).8.2 Ideal dimensionWe quote from the introduction of [Kredel, Weispfenning 1988] who developed the package.For a complete treatment of the theory and the extension of the method to arbitrary degreecompatible term orders see [Becker, Weispfenning 1993].Among the basic problems of the algorithmic theory of polynomial ideals, the computationof the dimension dim(I) of an ideal I in a polynomial ring R = K[X1; : : : ; Xn] occupiesa prominent place. The geometric de�nition of dim(I) as the maximal dimension of allisolated prime ideals J associated with I is unfavourable for computation, since it involvesthe primary decomposition of I . Instead, dim(I) can be described more directly as thelargest number of elements in R that are independent modulo I in a natural sense (seee.g. [Gr�obner 1968/70])dim(I) = maxf jU j : U � fX1; : : : ; Xng; I \K[U] = f0g g:A third approach characterizes dim(I) as the degree of the Hilbert polynomial of I , that canbe computed from the vector space dimension of theK{linear spaces Sm = ff+I j deg(f) �mg � R=I .This last characterization has been combined successfully with the algorithmic techniqueof Gr�obner bases introduced by [Buchberger 1965], see also [M�oller, Mora 1983]. Theresulting algorithms are applicable to non-trivial cases. The special problem to testwhether dim(I) � 0 can be handled more easily by Buchberger's criterion (Method 6.9 in[Buchberger 1985]).The Gr�obner basis method can also be combined with the second characterization ofdim(I): Consider all pure lexicographical orderings <L of terms in R induced by permu-tations of the variables Xi. Compute a Gr�obner base G = G(<L) of I with respect to<L, and let S = S(<L) be the largest initial segment of the set of variables, such that nohead term of a polynomial in G contains only variables from S. Then each S is indepen-dent modulo I and the largest S determines the dimension of I . (see [Kandri-Rody 1985],compare also Lemma 5 in [Kutzler, Stifter 1986]). The advantage of this method is thatit determines besides dim(I) also sets of variables independent modulo I . On the otherhand, the number of Gr�obner basis calculations involved in this method renders it uselessfor practical purposes in most cases. Further related methods for computing the dimensionof a polynomial ideal appear in [Giusti 1984] and [Carra-Ferro 1986]. The application ofresultant calculus to this problem has been described in [Kredel 1985].

8.2. IDEAL DIMENSION 155The main algorithm of this package computes both the dimension of I and maximal inde-pendent sets of variables modulo I from a single Gr�obner basis of I . And the algorithmis veri�ed to be correct in the case of a pure lexicographical term order and a few othercases. A recent theorem of [Carra-Ferro 1987] implies that the algorithm is correct for anarbitrary admissible term order. The algorithm is signi�cantly faster than the algorithmsin [M�oller, Mora 1983] using the Hilbert polynomial. It also provides considerable addi-tional information on independent sets and dimensions of isolated prime ideals associatedwith I . Thus, it is particulary suitable to the method of geometrical theorem provingdeveloped in [Kutzler, Stifter 1986]. It is also useful as a tool in the primary decompo-sition of I (compare [Gianni et al. 1986] and also [Kredel 1987]). The method providesparametrizations of a�ne algebraic sets. Thus it may be helpful in determining the spatialstructure of molecules from algebraic equations describing this structure.The veri�cation of the algorithm employs the novel notion of strong independence moduloan ideal I , a concept that correlates well with Gr�obner bases and may be of indepen-dent interest. The algorithm was �rst implemented in the ALDES/SAC-2 system by[Collins, Loos 1980] and has been tested successfully on substantial examples, includingthose studied in [B�oge et al. 1986].8.2.1 Algorithms and ExamplesThe speci�cation of the main algorithm DILDIM is as follows. Given a Gr�obner base G ofmultivariate polynomials with �eld coe�cients, �nd the followingd = dimension ideal(G),S = greatest maximal independent set of variables,M = set of all maximal independent sets.The method is to compute strong independent sets of variables for the head terms of thepolynomials in the Gr�obner base as discussed in [Kredel, Weispfenning 1988].The computed values are the dimension and strongly indepenedent sets in the case ofthe inverse lexicographical term order and in case of any total degree order. In case of adi�erent term ordering the computed values are surely upper bounds for the dimension andindependent sets. It is however claimed by [Carra-Ferro 1987] that for all admissible termorders the dimension and independent sets are found in this way. If G is not a Gr�obnerbase the computed values are also upper bounds.The computation is valid for all coe�cient domains since it depends only on the headtermsof the polynomials. The programs are contained in the Modula-2 library DIPDIM.In the following example we compute �rst a Gr�obner base of an ideal I and then wedetermine the dimension of the ideal. The input consists of a polynomial list in the usualsyntax as described in section 7.4.3 and then of the two statements `Q:=DIRPGB(P,1)' and`DIMENSION(Q)' which request the computation of the Gr�obner base and the dimensionrespectively. The later program calls the `DILDIM' routine and then prints the results tothe current output stream.P:=PREAD().(A1,A2,A3,A4,X1,X2,X3,X4) L

156 CHAPTER 8. PACKAGES((X4 - (A4 - A2)),(X1 + X2 + X3 + X4 - (A1 + A3 + A4)),(X1 X3 + X1 X4 + X2 X3 + X3 X4 - (A1 A4 + A1 A3 + A3 A4)),(X1 X3 X4 - (A1 A3 A4)))PWRITE(P).Q:=DIRPGB(P,1).PWRITE(Q).CLOUT("Computing Dimension ... ").DIMENSION(Q).The following output shows �rst the computed Gr�obner base and then the output of thedimension algorithm. The dimension turns out to be 4 and a maximaly independent setof variables is `(A1,A2,A3,A4)'. There is another maximal independent set of variables`(A1,A2,A3,X1)' as shown in the list of all maximal independent sets. The computingtime for the computation of the dimension is neglectable.MAS: Polynomial in the variables: (A1,A2,A3,A4,X1,X2,X3,X4)Term ordering: inverse lexicographical.Polynomial list:(X4 - A4 + A2)(X4 + X3 + X2 + X1 - A4 - A3 - A1)(X3 X4 + X1 X4 + X2 X3 + X1 X3 - A3 A4 - A1 A4 -A1 A3)(X1 X3 X4 - A1 A3 A4)Time: read = 0, eval = 1667, print = 167, gc = 0.MAS: Polynomial in the variables: (A1,A2,A3,A4,X1,X2,X3,X4)Term ordering: inverse lexicographical.Polynomial list:(A4**3 X1**3 -3 A2 A4**2 X1**3 +3 A2**2 A4 X1**3- A2**3 X1**3 - A3 A4**3 X1**2 - A1 A4**3 X1**2 +2 A2 A3 A4**2 X1**2 - A1 A3 A4**2 X1**2 +2 A1 A2 A4**2 X1**2 - A2**2 A3 A4 X1**2 +2 A1 A2 A3 A4 X1**2 - A1 A2**2 A4 X1**2 - A1 A2**2 A3 X1**2 + A1 A3A4**3 X1 + A1 A3**2 A4**2 X1 - A1 A2 A3 A4**2 X1 +A1**2 A3 A4**2 X1 - A1 A2 A3**2 A4 X1 - A1**2 A2A3 A4 X1 - A1**2 A3**2 A4**2)(A1 A3 A4 X2 + A4**2 X1**2 -2 A2 A4 X1**2 + A2**2 X1**2 - A3 A4**2 X1 - A1 A4**2 X1 + A2 A3 A4 X1+ A1 A2 A4 X1 + A1 A2 A3 X1 + A1 A3 A4**2 - A1 A2A3 A4)(A1 A2 A3 X1 X2 + A4**2 X1**3 -2 A2 A4 X1**3 + A2**2 X1**3 - A3 A4**2 X1**2 - A1 A4**2 X1**2 + A2A3 A4 X1**2 - A1 A3 A4 X1**2 + A1 A2 A4 X1**2 +2 A1 A2 A3 X1**2 + A1 A3 A4**2 X1 + A1 A3**2 A4 X1 +A1**2 A3 A4 X1 - A1 A2 A3**2 X1 - A1 A2**2 A3 X1 -A1**2 A2 A3 X1 - A1**2 A3**2 A4)

8.3. ZERO-DIMENSION IDEAL DECOMPOSITION 157(A4 X1 X2 - A2 X1 X2 + A4 X1**2 - A2 X1**2 - A3A4 X1 - A2 A4 X1 - A1 A4 X1 + A2 A3 X1 + A2**2 X1+ A1 A2 X1 + A1 A3 A4)(X2**2 +2 X1 X2 + A4 X2 - A3 X2 -2 A2 X2 - A1 X2+ X1**2 - A3 X1 - A2 X1 - A1 X1 - A2 A4 + A2 A3 +A1 A3 + A2**2 + A1 A2)(X3 + X2 + X1 - A3 - A2 - A1)(X4 - A4 + A2)MAS: Computing Dimension ...Dimension = 4Maximal independent set = (A1,A2,A3,A4)All maximal independent sets = ((A1,A2,A3,A4), (A1,A2,A3,X1))Time: read = 0, eval = 150, print = 0, gc = 0.This is the end of the dimension example.8.3 Zero-dimension ideal decompositionWe quote from the introduction of the package by [Kredel 1987]. For a complete treatmentof the theory including the positive-dimension case see [Becker, Weispfenning 1993].In a polynomial ring, a Noetherian Ring, it is known, that every ideal A can be decomposedinto �nitely many primary components qi:A = q1 \ : : : \ qlThis fact was discovered by Lasker, Macaulay [Lasker 1905, Macaulay 1916], and in thespecial case of zero dimensional ideals already by M. Noether. By E. Noether this fact istrue for every ring satisfying the so called `Teilerkettensatz' which is equivalent to HilbertsBasis Theorem [Noether 1921].In 1926 G. Hermann made an attempt to discribe a constructive way to �nd the primarydecomposition of a given polynomial ideal over �elds which allow constructive factorization.However she was not aware of the fact, that in general not for all such ground �elds, thepolynomials can be factorized constructively. Seidenberg gave an investigation of thesetopics [Hermann 1926, Seidenberg 1974].The early constructive approaches were based on the method of solving linear equationsin a module over the polynomial ring. Today we are equipped with the powerful methodof Gr�obner Bases, as investigated by B. Buchberger [Buchberger 1965, Buchberger 1985].In 1976 R. Schrader proposed a way for zero dimensional polynomial ideals by constructingunivariate polynomials, factorization and computing the primary ideals from the primeideals by q = A+ p� , where � is the exponent of p [Schrader 1976]. However his primalitytest and the generation of prime ideals is hard to realize.D. Lazard gave an algorithm to compute prime components and multiplicites for pureequidimensional ideals. In 1985 he published a careful study of the primary decomposition

158 CHAPTER 8. PACKAGESin the case on a polynomial ring in two variables [Lazard 1982, Lazard 1985]. Kandri-Rody studied constructive ways to compute the radical of an ideal via the computation ofassociate isolated prime ideals [Kandri-Rody 1984].P. Gianni, B. Trager & G. Zacharias developed a set of algorithms for primary decompo-sition in 1984. Their method uses ideals in `generic position' and factorization, instead of�eld extensions by adjoining new variables. However they use a very complicated primal-ity test, involving mappings to polynomial rings over �eld extensions of the ground �eld.[Gianni et al. 1986]In our method we compute the prime ideals by �rst decomposing the ideal according toSchrader. An algorithm has been published by B�oge, Gebauer and Kredel [Schrader 1976,B�oge et al. 1986]. Next we transform the generated ideals by some algebraic extension ofthe ground �eld until we reach a prime basis for the ideals. This gives us an easy primalitytest, and the primary ideals can now be determined by q = A+ p� .At the moment the algorithms are implemented for the rational numbers as ground �eld,but the method applies also to the rational functions as ground �eld. Since �eld exten-sions and squarefree decompositions are involved, the method is restricted to �elds ofcharacteristic zero.The method uses:� Gr�obner base calculations� construction of univariate polynomials and univariate polynomial factorization� algebraic �eld extensions of the ground �eld� an easy to handle ideal primality testThe method produces for a given zero dimensional ideal:� the associated prime ideals� the primary ideals� the exponents of the associated prime idealsAn informal overview of all steps of the algorithm is given in table 8.1.8.3.1 Algorithms and ExamplesThe speci�cation of the main algorithm DECOMP0 is as follows. Given a Gr�obner base ofmultivariate polynomials with rational number coe�cients of a zero{dimensional ideal.Then �nd the primary ideal decomposition over algebraic �eld extensions of Q. Thisproblem is solved using the method of P-ideal decomposition, primary ideal computationby M. Noethers method as described in [Kredel 1987].The primary ideal decomposition is computed only over the coe�cient domains of therational numbers. The term ordering must be inverse lexicographical. There is a lot ofrun time information printed.The speci�cation of the main algorithm DECOMP0A is as follows. Given a Gr�obner baseof multivariate polynomials with rational number coe�cients of a zero{dimensional ideal.

8.3. ZERO-DIMENSION IDEAL DECOMPOSITION 159

Input: F = Basis for an ideal A � K[X1; : : : ; Xr].Output: All tuples (P;Q; e) such that ideal(P) is an associated prime ideal of A withprimary ideal ideal(Q) and exponent e.Step 0. Compute a Gr�obner base G for A. if dimension ideal(G) 6= 0 then stop.Step 1. Compute a set of so called U{bases fU1; : : : ; Ulg; l � 1, such thatradical(ideal(G)) = \i=1;:::;l radical(ideal(Ui))and all univariate polynomials of minimal degree in ideal(Ui) are irreducible, usingunivariate polynomial construction (for details see [B�oge et al. 1986]).Step 2. Compute a set of P{bases fP 01; : : : ; P 0mg;m � l, such that all polynomials in P 0iare at most bivariate with linear head term except one univariate polynomial with(possibly) non linear head term using primitive element construction. Compute idealbases Pi by ideal(Pi) = ideal(P 0i) \K[X1; : : : ; Xr]:Then ideal(Pi) is a prime ideal associated to A.Step 3. Compute minimal e 2 N, such that ideal(P e) � A+ ideal(P e+1). Then e is theexponent of ideal(Q) and ideal(Q) = A+ ideal(P e) is a primary component of A.Table 8.1: Overview of primary ideal docomposition

160 CHAPTER 8. PACKAGESFind the primary ideal decomposition over Q. This problem is solved using the methodof P-ideal decomposition over algebraic extension �elds over Q. Back transformation ofthe prime ideals to prime ideals over Q by Gr�obner bases computation with a di�erentterm ordering and primary ideal computation by M. Noethers method. This method isalso described in [Kredel 1987].The primary ideal decomposition is computed only over the coe�cient domains of therational numbers. The term ordering must be inverse lexicographical. There is a lotof run time information printed. The programs are contained in the Modula-2 librariesDIPIDEAL and DIPDEC0.In the following example we compute the decomposition of the ideal generated by (x2 �2; y2 � 2; (z � xy)2) over Q and over Q(�) for some � 62 Q. The input consists of apolynomial list in the usual syntax as described in section 7.4.3. Then the statement`q:=DIRPGB(p,1)' requests the computation of the Gr�obner base. Next the statements`DECOMP0(q)' and `DECOMP0A(q)' request the primary decomposition of the ideal over Qrespectively over Q(�) and write the results on the actual output stream.(* Ideal decomposition of zero-dimensional polynomial ideals. *)(* Polynomial list: *)p:=PREAD().(x,y,z) L(((z**2 - y x)**2),(y**2 - 2),(x**2 - 2),)PWRITE(p).(* Groebner base: *)q:=DIRPGB(p,0).PWRITE(q).(* decomposition : *)DECOMP0(q).(* decomposition over Q(alpha) : *)DECOMP0A(q).The following output shows the computed Gr�obner base.MAS: Polynomial in the variables: (x,y,z)Term ordering: inverse lexicographical.Polynomial list:(z**4 -2 x y z**2 + x**2 y**2)(y**2 -2)(x**2 -2)Time: read = 17, eval = 17, print = 0, gc = 0.MAS: Polynomial in the variables: (x,y,z)Term ordering: inverse lexicographical.Polynomial list:(x**2 -2)

8.3. ZERO-DIMENSION IDEAL DECOMPOSITION 161(y**2 -2)(z**4 -2 x y z**2 +4)The following output shows the computed primary decomposition over Q. There arethree primary components, which are listed in sequence. The information on each pri-mary component consists at �rst of the corresponding prime ideal, at second of the pri-mary ideal itself and at last of the exponent of the prime ideal. The computing time isslightly more than 21 seconds. The intermediate output in not shown, except the string`Introduction of the new variable exz', which indicates, that a �eld extension wasrequired to make the variables x and z linear in terms of the new variable exz. After aprime base over this extension �eld has been computed, the new variable is removed usingideal intersections. In the next example this variable and the corresponding polynomialsare kept.Introduction of the new variable exzIntroduction of the new variable exzThe given ideal(x**2 -2)(y**2 -2)(z**4 -2 x y z**2 +4)The decomposition of the idealThe prime ideal(x**2 -2)(y - x)(z + x)The primary ideal(x**2 -2)(y - x)(z**2 +2 x z +2)The exponent is 2The prime ideal(x**2 -2)(y - x)(z - x)The primary ideal(x**2 -2)(y - x)(z**2 -2 x z +2)The exponent is 2The prime ideal(x**2 -2)(y + x)(z**2 +2)The primary ideal(x**2 -2)(y + x)(z**4 +4 z**2 +4)

162 CHAPTER 8. PACKAGESThe exponent is 2Time: read = 0, eval = 21400, print = 0, gc = 0.The following output shows the computed primary decomposition over Q(�). As beforethere are three primary components, which are listed in sequence. The information oneach primary component consists at �rst of the corresponding prime ideal, at second ofthe primary ideal itself and at last of the exponent of the prime ideal. The comput-ing time is nearly 28 seconds. The intermediate output in not shown, except the string`Introduction of the new variable exz', which indicates, that a �eld extension wasrequired to make the variables x and z linear in terms of the new variable exz. Contraryto the previous example, this new variable and the corresponding polynomials are keptafter a prime base over this extension �eld has been computed. So the displayed bases ofthe prime ideals are in fact prime bases, e.g. they consist of exactly one irreducible univari-ate polynomial and all other polynomials are bivariate and linear in the second variable.The computing time is slightly more than in the previous example mostly despite of thecomputation of the primary ideals and exponents in a polynomial ring with 4 instead of 3variables. But there are also examples where the computation over Q(�) is faster than thecomputation over Q despite of the fact that no ideal intersections need to be computed.Introduction of the new variable exzIntroduction of the new variable exzThe given ideal(exz**2 -2)(x**2 -2)(y**4 -2 exz x y**2 +4)The decomposition of the idealThe prime ideal(exz**4 +16)(x -1/8 exz**3 +1/2 exz)(y +1/8 exz**3 -1/2 exz)(z -1/8 exz**3 -1/2 exz)The primary ideal(exz**4 +16)(x -1/8 exz**3 +1/2 exz)(y +1/8 exz**3 -1/2 exz)(z**2 -1/4 exz**3 z - exz z -2)The exponent is 2The prime ideal(exz**2 -18)(x +1/3 exz)(y +1/3 exz)(z -1/3 exz)The primary ideal(exz**2 -18)(x +1/3 exz)(y +1/3 exz)(z**2 -2/3 exz z +2)

8.3. ZERO-DIMENSION IDEAL DECOMPOSITION 163The exponent is 2The prime ideal(exz**2 -2)(x + exz)(y + exz)(z + exz)The primary ideal(exz**2 -2)(x + exz)(y + exz)(z**2 +2 exz z +2)The exponent is 2Time: read = 17, eval = 27933, print = 0, gc = 0.In the next example, taken from [Weinberger et al. 1976], we want to factor a polynomialover an algebraic number �eld. Precisely, the polynomial X3 � 3 should be factored inQ(�) where � is a root of T 6 +3T 5 + 6T 4 + T 3 � 3T 2 + 12T + 16. Therefore we considerthe ideal generated by these two polynomials in Q[T;X].((X**3 - 3),(T**6 + 3 T**5 + 6 T**4 + T**3 - 3 T**2 + 12 T + 16))The given ideal base is already a Gr�obner Base, and the univariate polynomials are irre-ducible. One �eld extensions is necessary to get linear headterms in 'T' and 'X' (denotedby 'ETX'). The �eld extension step yields a polynomial of degree 18, which can be factoredinto 3 parts.(ETX**18 -18 ETX**17 +180 ETX**16 -1122 ETX**15+ 4734 ETX**14 -13860 ETX**13 +37887 ETX**12- 163908 ETX**11 +608328 ETX**10 -680564 ETX**9- 5061348 ETX**8 +26631000 ETX**7 -46572249 ETX**6- 9583146 ETX**5 +231202116 ETX**4 -612614634 ETX**3+ 1302509286 ETX**2 -2140997364 ETX +1595283481)From its factors we obtain 3 extension ideals:Extension ideal no 1(ETX**6 -6 ETX**5 +24 ETX**4 -50 ETX**3 +78 ETX**2-132 ETX +121)(T -4/165 ETX**5 +37/330 ETX**4 -74/165 ETX**3 +112/165 ETX**2 -151/330 ETX +22/15)(X -8/165 ETX**5 +37/165 ETX**4 -148/165 ETX**3+224/165 ETX**2 -316/165 ETX +44/15)Extension ideal no 2(ETX**6 -6 ETX**5 +24 ETX**4 +4 ETX**3 -570 ETX**2+516 ETX +3631)(T +8/9345 ETX**5 -23/3738 ETX**4 +302/9345 ETX**3

164 CHAPTER 8. PACKAGES-716/9345 ETX**2 +2593/18690 ETX +6802/9345)(X +16/9345 ETX**5 -23/1869 ETX**4 +604/9345 ETX**3-1432/9345 ETX**2 -6752/9345 ETX +13604/9345)Extension ideal no 3(ETX**6 -6 ETX**5 +24 ETX**4 +4 ETX**3 +402 ETX**2-1428 ETX +3631)(T -8/16863 ETX**5 +3/1022 ETX**4 -6/803 ETX**3+92/16863 ETX**2 +323/1606 ETX +4926/5621)(X -16/16863 ETX**5 +3/511 ETX**4 -12/803 ETX**3+184/16863 ETX**2 -480/803 ETX +9852/5621)From the prime ideals over the �eld extension over Q we compute the prime ideals overQ. All Gr�obner bases are containing the polynomial:(T**6 +3 T**5 +6 T**4 + T**3 -3 T**2 +12 T +16)Prime ideal no 1(X -1/12 T**5 -1/12 T**4 -1/6 T**3 +7/12 T**2 -11/12 T -4/3)Prime ideal no 2(X -1/12 T**5 -1/4 T**4 -1/2 T**3 -5/12 T**2 +1/4 T -1)Prime ideal no 3(X +1/6 T**5 +1/3 T**4 +2/3 T**3 -1/6 T**2 +2/3 T +7/3)The computing time on an IBM 3090 was 52090 ms.This is the end of the primary decomposition examples.8.4 Zero-dimension ideal real rootsWe quote from the introduction of the package developed by [Kredel 1989]. For a completetreatment of the theory see [Becker, Weispfenning 1993].One of the application problems of computational mathematics is the determination ofthe solutions (roots, zeros) of systems of algebraic equations. If the system of algebraicequations generates a zero dimensional ideal in a polynomial ring over the rational num-bers, then the coordinates of the roots are algebraic numbers. The problem is to �nd aconstructive method for the computation of the real roots of an ideal A = (g1; : : : ; gk) inQ[X1; : : : ; Xr]:Zero(A) = f� 2 Er : f(�) = 0; 8 f 2 Ag= f(!1; : : : ; !r) 2 Er : gi(!1; : : : ; !r) = 0; i = 1; : : : ; kg:where E � R is a real algebraic extension �eld of Q.This problem was fully realized during the last century and the beginning of the 20-thcentury. The early attempts relied mainly on the resultant calculus, and constructionof so-called elimination ideals involving Kroneckers resultant systems. The computa-tional complexity of this approach was to high to be treated satisfactorily in these times

8.4. ZERO-DIMENSION IDEAL REAL ROOTS 165[Kronecker 1882, Macaulay 1916]. Even published methods tend to become forgotten,so in older editions of V.d.Waerdens `(Modern) Algebra' from 1931 we �nd a lot aboutresultant calculus which parts are removed in current editions e.g. 1971.With the rise of computers the problem was mainly attacked by numerical mathematicsusing iterative methods, such as homotopy methods.But all these methods give no warranty that all solutions are found, or that a specialcoordinate of the solution is exactly equal to a certain algebraic number. So there is anincreasing need of exact methods in theoretical investigations. We will just mention thearticle of Morgan which tries to describe `exact' numerical methods [Morgan 1983], or thearticle of Butcher for �nding the exact coe�cients of some Runge-Kutta iteration equations[Butcher 1984] and so proving their existence; in theoretical economics too, there is a needof reliable mathematical methods.One of the most famous approaches to solve this problem by computer has been publishedby Collins and Loos based on resultant calculus and has been applied to quanti�er elimina-tion over real closed �elds [Collins 1974, Collins, Loos 1982, Loos 1982]. The method usesprojection sets (a special set of generators for elimination ideals in this case), primitive ele-ment construction, real root isolation of algebraic number �eld polynomials and univariatepolynomial construction. It inductively reduces the problem to the bivariate case by themappings Q[X1; : : : ; Xr] �! Q[X1; : : : ; Xi] �! Q(�1; : : : ; �i�1)[Xi] �! Q(�i�1)[Xi] andthen solving the bivariate case.One of the �rst attempts to apply Gr�obner Bases to this problem has been undertakenby Buchberger and Trinks, see Methods 6.10 and 6.12 in [Buchberger 1985]. Pohst andYun combined the computation of resultants and pseudo division with Gr�obner basesfor the computation of elimination ideals [Pohst, Yun 1981]. The next step towards thesolution of this problem was the application of univariate polynomial construction andideal decomposition yielding a �nite inclusion for the zeros of the ideal [B�oge et al. 1986].Gianni discussed a method also based on Gr�obner bases; it seems however to be impracticalto construct the desired Gr�obner bases due to the posibly large degrees for the polynomialsgenerated (their bases are de�ned like P-bases, but with one squarefree polynomial insteadof an irreducible polynomial) [Gianni 1986]. Gianni and Kalkbrenner gave also methodsusing specialization in algebraic �eld extensions and gcd-computations in algebraic �eldextensions, respectively [Gianni 1987, Kalkbrenner 1987].Our approach continues the one described by B�oge et al. and solves the most impor-tant open problem left over: the selection of the `valid' solutions. We use following(sub)methods:� Gr�obner base calculations� construction of univariate polynomials� univariate polynomial factorization� primitive element computation using Gr�obner bases� univariate polynomial real root isolation� algebraic number �eld element signUsing these tools, our method produces for a given zero dimensional ideal A:

166 CHAPTER 8. PACKAGES� a decomposition of A into radical ideals� all tuples of coordinates for the real roots of AAn informal overview of all steps of the algorithm is given in table 8.2.Input: F = Basis for an ideal A �K[X1; : : : ; Xr].Output: All tuples of minimal polynomials and isolating intervals for the real roots of A.Step 0. Compute a Gr�obner base G for A. if dimension ideal(G) 6= 0 then stop.Step 1. Compute a set of so called U{bases fU1; : : : ; Ulg; l � 1, such thatZero(ideal(G)) = [i=1;:::;lZero(ideal(Ui))and all univariate polynomials of minimal degree in ideal(Ui) are irreducible, usingunivariate polynomial construction (for details see [B�oge et al. 1986]).Step 2. Compute a set of so called R{bases fR1; : : : ; Rmg;m � l, such thatZero(ideal(G)) = [i=1;:::;mZero(ideal(Ri))and all polynomials in Ri are at most bivariate, using primitive element construction(for details see also [Kredel 1987]).Step 3. Compute isolating intervals for the real roots of univariate polynomials (see[Loos 1982]), and select valid roots of the elimination ideals of ideal(Ri).Table 8.2: Overview of real root computation8.4.1 Algorithms and ExamplesThe speci�cation of the main algorithm ROOTS is as follows. Given a Gr�obner base ofmultivariate polynomials with rational number coe�cients of a zero{dimensional ideal.Find the isolating intervals of the real roots of the ideal generated be the set of polynomials.This problem is solved using the method of R-ideal decomposition, univariate polynomialreal root isolation and combination of valid tuples of isolating intervals of the real roots.The method is described in [Kredel 1989].The real roots are computed only over the coe�cient domains of the rational numbers.The term ordering must be inverse lexicographical. There is a lot of run time informationprinted. The isolating intervals will be re�ned to any desired precision speci�ed in the sec-ond parameter. The programs are contained in the Modula-2 libraries DIPIDEAL, DIPDEC0and DIPROOT.In the following example we compute the real roots of the ideal generated by (x2� 2; y2�3; z2 � xy) to a precision of 20 decimal digits. The components of the real roots should

8.4. ZERO-DIMENSION IDEAL REAL ROOTS 167appear among �p2 for the x component, �p3 for the y component and �pp2p3 forthe z component.The input consists of a polynomial list in the usual syntax as described in section 7.4.3.Then the statement `q:=DIRPGB(p,0)' requests the computation of the Gr�obner base.Next the statement `ROOTS(q,20)' request the computation of the isolating intervals forreal roots to a precision of 20 decimal places and writes the results on the actual outputstream.(* Real roots of zero-dimensional polynomial ideals. *)(* Polynomial list: *)p:=PREAD().(x,y,z) L((z**2 - y x),(y**2 - 3),(x**2 - 2),)PWRITE(p).(* Groebner base: *)q:=DIRPGB(p,0).PWRITE(q).(* Real roots: *)ROOTS(q,20).The following output shows the computed Gr�obner base, which in fact show, that theinput already was a Gr�obner base.MAS: Polynomial in the variables: (x,y,z)Term ordering: inverse lexicographical.Polynomial list:(z**2 - x y)(y**2 -3)(x**2 -2)MAS: Polynomial in the variables: (x,y,z)Term ordering: inverse lexicographical.Polynomial list:(x**2 -2)(y**2 -3)(z**2 - x y)The next output shows the result of step 1 in the method of table 8.2, the so called`normalized tuples', which happens to be just a single tuple. Such a tuple consists �rst ofthe respective Gr�obner base and then of the univariate polynomials of minimal degree inthe ideal in each variable. The tuples are are characterized �rst by the respective idealsgenerated by the bases beeing radicals and their intersection beeing a decomposition ofthe radical of the original ideal and second by the fact that the univariate polynomials ofminimal degree in each variable are irreducible.

168 CHAPTER 8. PACKAGESThe normalized tupelsZero set tupel no 1Characterising groebner basis(x**2 -2)(y**2 -3)(z**2 - x y)Characterising polynomial for the real roots isp(x) = (x**2 -2)Characterising polynomial for the real roots isp(y) = (y**2 -3)Characterising polynomial for the real roots isp(z) = (z**4 -6)The next output shows the result of step 2 in the method of table 8.2, the so called`re�ned tuples', which happens to be just a single tuple. Such a tuple consists �rst ofthe respective Gr�obner base and then of the univariate polynomials of minimal degreein the ideal in each variable. As the normalized tuples before the re�ned tuples arecharacterized �rst by the respective ideals generated by the bases beeing radicals andtheir intersection beeing a decomposition of the radical of the original ideal and second bythe fact that the univariate polynomials of minimal degree in each variable are irreducible.Additionally this tuples have the third property, that the ideal basis polynomials are atmost bivariate (so called R-bases). This property is enforced by a �eld extension, makingthe variables x and y linear with respect to the new variable eyx and thus removingthe trivariate polynomial z2 � xy from the base. This event is indicated by the string`Introduction of the new variable eyx'. Note, that the ideal base is not jet a primebase (P-base) because the polynomial in the variable z is still not linear as it would berequired by a P-base.Introduction of the new variable eyxThe refined tupelsZero set tupel no 1Characterising groebner basis(eyx**4 -10 eyx**2 +1)(x -1/2 eyx**3 +9/2 eyx)(y -1/2 eyx**3 +11/2 eyx)(z**2 +1/2 eyx**2 -5/2)Characterising polynomial for the real roots isp(eyx) = (eyx**4 -10 eyx**2 +1)Characterising polynomial for the real roots isp(x) = (x**2 -2)Characterising polynomial for the real roots isp(y) = (y**2 -3)Characterising polynomial for the real roots isp(z) = (z**4 -6)

8.4. ZERO-DIMENSION IDEAL REAL ROOTS 169The next output shows the result of step 3 in the method of table 8.2, the so called `zeroset tuples', which now happen to be four tuples. Each zero set tuple characterizes one realroot of the given zero-dimensional ideal. Such a tuple consists for each variable �rst ofthe univariate polynomial of minimal degree in the ideal second of the isolating intervalof the real root in this component and third of the decimal approximation of the real rootwith the requested precision. The components introduced by the �eld extensions can byignored to obtain a real root of the original ideal (without changing the number of realroots).The zero set for dim 0 tupelsZero set tupel no 1Characterising polynomial for the real root isp(eyx) = (eyx**4 -10 eyx**2 +1)The isolating interval for the real root iseyx = (0, 1/2)The decimal approximation for the real root iseyx = 0.317837245195782244726Characterising polynomial for the real root isp(x) = (x**2 -2)The isolating interval for the real root isx = (-2, -1)The decimal approximation for the real root isx = -1.414213562373095048802Characterising polynomial for the real root isp(y) = (y**2 -3)The isolating interval for the real root isy = (-2, -1)The decimal approximation for the real root isy = -1.732050807568877293527Characterising polynomial for the real root isp(z) = (z**4 -6)The isolating interval for the real root isz = (-2, -1)The decimal approximation for the real root isz = -1.565084580073287316584Zero set tupel no 2Characterising polynomial for the real root isp(eyx) = (eyx**4 -10 eyx**2 +1)The isolating interval for the real root iseyx = (-1/2, -1/4)The decimal approximation for the real root iseyx = -0.317837245195782244726Characterising polynomial for the real root isp(x) = (x**2 -2)The isolating interval for the real root isx = (0, 2)The decimal approximation for the real root isx = 1.414213562373095048802

170 CHAPTER 8. PACKAGESCharacterising polynomial for the real root isp(y) = (y**2 -3)The isolating interval for the real root isy = (0, 2)The decimal approximation for the real root isy = 1.732050807568877293527Characterising polynomial for the real root isp(z) = (z**4 -6)The isolating interval for the real root isz = (-2, -1)The decimal approximation for the real root isz = -1.565084580073287316584Zero set tupel no 3Characterising polynomial for the real root isp(eyx) = (eyx**4 -10 eyx**2 +1)The isolating interval for the real root iseyx = (0, 1/2)The decimal approximation for the real root iseyx = 0.317837245195782244726Characterising polynomial for the real root isp(x) = (x**2 -2)The isolating interval for the real root isx = (-2, -1)The decimal approximation for the real root isx = -1.414213562373095048802Characterising polynomial for the real root isp(y) = (y**2 -3)The isolating interval for the real root isy = (-2, -1)The decimal approximation for the real root isy = -1.732050807568877293527Characterising polynomial for the real root isp(z) = (z**4 -6)The isolating interval for the real root isz = (0, 2)The decimal approximation for the real root isz = 1.565084580073287316584Zero set tupel no 4Characterising polynomial for the real root isp(eyx) = (eyx**4 -10 eyx**2 +1)The isolating interval for the real root iseyx = (-1/2, -1/4)The decimal approximation for the real root iseyx = -0.317837245195782244726Characterising polynomial for the real root isp(x) = (x**2 -2)The isolating interval for the real root isx = (0, 2)The decimal approximation for the real root isx = 1.414213562373095048802

8.5. COMPREHENSIVE GR �OBNER BASES 171Characterising polynomial for the real root isp(y) = (y**2 -3)The isolating interval for the real root isy = (0, 2)The decimal approximation for the real root isy = 1.732050807568877293527Characterising polynomial for the real root isp(z) = (z**4 -6)The isolating interval for the real root isz = (0, 2)The decimal approximation for the real root isz = 1.565084580073287316584Time: read = 0, eval = 7116, print = 0, gc = 7734.The total computing time for the real root isolation including the ideal decompositions isslightly more than 7 seconds (8 seconds in a di�erent run). The computing time stronglydepends on the requested precision as it is shown in table 8.3.Precision in Computing timedecimal digits in milliseconds0 440020 883350 16250100 37566Table 8.3: Computing Time Summary: Real RootsThis is the end of the real root isolation example.8.5 Comprehensive Gr�obner basesThe main point of comprehensive Gr�obner bases is that the construction of a Gr�obner baseis not performed over a �eld, but over a ring (with parameters) such that the specializationof the parameters to elements of any �eld leads to a Gr�obner base over this �eld. In thissense such an ideal base is a comprehensive Gr�obner base. In general the property of beinga Gr�obner base is lost under specialization of the coe�cients as the following examplefrom [Weispfenning 1990] shows. Let S = Q[U][X;Y] be a polynomial ring in X;Y withparameter U and with X < Y . LetF = fX + 1; UY +Xg;then F is a Gr�obner base in Q[U;X; Y] wrt. <. Let � : Q[U] �! K be a specialization,which embeds Q into K and with �(U) 2 K. Then �(F) (de�ned by applying � to thecoe�cients) is a Gr�obner base inK[X;Y] for any � with �(U) 6= 0. But for a specializationwith �(U) = 0 we have �(F) = fX + 1; Xg and we see that 1 2 ideal(�(F)) but 1 isnot reducible with respect to �(F). So �(F) can not be a Gr�obner base. To obtain acomprehensive Gr�obner base one would consider also the case when U = 0 and under thiscondition the polynomial X + 1� (UY +X) = �UY + 1 2 ideal(F). So in this exampleG = fX + 1; UY +X;�UY + 1g

172 CHAPTER 8. PACKAGESwould be a comprehensive Gr�obner base, since now also under the specialization �(U) = 0we see that �(G) = fX + 1; X; 1g is a Gr�obner base.The construction of a comprehensive Gr�obner base is performed by the usual process ofbuilding S-polynomials and reductions. But now the conditions under which the steps areperformed are recorded in a set of conditions. This leads �rst to a tree of ideal bases wherethe nodes are labeled by the set of conditions under which the step has been performed.This tree of ideal bases is called a Gr�obner system and a comprehensive Gr�obner base isafterwards obtained by taking the union of all ideal bases at the leaves of the tree. Acondensed coding of the conditions applied to the coe�cients of the polynomials underconsideration is called a colouring. A coe�cient is coloured red if it is non-zero under thecurrent set of conditions, it is coloured green if it is zero under the current set of conditions,otherwise it is coloured white. A determined set of polynomials is a set of polynomialstogether with a set of conditions such that the �rst non-green term of a polynomial iscoloured red. This term then serves as a head term during the following steps of thereduction and S-polynomial construction. Using these constructions the algorithms forthe construction of Gr�obner systems are developed.8.5.1 The new implementation and interfaceThe comprehensive Gr�obner basis package of MAS 0.7 has been changed in many respects.There is a new user interface making better use of the MAS interpreter. The old user in-terface is still present but will no longer be supported. New features have been added.These include: Conditions can now be evaluated by using reduced sets or Gr�obner bases.Comprehensive Gr�obner bases for coe�cient �elds of arbitrary characteristic can be com-puted. Computation can be restricted to the generic case. This section is intended toexplain the interactive usage of the new comprehensive Gr�obner basis package.A �rst exampleIn case you just want to compute a comprehensive Gr�obner basis and do not want to knowabout options you may want to change the following example input �le example.in tosuit your needs and start computation by entering mas -f example.in. Note that mostof the blanks are mandatory (including one after BEGIN)!BEGINp:=CDPREAD();CGBOPT(LIST(0,1,0,2,0,4,4));g:=GSYS(p);c:=CGBFGSYS(g);CDPWRITE(p);CGBOPTWRITE();GSYSWRITE(g);CGBWRITE(c);END.IP (a,b,c,d) (X,Y,Z)0

8.5. COMPREHENSIVE GR �OBNER BASES 173()1().(((a**2 b**2 + a b) X Y Z + (c**3 d) Y + 1)(X + (c**2 d**2 + b) Y)).EXIT.8.5.2 FeaturesThis package allows to� compute Gr�obner systems and� compute comprehensive Gr�obner bases.Gr�obner systems can be� written to the output stream,� reduced and� converted to comprehensive Gr�obner bases.Comprehensive Gr�obner bases can be� written to the output stream,� globally reduced and� converted to a quanti�er free formula.The computations depend on some options.� The amount of output generated during computation can be selected.� Factorization of coe�cients can be used.� Top reduction can be used instead of \normal" reduction.� Conditions can be evaluated in three di�erent ways:{ by just comparing polynomials,{ by using reduced sets and{ by using Gr�obner bases.

174 CHAPTER 8. PACKAGES� Computations can be done in arbitrary characteristic instead of characteristic zero.Note that in this case d-reduction is used instead of reduction when evaluatingconditions with reduced sets. Note that evaluating conditions using Gr�obner basesmakes no sense in arbitrary characteristic.� The term order for polynomials and coe�cients can be selected.� The term order for polynomials and coe�cients can be selected.� Computation can be restricted to the generic case only.8.5.3 Functions available through the interpreterThe following functions supplied by this package are available through the MAS interpreter:PROCEDURE CDPREAD():LIST;PROCEDURE CDPWRITE(CDP: LIST);PROCEDURE CGBOPT(O: LIST);PROCEDURE CGBOPTWRITE();PROCEDURE GSYS(CDP: LIST): LIST;PROCEDURE GSYSRED(GS: LIST): LIST;PROCEDURE GSYSWRITE(S: LIST);PROCEDURE CGBFGSYS(S: LIST): LIST;PROCEDURE CGBGLOBRED(CGB: LIST): LIST;PROCEDURE CGBWRITE(CGB: LIST);PROCEDURE CGBQFF(CGB: LIST): LIST;To compute a comprehensive Gr�obner basis you �rst read the polynomial system andthe initial case distinction with CDPREAD. This can be printed by CDPWRITE. You canchange the options with CGBOPT and write them with CGBOPTWRITE. Then you can computea Gr�obner system using GSYS. This can be reduced with GSYSRED and written to theoutput stream with GSYSWRITE. The next step is computing a comprehensive Gr�obnerbasis with CGBFGSYS. It can be written by CGBWRITE and globally reduced by CGBGLOBRED.The corresponding quanti�er free formula can be computed by CGBQFF.8.5.4 User selectable OptionsAll functions in this package depend on some global options.

8.5. COMPREHENSIVE GR�OBNER BASES 175Writing OptionsThe current state of the options can be printed out byCGBOPTWRITE().The output (if the default options are in e�ect) will beOptions for computation of Groebner systems are: (1,1,0,0,0,4,4,0)Some output during computation.With factorization of coefficients.Top-reduction only.Conditions are evaluated by comparing.Characteristic is 0.Term order: Total degree inverse lexicographicalCoefficient term order: Total degree inverse lexicographicalSetting OptionsAll options can be set by callingCGBOPT(O).O is a list with an arbitrary number of elements. The elements of O (if existent) areinterpreted as follows:1st element: if 0 no output during computation, otherwise chatty.2nd element: if 1 factorize coe�cients, otherwise do not.3rd element: if 0 use top reduction only, if 1 use "`normal"' reduction.4th element: evaluate conditions using: if 0: simple method, if 1: reduced sets, if 2:Gr�obner bases.5th element: if 0: characteristic 0, otherwise arbritrary characteristic.6th element: term order for polynomials7th element: term order for coe�cients8th element: if 1 only the generic case is considered, otherwise all cases8.5.5 Case Distinction and Polynomial SetA case distinction and polynomial set is the data structure needed as input to computecomprehensive Gr�obner bases. It contains a domain descriptor, an initial case distinctionand a list of polynomials.

176 CHAPTER 8. PACKAGESReading Case Distinction and Polynomial SetsA case distinction and polynomial set can be read in by enteringCDP:=CDPREAD().IP (<list of coeff. variables>) (<list of main variables>)0(<list of polynomials = 0>)1(<list of polynomials <> 0>).(<list of polynomials>).Writing Case Distinction and Polynomial SetsA case distinction and polynomial set CDP can be written byCDPWRITE(CDP).8.5.6 Gr�obner SystemsComputing Gr�obner SystemsA Gr�obner system can be computed by callingS:=GSYS(CDP).where CDP is a case distinction and polynomial set (see 8.5.5).Computing Factorized Gr�obner SystemsThis function is experimental! A factorized Gr�obner system can be computed from acase distinction and polynomial set CDP byS:=GSYSF(CDP).Reducing Gr�obner SystemsA Gr�obner system S can be reduced byS:=GSYSRED(S).

8.5. COMPREHENSIVE GR�OBNER BASES 177Writing Gr�obner SystemsA Gr�obner system S can be printed by enteringGSYSWRITE(S).8.5.7 Comprehensive Gr�obner BasesComputing Comprehensive Gr�obner BasesA comprehensive Gr�obner basis can be computed from a Gr�obner System S by enteringCGB:=CGBFGSYS(S).Writing Comprehensive Gr�obner BasesA comprehensive Gr�obner basis S can be written to the output stream byCGBWRITE(CGB).Globally Reducing Comprehensive Gr�obner BasesA comprehensive Gr�obner basis CGB can be globally reduced byCGB:=CGBGLOBRED(CGB).8.5.8 Quanti�er EliminationComputing quanti�er free formulasA quanti�er free formula containing a condition for the existence of common zeroes of thepolynomials in a comprehensive Gr�obner basis CGB can be computed byQFF:=CGBQFF(CGB).8.5.9 Writing the actual state of computationThis feature is experimental! While MAS computes a Gr�obner system sendingSIGUSR1 to MAS will cause the actual state of computation to be written on the ter-minal (even if output is redirected). This can be done from the command line by enteringkill -USR1 <pid of MAS>

178 CHAPTER 8. PACKAGES8.5.10 A Sample SessionIn this section we give a sample interactive session. Note that some uninteresting parts ofthe output (e.g. blank lines) have been omitted. First we start MAS.{pesch@alice}[~]1: /mas** Storage initialization ...** ... completed.Modula-2 Algebra System, Version 1.0Copyrights:(c) 1989 - 1996, MAS: H. Kredel, Uni Passau.(c) 1982, SAC-2: G. E. Collins, Uni Ohio, R. Loos, Uni Tuebingen.(non-profit redistribution is permitted)Next a set of polynomials and an initial (empty) case distinction is read.MAS: CDP:=CDPREAD().IP (a,b,c,d) (X,Y,Z)0()1().(((a**2 b**2 + a b) X Y Z + (c**3 d) Y + 1)(X + (c**2 d**2 + b) Y)).ANS: [...]We write this to the output stream.MAS: CDPWRITE(CDP).Case distinction:Condition: Empty.Polynomial set:Ring: IP(a,b,c,d) (* Integral Polynomial *) (X,Y,Z)((a**2 b**2 + a b) X Y Z + c**3 d Y + 1)((c**2 d**2 + b) Y + X)ANS: ()We set the options, and write them to the output stream.MAS: CGBOPT(LIST(0,1,0,1,0,4,4,0)).

8.5. COMPREHENSIVE GR�OBNER BASES 179ANS: ()MAS: CGBOPTWRITE().Options for computation of Groebner systems are: (0,1,0,1,0,4,4,0,)No output.With factorization of coefficients.Top-reduction only.Conditions are evaluated using reduced sets.Characteristic is 0.Term order: Total degree inverse lexicographicalCoefficient term order: Total degree inverse lexicographicalANS: ()We compute a Gr�obner system, reduce it and write the result to the output stream.MAS: GS:=GSYS(CDP).ANS: [...]MAS: GSR:=GSYSRED(GS).ANS: [...]MAS: GSYSWRITE(GSR).Groebner system:Condition:(c**2 d**2 + b)= 0(a b +1)<> 0b <> 0a <> 01 Condition.Basis:((c**2 d**2 + b) Y + X)((a**2 b**2 c**2 d**2 + a b c**2 d**2 + a**2 b**3 + a b**2) Y**2 Z - c**3d Y - 1)Condition:(c**2 d**2 + b)<> 0(a b +1)<> 0b <> 0a <> 01 Condition.Basis:((c**2 d**2 + b) Y + X)((a**2 b**2 c**2 d**2 + a b c**2 d**2 + a**2 b**3 + a b**2) X**2 Z +(c**5d**3 + b c**3 d) X -(c**4 d**4 +2 b c**2 d**2 + b**2))Condition:c = 0d = 0b = 0a = 0

180 CHAPTER 8. PACKAGESCondition:d = 0b = 0a = 0c <> 0Condition:c = 0b = 0a = 0d <> 0Condition:c = 0d = 0a = 0b <> 0Condition:d = 0a = 0c <> 0b <> 0Condition:c = 0a = 0d <> 0b <> 0Condition:c = 0d = 0b = 0a <> 0Condition:d = 0b = 0c <> 0a <> 0Condition:c = 0b = 0d <> 0a <> 0Condition:c = 0d = 0(a b +1)= 0b <> 0a <> 0Condition:d = 0(a b +1)= 0c <> 0b <> 0

8.5. COMPREHENSIVE GR�OBNER BASES 181a <> 0Condition:c = 0(a b +1)= 0d <> 0b <> 0a <> 012 Conditions.Basis:((a**2 b**2 + a b) X Y Z + c**3 d Y + 1)Condition:(a b +1)= 0(c**2 d**2 + b)<> 0c <> 0d <> 0b <> 0a <> 0Condition:b = 0c**2 d**2 <> 0c <> 0d <> 0a <> 0Condition:a = 0(c**2 d**2 + b)<> 0c <> 0d <> 0b <> 0Condition:b = 0a = 0c**2 d**2 <> 0c <> 0d <> 04 Conditions.Basis:((a**2 b**2 c**2 d**2 + a b c**2 d**2 + a**2 b**3 + a b**2) X Y Z +(c**5d**3 + b c**3 d) Y +(c**2 d**2 + b))((a**2 b**2 c**2 d**2 + a b c**2 d**2 + a**2 b**3 + a b**2) X Y Z - c**3 dX +(c**2 d**2 + b))Condition:(c**2 d**2 + b)= 0(a b +1)= 0c <> 0d <> 0b <> 0a <> 0Condition:

182 CHAPTER 8. PACKAGES(c**2 d**2 + b)= 0c**2 d**2 = 0b = 0c <> 0d <> 0a <> 0Condition:(c**2 d**2 + b)= 0a = 0c <> 0d <> 0b <> 0Condition:(c**2 d**2 + b)= 0c**2 d**2 = 0b = 0a = 0c <> 0d <> 04 Conditions.Basis:((a**2 b**2 + a b) X Y Z + c**3 d Y + 1)((c**2 d**2 + b) Y + X)ANS: ()We compute a comprehensive Groebner basis and write it to the output stream.MAS: CGB:=CGBFGSYS(GSR).ANS: [...]MAS: CGBWRITE(CGB).Comprehensive-Groebner-Basis:((c**2 d**2 + b) Y + X)((a**2 b**2 c**2 d**2 + a b c**2 d**2 + a**2 b**3 + a b**2) X**2 Z +(c**5d**3 + b c**3 d) X -(c**4 d**4 +2 b c**2 d**2 + b**2))((a**2 b**2 c**2 d**2 + a b c**2 d**2 + a**2 b**3 + a b**2) X Y Z - c**3 dX +(c**2 d**2 + b))((a**2 b**2 + a b) X Y Z + c**3 d Y + 1)((a**2 b**2 c**2 d**2 + a b c**2 d**2 + a**2 b**3 + a b**2) X Y Z +(c**5d**3 + b c**3 d) Y +(c**2 d**2 + b))((a**2 b**2 c**2 d**2 + a b c**2 d**2 + a**2 b**3 + a b**2) Y**2 Z - c**3d Y - 1)22 Conditions.

8.6. NON-COMMUTATIVE GR�OBNER BASES AND CENTERS 183ANS: ()This is the end of the comprehensive Gr�obner base example.8.6 Non-commutative Gr�obner bases and centersIn this section we discuss the background for a package which implements the theory ofKandri-Rody and Weispfenning [Kandri-Rody, Weispfenning 1988] (abbreviated by KWin the sequel). The implementation is based on an earlier implementation in the ALDES /SAC-2 system [Collins, Loos 1980]. For a treatment of the theory of solvable polynomialrings, including the case of non-commutative coe�cient domains, and Gr�obner bases see[Kredel 1992].A solvable polynomial ring is an ordinary commutative polynomial ring R = K[X1; : : : ;Xn] equipped with a new non-commutative multiplication �. The �eld K is assumed tobe commutative and to commute with the indeterminates X1; : : : ; Xn. The set T of terms(power-products of indeterminates) is supposed to be linearly ordered by an admissibleorder <T which is compatible with the new multiplication �. For a �xed term order <T ,(R; �) is a solvable polynomial ring if the following axioms are satis�ed:Axioms: (KW 1.2.)1. (R; 0; 1;+;�; �) is an associative ring with 1.2. For all a; b 2 K, 1 � h � i � j � k � n, t 2 T (Xi; : : : ; Xj),(a) a � bt = bt � a = abt,(b) Xh � bt = bXht,(c) bt �Xk = btXk.3. For all 1 � i � j � n there exist 0 6= cij 2 K and pij 2 R such thatXj �Xi = cijXiXj + pijand pij <T XiXj .For commutator relations Q as in axiom (3), solvable polynomial rings will be denoted byR = KfX1; : : : ; Xn;Qg:By the following lemmas, the computation of the �-product is extended to arbitrary poly-nomials in R. For the proofs and further details see the original work and [Kredel 1990],[Kredel 1992].Lemma 8.6.1 (KW 1.3.) Let R = KfX1; : : : ; Xn; Qg be a solvable polynomial ring, let1 � i � n and let f 2 K[X1; : : : ; Xi], g 2 K[Xi; : : : ; Xn]. Thenf � g = f � g:

184 CHAPTER 8. PACKAGESLemma 8.6.2 (KW 1.4.) Let R = KfX1; : : : ; Xn; Qg be a solvable polynomial ring, let<T be a �-compatible admissible term order, and let f; g 2 R. Then there exists an h 2 Rsuch that f � g = c � f � g + hand h <T f � g. Moreover, c and h are uniquely determined by f and g.In the implementation we use an ordinary commutative distributive polynomial represen-tation. Actually the Distributive Polynomial System of [Gebauer, Kredel 1983], imple-mented in the SAC-2 / ALDES system is used. The non-commutative product � is de�nedvia relations, which are elements of a free associative algebra. These relations are repre-sented as triples (u; v; p) of (commutative) terms u; v and a (commutative) polynomial p,such that u � v = p and p is of the form c �u � v+ p0. Besides the de�ning relations betweenvariables of the non-commutative product, many relations between powers of variablesand terms are derived during computation. These relations are incrementaly stored in aso called relation table. Each time a product of terms is to be computed the relation tableis scanned for an applicable relation. Missing relations between variables are treated as ifthe two variables commute.Using the non-commutative product algorithm, the input-routines for polynomials canbe setup to respect the order of variables in the products. For the rest of theGr�obner base algorithms the existing ones from the Buchberger algorithm system of[Gebauer, Kredel 1983a] could be used as a starting point. However great care was in-order to assure that for no algorithm the input parameters where interchanged. Furtherthe non-commutative product may modify the leading coe�cients of the product polyno-mials, so the order of computation steps had also to be checked. It is known, that not allcriteria derived by Buchberger for the detection of unnecessary reductions are valid in thenon-commutative case. The valid criterion BBEC is implemented as in the commutativecase and leads to similar improvements of computing time. The computation of two-sidedGr�obner bases uses an improved way of including right variable multiples during the mainBuchberger loop instead of iterating the left Buchberger algorithm on bases given by rightvariable multiples of polynomials.8.6.1 Relation TablesThe non-commutative polynomials are represented as ordinary commutative polynomials.A polynomial in distributive representation is a list of so called exponent vectors and socalled base coe�cients. The coe�cient �eld K is the �eld of rational numbers Q in thecurrent implementation.The commutator relations from 8.6(3) are implemented as triples of commutative poly-nomials. More precisely a relation Xj � Xi = cijXiXj + pij for some 1 � i � j � n isrepresented as triple (Xj ; Xi; cijXiXj + pij)of distributive polynomials. Missing relations between variables are treated as if the rela-tion Xj �Xi = XiXj was speci�ed, that means as if a relation with cij = 1 and pij = 0was de�ned.The set of all commutator relations is stored in a list called relation table. So that in orderto compute the productXj �Xi one has to look for a triple starting with (Xj ; Xi; p) and the

8.6. NON-COMMUTATIVE GR�OBNER BASES AND CENTERS 185take the third polynomial in this triple. The relation table must be maintained throughrecursive applications of the �-product algorithm and we want to use all computed relationsto be accessible at any time during further recursive calls. This table is implemented as alist of distributive polynomials:T = (u1; v1; p1; : : : ; ut; vt; pt)where the ui = Xeiji , vi = X liki and pi = ci �X liki �Xeiji + p0i. The table entries are partiallyordered with respect to divisibility of the relation heads (ui; vi).De�nition: If T is a relation table, then the following condition holds:for all 1 � i � t there does not exist 1 � i < j � t such that ui j uj and vi j vj .This means that heads which are `later' in the table may divide relation heads, which come'earlier' in the table. If T is empty at the beginning, in this case all variables commute,then no non-commuting relation will ever be computed during DINPPR and T will remainempty. The search for a product relation goes from left to right in the list so one �nds arelation with maximal exponents. The search is successful, if both exponents of ui and vidivide the exponents of the relation we look for. If no relation matches, we assume thevariables to commute, i.e. we assume c = 1 and p = 0.8.6.2 Left and Two-sided Gr�obner BasesWith the de�nition of a suitable (left/right) reduction most concepts of commutativeGr�obner bases carry over to solvable polynomial rings.De�nition: (Left Reduction) Let R be a solvable polynomial ring. Let p 2 R, t 2 T .Then the left reduction �!t;p � R�R is de�ned as follows:For f; f 0 2 R, t 2 T (f), f �!t;p f 0 i� there exists u 2 T such that t =u �HT(p) = HT(u � p) and f 0 = f � au � u � p;where au 2 K� is the unique element ofK� such that coe�(t; f) = au�coe�(t; u�p).By construction t 62 T (f 0). If for certain f , t no such u exists, then t in T (f) is calledirreducible wrt. p.If the left reduction relation �!G (for some �nite subset G � R) is conuent, then G iscalled a left Gr�obner base. And the following theorem indicates the construction of leftGr�obner bases using left S-polynomials.Theorem 8.6.3 Let G be a �nite subset of R, then the following assertions are equivalent.1. G is a left Gr�obner base.2. For all f 2 ideall(G), f �!�G 0.3. For all h 2 H = fLSP (f; g) : f; g 2 G; f 6= gg, h �!�G 0.

186 CHAPTER 8. PACKAGESLet idealt(P) denote the two-sided ideal generated by P � R. The main key to theconstruction of two-sided Gr�obner bases of two-sided ideals is contained in the followinglemma.Lemma 8.6.4 Let G be a left Gr�obner base in R, then ideall(G) = idealt(G) impliesidealr(G) = idealt(G).The construction of two-sided Gr�obner bases using left Gr�obner bases is indicated in thefollowing theorem.Theorem 8.6.5 Let G be a �nite subset of R. Then the following assertions are equiva-lent:1. G is a left Gr�obner base and ideall(G) = idealt(G),2. For all f 2 R with f 2 idealt(G): f �!�G 0,3. G is a left Gr�obner base and for all 1 � i � n, p 2 G: p �Xi �!�G 0,ExamplesThe algorithms have already been discussed in section 7.7 and we continue with the dis-cussion of examples. The listing of an example is given in table 8.4. The input of non-commutative polynomials consists of two steps:1. the input of the commutator relations together with the list of variables of thepolynomial ring and the desired term order,2. the input of the non-commutative polynomials itself.The commutator relations are a list of commuting polynomials which are read by theMAS function PREAD. PREAD reads from the current input stream and returns a list ofdistributive rational polynomials in internal representation. See section 7.4.3 for moredetails on PREAD. PREAD expects the following items:The variable list: `(a, x, y)'. A variable name may consist of a alpha-numerical char-acter sequence starting with a letter. All variables occurring in the polynomials must bespeci�ed.The desired term order: `L'. The term order may be one of the following:L for the inverse lexicographical term orderG for the inverse graduated term orderpolynomial list a list of univariate (integral) polynomials in the variable T (this name is�xed). See 7.4.3 for details.There is no check if the term order is compatible with the commutator relations or if thelinear form de�nes an admissible term order.The commutator relations themselves: `(y), (x), (x y + a)'. This relation isinterpreted as y � x = xy + a. Not speci�ed relations are interpreted as if the variables

8.6. NON-COMMUTATIVE GR�OBNER BASES AND CENTERS 187commute. In this example a commutes both with x and y. The relations must be givenas a list (!) of polynomial triples.The second input consists of the non-commutative polynomials. NPREAD takes as inputa relation table and reads a list (!) of polynomials from the current input stream. Theoutput is a list of distributive rational polynomials. ** denotes exponentiation, the multi-plication operator * may be omitted. That means x y denotes x * y. All multiplicationsof variables mean the non-commutative �-product. It is possible to specify also more com-plex polynomial expressions. See 7.4.3 for the accepted syntax. Be sure to include enoughparenthesis to avoid ambiguities.(* Commutator relations: *)t:=PREAD().(a,x,y) L((y), (x), (x y + a),)PWRITE(t).(* Non-commutative polynomials: *)p:=NPREAD(t).((y**3 + x**2 y + x y),(x**2 + x))PWRITE(p).c:=LIRRSET(t,p). (* Left Normalform *)PWRITE(c).c:=LGBASE(t,p,1). (* Left G-base *)PWRITE(c).c:=TSGBASE(t,p,1). (* Two sided G-base *)PWRITE(c). Table 8.4: Computing example inputNext three of the above discussed algorithms are called. The produced output is shownin tables 8.5, 8.6 and 8.7. In any case the output polynomials are printed to the currentoutput stream with the procedure PWRITE. PWRITE prints the actual variable list, the actualterm order and the list of polynomials, each polynomials starting on a new line.LIRRSET: The input parameters are `t' the relation table and `p' the polynomial list. Theoutput `c' is the left irreducible set of the input, it is listed in table 8.5.LGBASE: The input parameters are `t' the relation table, `p' the polynomial list and `1' atrace ag. The output `c' is the left Gr�obner base of the input, it is listed in table 8.6.TSGBASE: The input parameters are `t' the relation table and `p' the polynomial list. Theoutput `c' is the two-sided Gr�obner base of the input, it is listed in table 8.7.Next we reproduce a summary table 8.8 of computing times for several variants of theabove algorithms on various machines. The systems and machines are ALDES on IBM9370/VM, MAS on an Atari 1040 ST (8 Mhz), an PC AT/386SX (16 Mhz) and an IBMRS600/520 (20 Mhz). The timings are obtained with a fresh list of commutator relations

188 CHAPTER 8. PACKAGES
Polynomial in the variables: (a,x,y)Term ordering: inverse lexicographical.Polynomial list:(y**3 -2 a x - a)(x**2 + x)Table 8.5: Computing example left irreducible set
Polynomial in the variables: (a,x,y)Term ordering: inverse lexicographical.Polynomial list:a**2(x**2 + x)a y**2(y**3 -2 a x - a)Table 8.6: Computing example left Gr�obner base
Polynomial in the variables: (a,x,y)Term ordering: inverse lexicographical.Polynomial list:a(x**2 + x)y**3Table 8.7: Computing example two-sided Gr�obner base

8.6. NON-COMMUTATIVE GR�OBNER BASES AND CENTERS 189in each case and not in the sequence suggested by the above input listing.`DINLGB, - irred.' means that the algorithm did not compute a reduced (irreducible) leftGB. `DINLGB, + irred.' means that the algorithm computed a reduced (irreducible) leftGB. `DINLGB, BBEC, + irr.' means that the algorithm computed a reduced (irreducible)left GB and used the condition `BBEC' (Buchberger's criterion 2) to avoid unnecessaryreductions. In the later case 22 polynomials have not been reduced according to thecriterion from a total of 34 S-polynomials.The algorithms `DINCGB' and `DIN1GB' both compute two-sided reduced Gr�obner Bases.`DIN1GB' denotes the MAS algorithm corresponding to the algorithm `GROEBNER' of[Kandri-Rody, Weispfenning 1988]. `DINCGB' is superior to `DIN1GB' due to the fact,that the polynomials p � Xi are added to the base at the beginning of the computation,so much more polynomials will be reducible later on. `DINCGB, BBEC' means that thealgorithm computed a reduced (irreducible) two-sided GB and used the condition `BBEC'to avoid unnecessary reductions. In the later case 9 polynomials have not been reducedaccording to the criterion from a total of 14 S-polynomials.Algorithm IBM 9370/VM Atari ST AT/386sx IBM RS6000ALDES/SAC-2 MAS MAS MASDINLIS 0.03 < 1.0 < 1.0 0.03DINLGB, - irred. 1.47DINLGB, + irred. 1.47 18.0 13.0 1.30DINLGB, BBEC + irr 6.0 0.47DIN1GB 1.93DINCGB 0.58 8.0 5.0 0.45DINCGB, BBEC 4.0 0.23Computing time in seconds.Table 8.8: Computing Time Summary: Gr�obner Bases8.6.3 Center of solvable polynomial ringsThe center of a solvable polynomial ring consists exactly of the polynomials which commutewith all variables. Further elements in the center may be computed and non-commutingvariables have only trivial centralizer in case the underlying ring has characteristic zero.Let R be a (commutative) ring with 1 over a �eld K. Let S = RfX1; : : : ; Xn;Qg bea solvable polynomial ring over R in the variables X1; : : : ; Xn, such that the coe�cientscommute with the variables (i.e. cai = 1 and pai = 0 for 1 � i � n, 0 6= a 2 R).De�nition: Let S be a ring. The center of S is the set of all elements of S which commutewith all elements of S: Cen(S) = fa 2 S : ab = ba for all b 2 Sg:Let I be a subset of S. The centralizer of I in S is the set of all elements of S whichcommute with all elements of I :CenS(I) = fa 2 S : ab = ba for all b 2 Ig:

190 CHAPTER 8. PACKAGESProposition 8.6.6 Let S = RfX1; : : : ; Xn;Qg be a solvable polynomial ring over a com-mutative �eld R in the variables X1; : : : ; Xn. Let X = fX1; : : : ; Xng. ThenCen(S) = CenS(X):Proposition 8.6.6 provides a means to determine elements in the center up to any degreebound. One takes a polynomial f with indeterminate coe�cients, then a necessary andsu�cient condition for f 2 Cen(S) is that f must commute with all variables Xi, i =1; : : : ; n. This gives a system of linear equations for the coe�cients of f . Solving itanswers the question if for some values of the coe�cients f 2 Cen(S).Proposition 8.6.7 Let S = RfX1; : : : ; Xn;Qg be a solvable polynomial ring over R inthe variables X1; : : : ; Xn. Let X = fX1; : : : ; Xng.Given a �nite set of terms T' = ft1; : : : ; tkg k 2 N in T (X1; : : : ; Xn), then there is analgorithm, which decides if there is a polynomialf = kXi=1 aiti 2 Cen(S)for some ai 2 R, 1 � i � k. Moreover the algorithm determines all such polynomials.Example: Centers of Enveloping AlgebrasWe include some examples of the computation of centers of enveloping algebras of some�nite dimensional Lie algebras over the rational numbers. The examples are taken from[Patera et al. 1976] and compared to their results. The enumeration of the Lie algebras isas follows: Ai;j denotes the j-th Lie algebra of dimension i. The examples are containedin tables 8.9, 8.10, 8.11, 8.12 and 8.13. Note that we only present examples which havepolynomial invariants. Actually there are also rational functions and analytical functionswhich are invariant under the commutator product of the Lie algebra (see example 8.9).In the examples we list1. the de�ning commutator relations of the enveloping algebra of a Lie algebra,2. the statement for the generation of the terms,3. the center polynomial with parametric coe�cients,4. the specialized center polynomials,5. the computing time on an Atari 1040 ST.The input syntax is as described in subsection 8.6.2. CenterPol denotes the `driver' algo-rithm, which calls DINCCP and then specializes the coe�cients to obtain a Q-vectorspacebasis of the center. EVLGIL takes a list of exponents (e1; : : : ; en) and delivers a set of termswith exponents (a1; : : : ; an) with 0 � ai � ei for 1 � i � n. EVLGTD has inputs (n; d; E),where n is the number of variables, d is the total degree and E is a list of already computedterms (used for internal recursion). It returns a list (E0; : : : ; Ed) where each Ei is a list ofexponents of terms in n variables and of total degree exactly i.

8.6. NON-COMMUTATIVE GR�OBNER BASES AND CENTERS 191The output further shows the names of the parameter variables in the coe�cients, then thefull center polynomial with parametric coe�cients and then the specialized polynomials.The computing times are splitted into the time for input `read =', time for evaluation`eval =', time for output `print =' and time spend in garbage collection `gc ='. The �rstthree times do not include garbage collection times. The computing times are summarizedalso in table 8.14.(* Commutator relations: *) t:=PREAD().(e1,e2,e3) G((e3), (e1), (e1 e3 - e1),(e3), (e2), (e2 e3 - e2),)(*generate terms. *) e:=EVLGIL(LIST(1,1,1)).(*compute polynomial in the center. *) x:=CenterPol(t,e).Parameters: (X1)Center polynomial:X1Specialized center polynomials:1Time: read = 0, eval = 4, print = 0, gc = 0.Table 8.9: Lie Algebra: A3;2Note, that in example 8.9 we do not �nd a polynomial in the center. But Patera et. al.show that there are analytic functions, which are invariant under the commutator productin the Lie algebra. Namely e1 exp(� e2e1).In example 8.10 we do not obtain the constants ofQ respectively the specialized polynomial1, since we did not ask for it. We only asked for polynomials in the center of homogeneoustotal degree 2.In example 8.13 we obtain more polynomials than [Patera et al. 1976]. But observe, thatthe �rst polynomial is the product of polynomials 4 and 5 and the second polynomial isthe product of the polynomials 5 and 6. This raises the question of canonical bases forsubrings.A summary of the above examples including computing times for MAS on an Atari 1040ST is contained in the next table 8.14. We list the respective Lie algebra in column one,the dimension of the Lie algebra in column 2, then the total degree and the exponents asinput to the term generating algorithm. The last column contains the computing times.The column entitled `polynomials' contains before the slash `/' the number of specializedpolynomials as produced by the algorithms and after the slash the number of polynomialsas listed in [Patera et al. 1976].

192 CHAPTER 8. PACKAGES
(* Commutator relations: *) t:=PREAD().(e1,e2,e3) G((e3), (e1), (e1 e3 - e1),(e3), (e2), (e2 e3 + e2),)(*generate terms. *)e:=EVLGTD(3,2,NIL). e:=INV(e). e:=FIRST(e).(*compute polynomial in the center. *) x:=CenterPol(t,e).Parameters: (X1)Center polynomial:X1 e1 e2Specialized center polynomials:e1 e2Time: read = 0, eval = 4, print = 0, gc = 0.Table 8.10: Lie Algebra: A3;4
(* Commutator relations: *) t:=PREAD().(e1,e2,e3) G((e2), (e1), (e1 e2 - e3),(e3), (e2), (e2 e3 - e1),(e3), (e1), (e1 e3 + e2),)(*generate terms. *) e:=EVLGIL(LIST(2,2,2)).(*compute polynomial in the center. *) x:=CenterPol(t,e).Parameters: (X1,X2)Center polynomial:(X2 e3**2 + X2 e2**2 + X2 e1**2 + X1)Specialized center polynomials:(e3**2 + e2**2 + e1**2)1Time: read = 0, eval = 64, print = 0, gc = 16.Table 8.11: Lie Algebra: A3;9

8.6. NON-COMMUTATIVE GR�OBNER BASES AND CENTERS 193(* Commutator relations: *) t:=PREAD().(e1,e2,e3,e4) G((e4), (e2), (e2 e4 - e1),(e4), (e3), (e3 e4 - e2),)(*generate terms. *) e:=EVLGIL(LIST(0,1,2,1)).(*compute polynomial in the center. *) x:=CenterPol(t,e).Parameters: (X1,X2,X3)Center polynomial:(-2 X3 e1 e3 + X3 e2**2 + X2 e1 + X1)Specialized center polynomials:(-2 e1 e3 + e2**2)e11Time: read = 0, eval = 6, print = 0, gc = 8.Table 8.12: Lie Algebra: A4;1(* Commutator relations: *) t:=PREAD().(e1,e2,e3,e4,e5,e6) G((e2), (e1), (e1 e2 - e3),(e3), (e1), (e1 e3 - e4),(e5), (e1), (e1 e5 - e6),)(*generate terms. *) e:=EVLGIL(INV(LIST(0,1,2,1,1,1))).(*compute polynomial in the center. *) x:=CenterPol(t,e).Parameters: (X1,X2,X3,X4,X5,X6,X7)Center polynomial:(-2 X7 e2 e4 e6 + X7 e3**2 e6 + X6 e4 e6 -X5 e3 e6 + X5 e4 e5 -2 X4 e2 e4 + X4 e3**2 +X3 e6 + X2 e4 + X1)Specialized center polynomials:(-2 e2 e4 e6 + e3**2 e6)e4 e6(- e3 e6 + e4 e5)(-2 e2 e4 + e3**2)e6e41Time: read = 0, eval = 140, print = 0, gc = 24.Table 8.13: Lie Algebra: A6;1

194 CHAPTER 8. PACKAGES

Lie Algebra dim total exponents polynomials timedegreeA3;2 3 � 3 (1; 1; 1) 1/2 4A3;4 3 = 2 1/2 4A3;9 3 � 6 (2; 2; 2) 2/2 64A4;1 4 � 4 (0; 1; 2; 1) 3/3 6A6;1 6 � 6 (0; 1; 2; 1; 1; 1) 7/5 140Computing time in seconds.Table 8.14: Computing Time Summary: Center

8.7. LINEAR EQUATIONS AND MODULES OVER POLYNOMIAL RINGS 1958.7 Linear Equations and Modules over PolynomialringsThis section we discuss the problem of solving linear polynomial equations, respectivelysystems of linear polynomial equations. These methods can be used to solve the idealintersection and the ideal quotient problem. Finally we discuss the problem of �ndingcanonical bases for submodules of modules over polynomial rings using the method ofpartial Gr�obner bases. We will describe only the commutative case, but the problemcan also be solved in the non-commutative solvable type polynomial ring case for thecorresponding left and right problems. For a complete treatment of the commutative casesee [Becker, Weispfenning 1993], for the non-commutative case see [Kredel 1992].Let R = K[X1; : : : ; Xn] be a polynomial ring over a �eld K with respect to an admissibleterm order <. For the non-commutative cases let R = KfX1; : : : ; Xn;Qg be a solvablepolynomial ring over a �eld K with respect to a �-compatible admissible term order <and commutator relations Q. By Rm we denote the free module over R, i.e. the m foldcartesian product of R together with a module structure.8.7.1 Linear Equations and SyzygiesA system of linear equations over R in the variables Y1; : : : ; Ym (disjoint to X1; : : : ; Xn)with coe�cients fij , gi 2 R, 1 � i � k, 1 � j � m is a system of equations of the followingform: f11Y1 + : : :+ f1mYm = g1... = ...fk1Y1 + : : :+ fkmYm = gk (�)By a solution of the system of equations (�) we mean any m tuple (h1; : : : ; hm) 2 Rm,such that f11h1 + : : :+ f1mhm = g1... = ...fk1h1 + : : :+ fkmhm = gkholds.A method to �nd a solution is the following.1. Find a solution for a single homogeneous equation, i.e. let k = 1 and g1 = 0 in (�):f1Y1 + : : :+ fmYm = 0:Solutions to this problem are called syzygies. The set of all such solutions forms asubmodule of Rm. Using Gr�obner bases technics one can �nd a generating set forthis submodule (see below). If ff1; : : : ; fmg does not already form a Gr�obner basewe �rst solve the problem for the corresponding Gr�obner base and the use sometransformation to obtain the solution for the original problem.2. Find a solution for a single inhomogeneous equation, i.e. let k = 1 and g1 6= 0 in (�):f1Y1 + : : :+ fmYm = g:

196 CHAPTER 8. PACKAGESOne particular solution to this problem is found by the ideal membership test g 2ideal(f1; : : : ; fm) and the representation of g as element of the ideal generated byf1; : : : ; fm. There is a solution to this problem, i� g is contained in this ideal. Theset of all solutions is then the set of sums of solutions of the homogeneous systemand the particular solution of the inhomogeneous system.3. In the general case we reduce the problem to a single equation problem, using anembeding of the problem to a polynomial ring in Z1; : : : ; Zk new variables and bymultiplication of the i-th equation with Zi and summing up the rows.(f11Z1+ : : :+fk1Zk)Y1+ : : :+(f1mZ1+ : : :+fkmZk)Ym = (g1Z1+ : : :+gkZk) (��)Then we can solve this equation with the methods described in 1) and 2) above ina way such that the solutions are free of the variables Z1; : : : ; Zk. The later methodis the method of partial Gr�obner bases and is discussed in the next section. Then itcan be shown that (h1; : : : ; hm) is a solution of (�) i� (h1; : : : ; hm) is a solution of(��).In more detail the �rst problem is solved as follows.Let S be a ring. P = fp1; : : : ; pmg be a �nite subset of S. LetMP = f(h1; : : : ; hm) 2 Sm : h1p1 + : : :+ hmpm = 0g:MP is called module of syzygies for P . The elements of MP are called syzygies of P andMP is a submodule of the free module Rm.Let R be a polynomial ring with respect to an admissible term order. A set of polynomialsis called monic if the head coe�cients of all polynomials in the set are 1. Let P =fp1; : : : ; pmg be a monic Gr�obner base in R. For 1 � i < j � m letfij = SPol(pi; pj) = aijuijpi � bijvijpjbe the S-polynomials of all distinct pairs of elements of P ; with 0 6= aij ; bij 2 K, uij ; vij 2 Tand HT(fij) < HT(uijpi) = uijHT(pi) = vijHT(pj) = HT(vijpj).Since fij 2 ideal(P) and P is a Gr�obner base we have fij �!�P 0. This reduction deter-mines a representation of fij from which terms belonging to the same pi can be combinedto a polynomial qijk : fij = mXk=1 qijkpkwith qijk 2 R and HT(qijkpk) = HT(qijkpk) � HT(fij). Subtracting both representationsof fij we obtain a syzygy of P . More precisely let bij = (rij1; : : : ; rijm) 2 Rm withrijk = 8<: qijk k 6= i; jqijk � aijuij k = iqijk + bijvij k = jthen BP = fbij : 1 � i < j � mg is a set of syzygies of P .The next theorem says, that if this construction is applied to a Gr�obner base G, then theBG is already a generating set for the module of syzygies.

8.7. LINEAR EQUATIONS AND MODULES OVER POLYNOMIAL RINGS 197Theorem 8.7.1 Let R be a polynomial ring with respect to an admissible term order. LetG be a monic Gr�obner base in R and let BG be the set of syzygies as de�ned before. ThenBG generates MG as an R-module.For arbitrary ideal bases, there is a `transformation' lemma for syzygies with re-spect to a Gr�obner base to syzygies for an arbitrary ideal base. The fact was re-ported by [Zacharias 1978] for commutative polynomial rings and was reported in[Apel, Lassner 1988] for enveloping algebras of Lie algebras.Proposition 8.7.2 Let I be an ideal in a ring R and let F;G � R, F = ff1; : : : ; fmg,G = fg1; : : : ; glg such that I = ideal(F) = ideal(G). Let X = (qij) with qij 2 R for1 � i � m, 1 � j � l and Y = (pij) with pij 2 R for 1 � i � m, 1 � j � l be thetransformation matrices between the F and G:fi = Xj=1;:::;l pij � gj 1 � i � mgj = Xi=1;:::;m qij � fi 1 � j � lIf we consider the F and G also as vectors and denote matrix transposition by t, we canwrite more compactly: Gt = XF t and F t = Y Gt. Let Im denote the m�m unit matrix.Let BG be a generator of MG, then BF (in block matrix representation) de�ned byBF = �Im � Y XBGX �is a generator of MF .Note that for a Gr�obner base G, Y can be computed during the construction of G and Xcan be computed by reduction of the fi 2 F wrt. G.By this we have the main ingredients for the solution of step 1) of the method above. Step2) only requires some linear algebra to be seen to be correct and step 3) needs some resultson partial Gr�obner bases discussed later. We turn now to some applications, which canbe solved using the methods in 1) above.Ideal IntersectionIn this subsection we are going to reformulate the ideal intersection problem as syzygyproblem. Another way to solve the ideal intersection problem is by the so called `tagvariable' method. The main fact, using syzygies, is contained in the following lemma.Lemma 8.7.3 Let R be a polynomial ring and let F1 = ff1; : : : ; frg � R, F2 =fg1; : : : ; gsg � R. Let F = F1 [F2 and let BF be a generating set for the module ofsyzygies of F . Then ideal(F1) \ ideal(F2) = ideal(P)where P = fp1; : : : ; pkg � R with pj = Pri=1 hijfij for 1 � j � k = jBF j and(h1j ; : : : ; hrj ; h01j ; : : : ; h0sj) 2 BF .

198 CHAPTER 8. PACKAGESA special case of the ideal intersection problem is the question of the existence of leftcommon multiples for two elements in a non-commutative ring. That means, givena; b 2 R (ring), do there exist b0; a0 2 R such thatb0a = a0b (�)It is known that this problem is always positively solvable in a Noetherian domain. If theideal membership problem is solvable in such a ring, then the proof of this fact can beadapted to obtain an algorithm for the computation of such left common multiples.An other method to determine left common multiples is to consider the equation (�) asan ideal intersection problem Sa\ Sb = ; ? or directly as a syzygy problem b0a� a0b = 0.The last way is persued and discussed e.g. in [Apel, Lassner 1988].Ideal QuotientIn this subsection we are going to de�ne ideal quotients and show how ideal quotients canbe computed using syzygy methods.Let S be a ring. Let I � S be an ideal, and let J � S be a subset of S. Then the setI : J = fh 2 S : hg 2 I for all g 2 Jgis called the ideal quotient of I by J .I : J is an ideal of S, since for h1g 2 I , h2g 2 I and f 2 S also (h1 � h2)g 2 Iand fh1g 2 I (because I is an ideal) for all g 2 J . If I is an ideal generated by a�nite subset F = ff1; : : : ; fkg of S, i.e. I = ideal(F), then ideal(F) : J = fh 2 S :exists h1; : : : ; hk 2 S; with hg = h1f1 + : : : + hkfk for all g 2 Jg. If moreover S iscommutative and J = ideal(G) is an ideal in S generated by a set G in S then I : J = I : G.This holds because hg 2 I for all g 2 J i� hgj 2 I for all gj 2 G, since all g 2 J havea representation g =Pj pjgj by elements of G and since S is commutative we also havehg = h(Pj pjgj) =Pj pj(hgj).If G is a subset of S and I is an ideal in S, thenI : G = \g2G I : fgg:This identity holds, since for ideals hg 2 I for all g 2 G if and only if h 2 I : fgg for allg 2 G. In particular for �nite G = fg1; : : : ; gkg we have I : G = Ti=1;:::;k I : fgig.Having reduced the problem of determination of ideal quotients to I : fgg (which we willsimply denote by I : g) we now solve this problem using syzygies for polynomial rings R.Lemma 8.7.4 Let R be a polynomial ring. Let I = ideal(F) be an ideal in R generatedby a �nite set F = ff1; : : : ; fkg � R and let g 2 R. Let F 0 = fg; f1; : : : ; fkg and let BF 0be a generating set for the module of syzygies of F 0. If we letH = fh 2 S : exists h1; : : : ; hk 2 S; with (h; h1; : : : ; hk) 2 BF 0g;then ideal(H) = ideal(F) : g.

8.7. LINEAR EQUATIONS AND MODULES OVER POLYNOMIAL RINGS 1998.7.2 Gradings and Partial Gr�obner BasesBy a grading of a polynomial ring K[X1; : : : ; Xn] with set of terms T we mean a monoidhomomorphism : (T; 1; �) �! (N; 0;+):This means that is a mapping from T to N such that (1) = 0 and (s � t) = (s)+ (t)for s; t 2 T . For polynomials 0 6= f 2 K[X1; : : : ; Xn] we de�ne the -degree of f , whichwill also be denoted by (f), as (f) = maxf(t) : t 2 T (f)g. For solvable polynomialrings R = KfX1; : : : ; Xn;Q;Q0g we de�ne the -degree of 0 6= f 2 R by the -degree of fas element of K[X1; : : : ; Xn].A grading on T with weights a1; : : : ; an 2 N can be de�ned as(t) = (X�11 : : : X�nn) = a1�1 + : : :+ an�n;where t = X�11 : : : X�nn 2 T . Moreover since is a homomorphism between (T; 1; �) and(N; 0;+) it can be shown, that any grading on T arises from a linear form. Moreover isholds, that s j t implies (s) � (t) for all s; t 2 T . And since a polynomial ring over adomain is a domain we have: (fg) = (f)+(g) for all 0 6= f; g 2 S. By de�nition of thedegrees of polynomials it holds also that (f + g) � maxf(f); (g)g for all 0 6= f; g 2 S.We call an element f of R homogeneous of degree d if for all t 2 T (f) we have (t) = dand we call it homogeneous if for all t; s 2 T (f) we have (t) = (s). So every polynomialf of R can be represented as a (�nite) sum of its homogeneous components: f =Pi2N fi,where each fi is homogeneous of degree i. An ideal I in R is called homogeneous if it isgenerated by homogeneous elements. One can prove, that I is homogeneous, i� with eachf 2 I it contains every homogeneous component of f . Homogeneous ideals are denoted byidealh(F). A representation of a polynomial f 2 R with respect to a set of homogeneouspolynomials P de�nes a homogeneous representation of f with respect to P .Note that contrary to commutative polynomial rings homogeneity is in general not pre-served under the �-product in solvable polynomial rings. This restricts the possible grad-ings to those which are so called homogeneity compatible with �. But it can be shown, thatfor the purpose of submodule Gr�obner bases there exist gradings which are homogeneitycompatible with �.Let R be polynomial ring with term order �, then a grading on R is called compatiblewith � if for all s; t 2 T (s) � (t) =) s � t. Then it can be shown, that there existsa term order �0 on R such that is compatible with �0. But note that �0 may not be�-compatible.We are new prepared to state the main results of partial Gr�obner bases.Let F � R be a subset of a polynomial ring with a term order � and a grading whichis compatible with <. For d; e 2 N de�neF (d; e) = ff 2 F : d � (f) < egand F (d;1) = ff 2 F : d � (f) g. For �nite F � R let the d-restriction of thereduction relation be de�ned as�!d;F = �!F \ R(0; d)2:The de�nition of partial Gr�obner bases is as follows. Let R = K[X1; : : : ; Xn] be a polyno-mial ring, with respect to an admissible ordering, over a �eld K and with a grading on

200 CHAPTER 8. PACKAGESR which is compatible with <. Let G � R be a �nite subset of homogeneous polynomialsof R and let d 2 N. If the reduction relation �!d;G is conuent, then G is a d-Gr�obnerbase.Theorem 8.7.5 Let R = K[X1; : : : ; Xn] be a polynomial ring, with respect to an admis-sible ordering, over a �eld K and with a grading on R which is compatible with <. LetG � R be a �nite subset of homogeneous polynomials of R and let d 2 N. Then thefollowing assertions are equivalent.1. G is a d-Gr�obner base.2. For all f 2 ideal(G)(0; d), f �!�d;G 0.3. For all 0 6= f 2 ideal(G)(0; d), f �!d;G f 0.4. For all h 2 H(0; d) = fSP (f; g) : f; g 2 G; f 6= gg(0; d), h �!�d;G 0.By a theorem we know, that for any �nite F � R of homogeneous polynomials one canconstruct a d-Gr�obner base G of ideal(F)(0; d). And the proof of this theorem presentsthe Buchberger algorithm for constructing d-Gr�obner bases.8.7.3 Modules over Polynomial RingsIn this subsection we consider submodules of free modules over polynomial rings. LetR = K[X1; : : : ; Xn] be a polynomial ring, with respect to an admissible ordering, over a�eld K. Let M = Rm be a free R-module with canonical basis u1; : : : ; um. First we needto introduce some notation about generating sets of submodules.Let M be an R-module. We say a sub module is generated by a set N , N � M if it is ofthe form: modul(N) = fXi2� riai : ri 2 R; ai 2 N;� �nite g;If N = fa1; : : : ; ang �M is �nite, then we write also modul(a1; : : : ; an) for modul(N).We can ask the questions: Let N = modul(a1; : : : ; ak) be a submodule of M generated bya1; : : : ; ak,given a 2M , is a 2 N ?given a �nite generating set of a submodule N , is there a canonical basis forN ?The questions are answered using the method of partial Gr�obner bases. To apply thesewe need some preparations.Let R = K[X1; : : : ; Xn], then we can embed the free module Rm = modul(u1; : : : ; um) =M into a polynomial ring with m additional variables:Rm ,! R[Y1; : : : ; Ym] =K[X1; : : : ; Xn; Y1; : : : ; Ym] = Rnmui 7! Yi 1 � i � m:With the restriction of the multiplication in Rnm to polynomials from R with polynomialsfrom Rnm. The restriction of the multiplication can be accomplished by a grading on

8.7. LINEAR EQUATIONS AND MODULES OVER POLYNOMIAL RINGS 201Rnm. We do this by de�ning (Xi) = 0 for 1 � i � n, (a) = 0 for 0 6= a 2 K and(Yj) = 1 for 1 � j � m. Then (fg) = 0 = (f) + (g) for all 0 6= f; g 2 R.With this embbeding all results of partial reductions are available for free modules overpolynomial rings. In particular for �nite subsetsN of Rm there exists a submodule Gr�obnerbase G of modul(N), since by a theorem for homogeneous ideals there exists a partial 1-Gr�obner base for N in Rnm.Moreover there are several ways to order the variables, e.g. Xi < Yj , Yj < Xi or accordingto some `weights'. This way has been persued e.g. by [M�oller, Mora 1986]. There isalso a way proposed by [Armbruster, Kredel 1986] where the embedding into an extendedpolynomial ring is not required.Furthermore we can �nd bases for the modules of syzygies for a submodule of Rm, sincewe can apply a partial version of the algorithm which generates the module of syzygies fora polynomial ring.8.7.4 Algorithms and ExamplesThe main procedure SYHC computes a set of generators of the module of syzygies for aset of homogeneous commutative linear polynomial equations as sketched before. Themain procedure SYHNL computes a set of generators of the left module of syzygies for setof non-commutative linear polynomial equations. The main procedure MGB computes asubmodule Gr�obner base from a set of generators of a submodule. The algorithms havebeen implemented by [Philipp 1991].The computation takes place over the coe�cient domain of the rational numbers. Theterm ordering may be any implemented term order. In case of a system of equationsthe problem is automatically reduced to a single equation problem by introducing newvaraibles as sketched in step 3) before. In case of the non-commutative versions of theprocedures, the commutator relations must be supplied as additional input. The programsare contained in the Modula-2 libraries SYZHLP, SYZFUNC, SYZGB and SYZMAIN.Commutative ProblemsIn the following example we compute a generating set for the solutions to the singlehomogeneous equation(3x3 � w)Y1 + (�1=23wz � x)Y2 + (4wy2 � x2)Y3 = 0:The input consists �rst of the de�ning statements of the variables w; x; y; z, namelyVL:=LIST("w","x","y","z") and xxx:=DIPVDEF(VL). Then the input equation is readby the procedure PM := MREAD(VL). It consists of a list of polynomial lists (de�ning thecoe�cient matrix) of distributive rational polynomials. The polynomial syntax is as de-scribed in section 7.4.3. The statement PMWR(PM, VL) prints the polynomial matrix to thecurrent output stream. Then the statement SY:=SYHC(PM, 1, 0) requests the computa-tion of the syzygies. The second argument 1 requests the printing of intermediate outputand the third argument 0 indicates, that no reduced (intermediate) Gr�obner base and noreduced set of syzygies is to be computed. Then again PMWR(SY, VL) prints the list ofpolynomial lists to the current output stream. Finally the statement SYTHC(SY, PM, VL)tests whether all elements of SY are indeed a solution to the original problem.

202 CHAPTER 8. PACKAGES(* Linear homogeneous polynomial equation. *)(* Polynomial matrix *)VL:=LIST("w","x","y","z"). xxx:=DIPVDEF(VL).PM := MREAD(VL).((3 x**3- w, -1/23 w z - x, 4 w y**2 - x**2))PMWR(PM, VL).(* Syzygies: *)SY:=SYHC(PM, 1, 0).PMWR(SY, VL).(* Test Syzygies *)SYTHC(SY, PM, VL).The following output shows �rst the input polynomial lists, then a generating set for themodule of syzygies as computed by SYHC with a computing time of 0:484 seconds. Finallythe result (0) of the test is shown.MAS: (((3 x**3 - w), (-1/23 w z - x), (4 w y**2 - x**2)))Time: read = 16, eval = 484, print = 116, gc = 0.MAS: (((-1/3 w z -23/3 x), (-23 x**3 +23/3 w), 0),((-1/3 w y**2 +1/12 x**2), 0, (1/4 x**3 -1/12 w)),(0, 0, 0),((-1/276 x z -1/3 y**2), (- x**2 y**2 +1/12 x),(-1/92 x**2 z -1/12)),((1/23 x**2 z**2 +4 x y**2 z), (12 x**3 y**2 z - x**2 z),(3/23 x**3 z**2 + x z)),(0, 0, 0),(0, (-92 w y**2 +23 x**2), (- w z -23 x)),((-1/276 w z**2 -1/12 x z), (- w x y**2 z +1/12 w z),(-1/92 w x z**2 -1/4 x**2 z)),((1/23 w z**2 + x z),(12 w x y**2 z - w z -1104 w y**4 +276 x**2 y**2),(3/23 w x z**2 -12 w y**2 z +3 x**2 z -276 x y**2)),(0, (-92 w y**4 +23 x**2 y**2), (- w y**2 z -23 x y**2)),((-1/276 w z -1/12 x), (- w x y**2 +1/12 w),(-1/92 w x z -1/4 x**2)),((1/23 w y**2 z**2 + x y**2 z),(12 w x y**4 z - w y**2 z -1104 w y**6 +276 x**2 y**4),(3/23 w x y**2 z**2 -12 w y**4 z +3 x**2 y**2 z -276 x y**4)),(0, 0, 0),((1/23 x z**2 +4 y**2 z), (12 x**2 y**2 z - x z),(3/23 x**2 z**2 + z)),((1/23 x y**2 z**2 +4 y**4 z), (12 x**2 y**4 z - x y**2 z),(3/23 x**2 y**2 z**2 + y**2 z)))SYZYGIEN-TEST: (0)Time: read = 0, eval = 183, print = 0, gc = 0.The next example is taken from [Buchberger 1985] (example number 6.17). It askes for a

8.7. LINEAR EQUATIONS AND MODULES OVER POLYNOMIAL RINGS 203generating set for the solutions to the single homogeneous equation(x2y � xy)Y1 + (xy2 � x2)Y2 + (x3y � x2y + x3 � x2)Y3 = 0:The input is as described in the previous example.(* Linear homogeneous polynomial equation. *)(* Example 6.17 from Buchberger (ch 6). ------------ *)(* Polynomial matrix *)VL:=LIST("x","y"). xxx:=DIPVDEF(VL).PM := MREAD(VL).((x**2 y - x y, x y**2 - x**2, x**3 y - x**2 y + x**3 - x**2))PMWR(PM, VL).(* Syzygies: *)SY:=SYHC(PM, 1, 0).PMWR(SY, VL).(* Test Syzygies *)SYTHC(SY, PM, VL).The following output shows �rst the input polynomial lists, then a generating set for themodule of syzygies as computed by SYHC with a computing time of 0:134 seconds. Finallythe result (0) of the test is shown.MAS: (((x**2 y - x y), (x y**2 - x**2),(x**3 y - x**2 y + x**3 - x**2)))Time: read = 0, eval = 134, print = 33, gc = 0.MAS: (((- y - x), (x -1), 1),(0, 0, 0),((- x y - x), 0, y),((y + x**2), (- x**2 +1), (y - x -1)),((- x y**2 + y + x**2 + x), (- x**2 +1), (y**2 - x -1)),((- x y - x), 0, y))SYZYGIEN-TEST: (0)Time: read = 0, eval = 50, print = 0, gc = 0.Non-commutative ProblemsIn the following example from [Apel, Lassner 1988] a generating set for the solutions ofthe single homogeneous equationY1 � (x1x2) + Y2 � (x1) = 0is asked for in an enveloping algebra R of a Lie algebra de�ned by the commutator relationsx2x1 � x1x2 = +x3;x3x2 � x2x3 = +x1;x3x1 � x1x3 = �x2:

204 CHAPTER 8. PACKAGESThe input consists �rst of the de�ning statements of the variables x1; x2, the commuta-tor relations T and then the polynomial matrix. The commutator relation syntax is asdescribed in section 7.7.1. The statement SY:=SYHNL(PM, 1, 0, T) requests the com-putation of a set of generators of the module of syzygies for a non-commutative linearpolynomial equation. The �rst, second and third input is as described in the examplesbefore and the fourth input T is the relation table of the commutator relations. The state-ment OREC(p1, p2, q1, q2, T) requests the computation of elements q1 and q2 2 Rsuch that q1 � p1 = q2 � p2.(* Linear homogeneous polynomial equation. *)(* Example 1 from Apel Lassner (1988). -------------- *)(* Commutator relations: *)VL:=LIST("x1","x2","x3"). xxx:=DIPVDEF(VL).T := DIRLRD(VL).((x2), (x1), (x1 x2 - x3),(x3), (x2), (x2 x3 - x1),(x3), (x1), (x1 x3 + x2),)PLWR(T, VL).(* Polynomial matrix: *)PM := NMREAD(VL, T).((x1 x2, x1))PMWR(PM, VL).(* Syzygies: *)SY:=SYHNL(PM, 1, 0, T).PMWR(SY, VL).(* Test Syzygies *)SYTHNL(SY, PM, VL, T).(* The same example with the Ore condition algorithm. *)P:=FIRST(PM). p1:=FIRST(P). p2:=FIRST(RED(P)).(* Ore condition: *)OREC(p1,p2, q1, q2, T).Q:=LIST(LIST(q1,q2)).PMWR(Q,VL).(* Test Syzygies *)SYTHNL(Q, PM, VL, T).The corresponding output for the �rst problem shows �rst the input polynomial lists, thena generating set for the module of syzygies as computed by SYHNL with a computing timeof 0:3 seconds. Finally the result (0) of the test is shown.MAS: (x2 , x1 , (- x3 + x1 x2), x3 , x2 ,(x2 x3 - x1), x3 , x1 , (x1 x3 + x2))MAS: ((x1 x2 , x1))

8.7. LINEAR EQUATIONS AND MODULES OVER POLYNOMIAL RINGS 205Time: read = 0, eval = 300, print = 34, gc = 0.MAS: ((0, 0),((4 x1**2 x3 -4 x1**3 x2 -8 x1 x2),(4 x1**3 x2**2 +4 x1 x2**2 +4 x1**3 +4 x1)),((- x1**2 -1), (x1 x3 + x1**2 x2)),(0, 0),((x1**2 +1), (- x1 x3 - x1**2 x2)),((-17/3 x1 x3 +8/3 x1**2 x2 -2/3 x2),(3 x3**2 +3 x1 x2 x3 -8/3 x1**2 x2**2 +10/3 x2**2 -17/3 x1**2 +1/3)))NEW RELATION = x3**2 .*. x1 = (x1 x3**2 +2 x2 x3 - x1)NEW RELATION = x2**2 .*. x1 = (-2 x2 x3 + x1 x2**2 + x1)N-SYZYGIEN-TEST: (0)Time: read = 0, eval = 133, print = 0, gc = 0.The corresponding output for the second problem shows �rst two elements q1; q2 as com-puted by OREC with a computing time of 0:35 seconds. Finally the result (0) of the testis shown.Time: read = 17, eval = 350, print = 0, gc = 0.MAS: (((4 x1**2 x3 -17/3 x1 x3 -4 x1**3 x2 +8/3 x1**2 x2 -8 x1 x2 -2/3 x2),(3 x3**2 +3 x1 x2 x3 +4 x1**3 x2**2 -8/3 x1**2 x2**2 +4 x1 x2**2+10/3 x2**2 +4 x1**3 -17/3 x1**2 +4 x1 +1/3)))N-SYZYGIEN-TEST: (0)Time: read = 0, eval = 116, print = 0, gc = 0.Submodule Gr�obner baseThe following example is from Armbruster and is used in the classi�cation of bifurkationproblems [Armbruster, Kredel 1986]. It asks for a submodule Gr�obner base in a Q[u; v; l]module given by the following set of generators.(1; 2; 0; l2);(0; l + 3v; 0; u);(1; 0; 0; l2);(l + v; 0; 0; u);(l2; 0; 0; v);(u; 0; 0; vl + v2);(1; 0; l + 3v; 0);(l2; 0; 2u; v);(0; 1; l + v; 0);(0; l2; u; 0);(0; v; ul2; 0);(0; vl + v2; u2; 0)The input consists �rst of the de�ning statements of the variables u; v; l:VL:=LIST("u","v","l") and xxx:=DIPVDEF(VL). Then the input submodule base is read

206 CHAPTER 8. PACKAGESby the procedure PM := MREAD(VL). It consists of a list of polynomial lists (de�ning theelements which generate the submodule) of distributive rational polynomials. The poly-nomial syntax is as described in section 7.4.3. The statement PMWR(PM, VL) prints thepolynomial matrix to the current output stream. The statement QM:=MGB(PM, 0) re-quests the computation of a submodule Gr�obner base. The second argument 0 requeststhat no intermediate output is to be printed. Then again PMWR(QM, VL) prints the list ofpolynomial lists to the current output stream.(* Submodule Groebner bases. *)(* Example by Armbruster, bifurcation. *)(* Polynomial matrix: *)VL:=LIST("u","v","l"). xxx:=DIPVDEF(VL).PM := MREAD(VL).(((1), (2), 0, (l**2)),(0, (l + 3 v), 0, (u)),((1), 0, 0, (l**2)),((l + v), 0, 0, (u)),((l**2), 0, 0, (v)),((u), 0, 0, (v l + v**2)),((1), 0, (l + 3 v), 0),((l**2), 0, (2 u), (v)),(0, (1), (l + v), 0),(0, (l**2), (u), 0),(0, (v), (u l**2), 0),(0, (v l + v**2), (u**2), 0))PMWR(PM, VL).(* Submodule Groebner base: *)QM:=MGB(PM, 0).PMWR(QM, VL).The output shows �rst the repeated input tuples and then the computed module Gr�obnerbase. The computing time of 28 seconds (IBM RS6000) is much more, than the computingtime of 8 seconds (IBM 3081) reported by Armbruster. This might be due to the fact thatdi�erent reduction strategies are used in both algorithms.MAS: ((1 , 2 , 0, l**2),(0, (l +3 v), 0, u),(1 , 0, 0, l**2),((l + v), 0, 0, u),(l**2 , 0, 0, v),(u , 0, 0, (v l + v**2)),(1 , 0, (l +3 v), 0),(l**2 , 0, 2 u , v),(0, 1 , (l + v), 0),(0, l**2 , u , 0),(0, v , u l**2 , 0),(0, (v l + v**2), u**2 , 0))Time: read = 0, eval = 27967, print = 17, gc = 0.MAS: ((0, 0, 0, u),(0, 0, 0, (v**4 - v)),

8.8. UNIVERSAL GR �OBNER BASES 207(0, 0, 0, (v l + v**2)),(0, 0, 0, (l**3 + v**3)),(0, 0, u , 0),(0, 0, v , -1/2 l**2),(0, 0, l , 1/2 l**2),(0, 1 , 0, 0),(1 , 0, 0, l**2))8.8 Universal Gr�obner BasesUniversal Gr�obner bases are ideal bases, which are Gr�obner bases with respect to anyadmissible term order. The problem is here to �nd algorithmically all di�erent termorders on a given set of terms. We qoute from the introduction of [Weispfenning 1987a]who developed the theory. The implementation is based on an ALDES/SAC-2 programdeveloped by [Belkahia 1992].A universal Gr�obner basis is a �nite basis for a polynomial ideal that has the Gr�obnerproperty with respect to all admissible term-orders. Let R be a commutative polynomialring over a �eld K, or more generally a non-commutative polynomial ring of solvabletype over K (see [Kandri-Rody, Weispfenning 1988]). We show, how to construct andcharacterize left, right, two-sided, and reduced universal Gr�obner bases in R. Moreover,we extend the upper complexity bounds in [Weispfenning 1986] to the construction ofuniversal Gr�obner bases. Finally, we prove the stability of universal Gr�obner bases underspecialization of coe�cients. All these results have counterparts for polynomial rings overcommutative regular rings (compare [Weispfenning 1987b]).The construction of Gr�obner bases initiated in [Buchberger 1970] has proved to be ofgreat importance in the algorithmic theory of commutative polynomial ideals (com-pare [Buchberger 1985, M�oller, Mora 1986]). Recently, the method and its applicationshave been extended to one- and two-sided ideals in certain non-commutative poly-nomial rings (see [Apel, Lassner 1988, Kandri-Rody, Weispfenning 1988]; compare also[Mora 1985, Mora 1986] for an analysis of the problem in general non-commutative poly-nomial rings).In all these cases, the construction of a Gr�obner basis depends on the choice of an admissibleorder on the set T of terms. In many considerations { and in all present implementations{ this choice is restricted to a few basic types of admissible orders, such as pure lexico-graphic and total degree orders. The set of all such orders is, however, huge: It has thecardinality of the continuum. An algebraic characterization of all these orders has beengiven in [Robbiano 1985]; more recently, the author has given an alternative characteri-zation in terms of linear forms with coe�cients in a �nitely generated ordered �eld (see[Weispfenning 1987]). It is particularly suitable for computational purposes.As a consequence, only countably many admissible orders are decidable (as binary rela-tions), while the majority (continuum many) are undecidable. So strictly speaking, theBuchberger method for constructing Gr�obner bases is algorithmic only relative to the ad-missible order under consideration.This raises the following natural question: What is the nature of the dependence of aGr�obner basis on an admissible order? In a recent paper [Schwartz 1988], N. Schwartzproves some remarkable facts concerning this question: He shows the existence of universal

208 CHAPTER 8. PACKAGESGr�obner bases, i.e. of ideal bases that have the Gr�obner property (conuence of the inducedreduction relation) for all admissible orders. Moreover, he shows that the Gr�obner propertyis locally constant under the Zariski topology on the space of admissible orders. Thismeans that if G is a Gr�obner basis with respect to the admissible order < then it is alsoa Gr�obner bases for all admissible orders <0 in some neighborhood of <. His results aretotally non-constructive, and apply to commutative polynomials only.The purpose of this note is to prove corresponding facts for the much more general situa-tion of non-commutative polynomial rings of solvable type studied in [Apel, Lassner 1988]and [Kandri-Rody, Weispfenning 1988], and also for commutative polynomial rings overcommutative regular rings (see [Weispfenning 1987b]). Moreover, our proofs yield con-structions of universal Gr�obner bases together with upper complexity bounds for theseconstructions. Our arguments are based on a use of K�onig's tree lemma in combinationwith the results in [Weispfenning 1975] and [Weispfenning 1987], which in turn employ log-ical compactness, a decision procedure for algebraically closed �elds, the Tarski principlefor real closed �elds, and the polynomial time solvability of the restricted open hemisphereproblem (see [Garey, Johnson 1978], pp. 246, 339).The most important consequence concerning the question posed above is the following:Given a �nite ideal basis F (in any of the polynomial rings mentioned above); then allreduced (one- and two-sided) Gr�obner bases G for the ideal generated by F , as well asa (reduced) universal Gr�obner basis for this ideal, can be constructed using only �nitelymany decidable admissible orders, that can be found e�ectively.For commutative polynomials over �elds this fact was proved by a di�erent method also ina recent preprint by [Mora, Robbiano 1988]; the special case of two variables was solved in-dependently by [Schemmel 1987] as well. Both papers have came to the author's attentiononly at the EUROCAL'87 conference, June 1987, { well after completion of the researchfor of the present note and the submission of its results. (The note was �rst presented ata mathematical colloquium, University of M�unchen, January 1987.)Our last result in this very general setting concerns the stability of Gr�obner bases and uni-versal Gr�obner bases under variation or specialization of the coe�cients in the given idealbasis: We provide a `universal' construction of (universal) Gr�obner bases for ideal baseswith indeterminate coe�cients, and show that the (universal) Gr�obner bases resulting fromspecializations of these coe�cients in a �eld will be the same within a Zariski-constructibleset. For a very special case, a more speci�c result in this direction has been presented atEUROCAL'87 by [Gianni 1987] and [Kalkbrenner 1987].This ends the authors intruduction and we turn now to the discussion of an example.8.8.1 ExampleThe following is an example of an input data set for universal Gr�obner bases. It can beread in with the known input commandIN("data set name").from the MAS prompt.The statementUGBBIN().

8.8. UNIVERSAL GR�OBNER BASES 209calls the main routine of the universal Gr�obner base package of Tijani Belkahia. All optionsand inputs are exactly the same as described in his \Diplomarbeit" [Belkahia 1992].The input consists of several parts, which are discussed in the sequel.1. The �rst part consists of the variable declaration `(u0,u1,u2)'. Note, that no termorder is de�ned after the variable list.2. The next input part consists of a list of polynomials which constitute the ideal base,for which an universal Gr�obner base is requested. The syntax of such a list is that ofan distributive rational polynomial list as described in section 7.4.3, 7.4.3, algorithmDIRLRD.3. Then follows an optional part, which controls printing of intermediate results.Y Print information and intermediate results.N Do not print information and intermediate results.4. The last input is the string `EXEC UGB ..'. Note, the required double period at theend of the string. This string requestes the computations and options as describedin the following complete list.UGB compute an universal Gr�obner base.PUGB compute an universal Gr�obner base using precomputed linear forms of termorders.LF compute all linear froms, i.e. all term orders for the set of terms of the giveninput polynomials.PLF compute all linear froms, i.e. all term orders for the set of terms of the giveninput polynomials using precomputed linear forms of term orders.Further explanations of the options are described in [Belkahia 1992].The precomputed linear forms are contained in some subdirectory of the examplesdirectory and are named LINFORM.LADEi, where i = 1; 2; 3; 4. The algorithm triesto predict the number of required linear forms which are read and used. But theprediction is in some cases too pessimistic, i.e. there are possibly much more pre-computed linear forms than required for the construction of an universal Gr�obnerbase. So the usage of this option can slowdown the computation. However, if thenumbers of precomputed and required linear forms agree the computation will bemuch faster using the precomputed term orders (linear forms).UGBBIN().(u0,u1,u2)((2 u1**2 + u0**2 - u0),(2 u1 u2 + 2 u0 u1 - u1),(2 u2 + 2 u1 + u0 - 1))Y.EXEC UGB ..

210 CHAPTER 8. PACKAGESThe output is the same (except for letter case) as of the ALDES/SAC-2 version.MAS: Die eingegebenen Polynome sind(2 u1**2 + u0**2 - u0)(2 u1 u2 +2 u0 u1 - u1)(2 u2 +2 u1 + u0 -1)Zwischenausgaben ... JAOption ... UGBDie Liste der Terme als ganzzahlige Tupel ist((0,2,0),(0,0,2),(0,0,1),(1,1,0),(0,1,1),(0,1,0),(1,0,0),(0,0,0))Projektionen ...Dimension ... 2Gradschranke dieser Dimension ist 8Dimension ... 1Gradschranke dieser Dimension ist 4Die berechneten Linearformen sind 31Ordne die Polynome nach den LinearformenReduktionsschrittes sind 2 neue Terme entstandenProjektionen ...Dimension ... 2Gradschranke dieser Dimension ist 6Dimension ... 1Gradschranke dieser Dimension ist 6Die disjunkten Linearformen sind 59 LinearformenNeue Linearformen entstandenOrdne die Polynome nach den neuen LinearformenEs ist nur ein neuer Term entstandenProjektionen ...Dimension ... 2Gradschranke dieser Dimension ist 10Dimension ... 1Gradschranke dieser Dimension ist 6Die disjunkten Linearformen sind 89 LinearformenNeue Linearformen entstandenOrdne die Polynome nach den neuen LinearformenEs ist nur ein neuer Term entstandenProjektionen ...Dimension ... 2Gradschranke dieser Dimension ist 8Dimension ... 1Gradschranke dieser Dimension ist 8Die disjunkten Linearformen sind 96 LinearformenNeue Linearformen entstandenOrdne die Polynome nach den neuen LinearformenEs ist nur ein neuer Term entstandenProjektionen ...Dimension ... 2Gradschranke dieser Dimension ist 6Dimension ... 1Gradschranke dieser Dimension ist 8

8.9. POLYNOMIAL RINGS OVER EUCLIDEAN DOMAINS 211Die disjunkten Linearformen sind 111 LinearformenNeue Linearformen entstandenOrdne die Polynome nach den neuen Linearformen************************************Universelle Groebnerbasis************************************(4 u0**2 u2 -4 u0 u2 +2/3 u0**2 -2/3 u0)(2 u0 u1 +2 u0**2 -2 u0)(-6 u0**3 +10 u0**2 -4 u0)(4 u0 u1 +4 u0**2 -4 u0)(2 u2 +2 u1 + u0 -1)(2 u1 u2 +2 u0 u1 - u1)(2 u1**2 + u0**2 - u0)(-4 u2**2 -6 u0 u2 +4 u2 -2 u0**2 +3 u0 -1)(-2 u0 u2 + u0**2 - u0)(-12 u0**3 +20 u0**2 -8 u0)(6 u0**2 u1 -4 u0 u1)7 garbage collections, 1615139 cells reclaimed, in 1068 milliseconds.1699287 cells used, in 6023 milliseconds.256512 cells allocated. Total time 7091 milliseconds.This example needed less than 60 seconds on a PC 486/33/8 running OS/2 2.1. This isthe end of the universal Gr�obner base example.8.9 Polynomial rings over Euclidean domainsThe standard theory of Gr�obner bases relies heavily on the fact, that the polynomialring is a ring over a �eld. If this �eld condition is dropped to only euclidean domainsor even principal ideal domains it can be shown that there still exist ideal bases withproperties like that of Gr�obner bases. For an introduction into the theory and furtherreferences see [Becker, Weispfenning 1993] chapter 10.1. The programs were implementedby [Mark 1992].8.9.1 ExamplesThe algorithms for D- and E-Gr�obner bases are located in the program modules `DIPIDGB'and `DIPDDGB'. The main programs for the computation of E-Gr�obner bases are `DIIPEGB'for the base coe�cient ring of the integers and `DIDPEGB' for the base coe�cient ring ofrational univariate polynomials. Both procedures take two inputs: �rst the polynomiallist and second a trace ag. If the trace ag is equal to 0, then no intermediate output isgenerated; if the trace ag is greater than 0, say n, then after the n-th G- or S-polynomialhas been computed statistics output is generated.The �rst example shows the computation of an E-Gr�obner base over the coe�cient domainof integers, i.e. the computation takes place in the polynomial ring Z[X;Y]. The integralpolynomial list read function is `PREADI', the syntax is similar to the syntax of the `PREAD'function as described in 7.4.3. The input looks as follows.BEGIN CLOUT("Computing integer E-Groebner base ... ");BLINES(1);

212 CHAPTER 8. PACKAGESP:=PREADI();CLOUT("The input polynomials are: ");BLINES(1);PWRITEI(P);Q:=DIIPEGB(P,1000);CLOUT("The E-Groebner base is: ");BLINES(1);PWRITEI(Q);CLOUT(" ... finished.");BLINES(1);END.(X,Y) L((Y**6 + X**4 Y**4 - X**2 Y**4 - Y**4 - X**4 Y**2+ 2 X**2 Y**2 + X**6 - X**4),(2 X**3 Y**4 - X Y**4 - 2 X**3 Y**2 + 2 X Y**2+ 3 X**5 - 2 X**3),(3 Y**5 + 2 X**4 Y**3 - 2 X**2 Y**3 - 2 Y**3- X**4 Y + 2 X**2 Y))The following output shows �rst the input polynomials. Then it shows the intermediatestatistics after each 1000 G- respectively S-polynomials, together with the e�ect of severalcriterions used to avoid unnecessary reductions. Finaly the resulting E-Gr�obner base isdisplayed.Computing integer E-Groebner base ...The input polynomials are:Polynomial in the variables: (X,Y)Term ordering: inverse lexicographical.Polynomial list:(Y**6 + X**4 Y**4 - X**2 Y**4 - Y**4 - X**4 Y**2+2 X**2 Y**2 + X**6 - X**4)(2 X**3 Y**4 - X Y**4 -2 X**3 Y**2 +2 X Y**2 +3 X**5 -2 X**3)(3 Y**5 +2 X**4 Y**3 -2 X**2 Y**3 -2 Y**3 - X**4Y +2 X**2 Y)Number of computed G-polynomials: 1000Cancelled due to criterion 1: 651Cancelled due to top-D-reducibility: 332New polynomials added to G: 17Number of critical pairs in D: 47Number of critical pairs in C: 81Number of computed G-polynomials: 2000Cancelled due to criterion 1: 1134Cancelled due to top-D-reducibility: 845New polynomials added to G: 21Number of critical pairs in D: 129Number of critical pairs in C: 16Number of computed S-polynomials: 1000Cancelled due to criterion 2: 0Cancelled due to criterion 3: 441New polynomials added to G: 43Number of critical pairs in B: 1346Number of critical pairs in C: 0

8.9. POLYNOMIAL RINGS OVER EUCLIDEAN DOMAINS 213...Number of computed S-polynomials: 7000Cancelled due to criterion 2: 53Cancelled due to criterion 3: 4455New polynomials added to G: 75Number of critical pairs in B: 260Number of critical pairs in C: 0Number of computed G-polynomials: 7875Cancelled due to criterion 1: 5415Cancelled due to top-D-reducibility: 2416Number of computed S-polynomials: 7875Cancelled due to criterion 2: 139Cancelled due to criterion 3: 4956Number of polynomials in G before reduction: 126Number of polynomials in G after reduction: 8The E-Groebner base is:Polynomial in the variables: (X,Y)Term ordering: inverse lexicographical.Polynomial list:(2 X Y**2 + X**13 -2 X**11 + X**9 +2 X**7 -2 X**3)(X**15 -2 X**11 +4 X**9)(4 X**11 Y -8 X**9 Y +8 X**7 Y)(X**13 Y -2 X**9 Y +4 X**7 Y)(Y**4 + X**12 -3 X**10 +3 X**8 - X**4)(2 Y**3 -2 X**10 Y +3 X**8 Y -2 X**6 Y -2 X**2 Y)(X**8 Y**2 + X**10 -2 X**8)(2 X**12 -4 X**10 +4 X**8)Time: read = 3, eval = 11303, print = 1, gc = 1816.The computing time is 113 seconds on an IBM RS6000-520.The second example shows the computation of an E-Gr�obner base over the coe�cientdomain of rational univariate polynomials. More precisely the computation takes place inthe polynomial ring Q[B][S; T; Z; P;W]:The domain descriptor read and polynomial read functions `ADDDREAD' and `DILRD' areused as described in the section 7.8.1 on the arbitrary domain system. The input looks asfollows.BEGIN CLOUT("Computing domain rational polynomial E-Groebner base ...");BLINES(1);DP:=ADDDREAD(); ADDDWRIT(DP);V:=LIST("S","T","Z","P","W"); t:=DIPTODEF(2);P:=DILRD(V,DP);CLOUT("The input polynomials are: ");BLINES(1);DILWR(P,V);Q:=DIDPEGB(P,DP,10);CLOUT("The E-Groebner base is: "); BLINES(1);DILWR(Q,V);

214 CHAPTER 8. PACKAGESCLOUT(" ... finished.");BLINES(1);DIPTODEF(t);END.RP(B)(((45) P + (35) S - (165 B) - (36)),((35) P + (40) Z + (25) T - (27) S),((15) W + (25) S P + (30) Z - (18) T - (165 B**2)),(- (9) W + (15) T P + (20) S Z),(P W + (2) T Z - (11 B**3)),((99) W - (11 B) S + (3 B**2))((B**2 + 33/50 B + 2673/10000)))The output is as follows. For an explanation see the previous example.Computing domain rational polynomial E-Groebner base ...RP(B) (* Rational Polynomial *)The input polynomials are:(45 P + 35 S -(165 B +36))(35 P + 40 Z + 25 T - 27 S)(15 W + 25 S P + 30 Z - 18 T - 165 B**2)(-9 W + 15 T P + 20 S Z)(P W + 2 T Z - 11 B**3)(99 W - 11 B S + 3 B**2)(B**2 +33/50 B +2673/10000)Number of computed G-polynomials: 10Cancelled due to criterion 1: 10Cancelled due to top-D-reducibility: 0New polynomials added to G: 0Number of critical pairs in D: 0Number of critical pairs in C: 11...Number of computed S-polynomials: 100Cancelled due to criterion 2: 75Cancelled due to criterion 3: 0New polynomials added to G: 6Number of critical pairs in B: 5Number of critical pairs in C: 0Number of computed G-polynomials: 105Cancelled due to criterion 1: 102Cancelled due to top-D-reducibility: 1Number of computed S-polynomials: 105Cancelled due to criterion 2: 80Cancelled due to criterion 3: 0Number of polynomials in G before reduction: 15Number of polynomials in G after reduction: 6The E-Groebner base is:

8.10. BUCHBERGER ALGORITHM WITH SUGAR STRATEGY 215(B**2 +33/50 B +2673/10000)(15 W +(19/8 B +3969/4000))(45 P -(155/2 B +1377/40))(-1800 Z -(2450 B +10287/10))(-43659/20 T +(538461/100 B -1178793/5000))(S -(5/2 B +9/200))Time: read = 7, eval = 471, print = 0, gc = 355.The computing time is approximately 5 seconds on an IBM RS6000-520.8.10 Buchberger algorithm with sugar strategyThe programs were implemented by [Rose 1995], we cite from this technical report:\The basic ideas for the implementation of the Buchberger algorithm in the MAS moduleDIPAGB originate from the algorithms GR�OBNERNEW2 ([Becker, Weispfenning 1993],p. 232) and its subalgorithm UPDATE ([Becker, Weispfenning 1993], p. 230). Given a�nite subset F of a multivariate polynomial ring K[X1; :::; Xn] over a computable �eldK GR�OBNERNEW2 �nds a Gr�obner basis G of the ideal in K[X1; :::; Xn] generated byF . The algorithm eliminates superuous critical pairs according to Buchberger's criteriaas implemented by Gebauer and M�oller ([Gebauer, M�oller 1988]). A call of the functionDIPAGB with parameter F in the DIPAGB module performs the computation of G asgiven by GR�OBNERNEW2 with the exception that the algorithm stops with the idealbasis G = f1g if a constant non-zero polynomial would be added to the computed idealbasis.Besides the choice of the term order relative to which the Gr�obner basis G is computedone of the main points of big inuence on the time complexity of the algorithm is theselection strategy, i.e. the strategy to choose one of the critical pairs for the process ofreduction. In the DIPAGB module Rev. 1.3 there are two selection strategies supported:the normal strategy that chooses a critical pair (f; g) if the least common multiple of theleading terms of f and g is minimal in the current term order, and the normal with sugarstrategy that chooses a critical pair (f; g) if the sugar of the S-polynomial of f and g isminimal and, in order to break ties, if the least common multiple of the leading terms of fand g is minimal in the current term order among all critical pairs with the same sugar oftheir S- polynomial. The sugar Sf of a polynomial f 2 K[X1; :::; Xn] is de�ned as follows:Let W = (w1; ::::; wn) be an n-tuple of rational numbers where wi, i = 1; :::; n, is theweight of the variable Xi, and f = Pkj=0 aj X�j;11 � ::: � X�j;nn 2 K[X1; :::; Xn]. Then therational-weighted total degree degW (f) of f is de�ned bydegW (f) := max0�j�k nXi=1 wi �j;i: (8.1)Furthermore, for the initial f 2 F , let Sf = degW (f).If g; h 2 K[X1; :::; Xn] are polynomials with sugar Sg , Sh and t 2 K[X1; :::; Xn] is a term,then St�g = degW (t) + Sg and Sg+h = max fSg; Shg.The motivation for the sugar de�nition of polynomials and a comprehensive descriptionin the special case W = (1; :::; 1) can be found in [Giovini et al. 1991].

216 CHAPTER 8. PACKAGES8.10.1 DIPAGB procedures in the interpreterThe main data structures used in the DIPAGB module are given by the MAS system. TheDIPAGB function takes a list F of polynomials in distributive representation and produces alist G of polynomials in distributive representation. Whenever the normal strategy is used,this data structure for the polynomials handled during the Gr�obner basis computation issu�cient. The normal with sugar strategy option, however, makes it necessary to carryalong the sugar with each polynomial. This fact leads to a new data structure calledextended distributive polynomial. In case of the normal strategy an extended distributivepolynomial simply is the same as a distributive polynomial; in case of the normal withsugar strategy an extended distributive polynomial is a pair (f; Sf) of a polynomial f indistributive representation and its sugar Sf .Furthermore it is advantageous in practice to store frequently used data of a critical pairof polynomials together with each critical pair. Accordingly in case of the normal strategyan extended critical pair is a triple (f; g; lcm) of two (extended) distributive polynomialsf; g and the least common multiple lcm of the leading terms of f and g, whenever (f; g)de�nes a critical pair of polynomials.Since in case of the normal with sugar strategy it is also necessary to keep the sugar ofthe S-polynomial of each critical pair in mind, an extended critical pair is then given by aquadruple ((f; Sf); (g; Sg); lcm; Sf;g) where (f; g) is a critical pair, lcm is the least commonmultiple of the leading terms of f and g and Sf;g is the sugar of the S-polynomial of fand g.In the DIPAGB module Rev. 1.3 tuples of data are represented by lists of appropriatelength. The names of procedures which handle with extended distributive polynomials,start with "EDIP", procedures which take extended critical pairs are denoted "ECP...".The function DIPAGBThe main function in the DIPAGB module is the DIPAGB function. As described above, ittakes one input parameter, namely a �nite list F of polynomials in distributive represen-tation. Since DIPAGB works over arbitrary domains, the coe�cients of these polynomialsare allowed to be taken from every domain supported in the arbitrary domain system ofMAS. Look at the MAS documentation for details on the arbitrary domain system. Theoutput of DIPAGB is a list G of polynomials in distributive representation such that G isa Gr�obner basis of the ideal generated by F . Whenever the reduced and sorted Groebnerbasis is to be calculated, the user should subsequently apply the DIPLIR function from theDIPADOM module.The option set proceduresThe following option set procedures are at the user's disposal:SetDIPAGBStrategySetDIPAGBVariableWeightSetDIPAGBTraceFlagSetDIPAGBOptions

8.10. BUCHBERGER ALGORITHM WITH SUGAR STRATEGY 217SetDIPAGBStrategy(st), st 2 f0; 1g, chooses the selection strategy (st = 0: normal,st = 1: normal with sugar). The selection strategy is set to 0 by default. The MASsystem will use the chosen strategy for each run of DIPAGB until a new selection strategyis set by the user.With the command SetDIPAGBVariableWeight(W) the variable weight list used duringany computation of the rational-weighted total degree of a polynomial f in n variablesin case of the normal with sugar strategy is set. W = (W1; :::;Wn) is a list of rationalnumbers where n is the length of the variable list VALIS and Wi, 1 � i � n, is the weightof the ith variable in VALIS. If no variable weight list is set by the user, the default weightlist (1; :::; 1) is used in all degree calculations while the Gr�obner basis G is computed. Thevariable weight list remains W until it is reset by the user. If the actual variable weightlist is di�erent from the default weight list and of a length di�erent to the length of VALISthe messageDIPAGB: no valid variable weight listwill occur.The trace ag, a non-negative integer level for interactive documentations, is very usefulfor solving diagnostic problems. With the SetDIPAGBTraceFlag(tf) command, tf 2f0; 1; 2; :::g, you can set the trace ag to tf . The following operations are documented inthe output stream:tf = 0: No computation stepstf � 1: The total execution time and the number of cells needed to perform theGr�obner basis computationtf � 2: The number and execution time of the normalform computationstf � 3: The changes of selection strategy, variable weight and trace agtf � 4: The polynomials to be reduced to normalformtf � 5: The results of the normalform computationstf � 6: The results of the rational-weighted total degree calculationstf � 7: The insert operations of an extended critical pair into the extended criticalpair listtf � 8: The extensions of the distributive polynomials and the critical pairs of dis-tributive polynomialstf � 9: The results of all S-polynomial computationsThe default value of the trace ag is 0. The trace ag is unchanged until it is reset by theuser.Finally, all above options can be set with the single SetDIPAGBOptions(O) commandwhere O is a list of options. Let O be the list (O1; :::; OL). Then SetDIPAGBOptions(O)works as a macro of the following operations:

218 CHAPTER 8. PACKAGESif L � 1 then SetDIPAGBTraceFlag(O1) end;if L � 2 then SetDIPAGBStrategy(O2) end;if L � 3 then SetDIPAGBVariableWeight(O3) end;The option write proceduresIn analogy to section 8.10.1 the following option write procedures exist:WriteDIPAGBStrategyWriteDIPAGBVariableWeightWriteDIPAGBTraceFlagWriteDIPAGBOptionsWith these commands the appropriate current options can be shown in the output stream.Each of these procedures takes no parameters.Further proceduresOne procedure of the DIPAGB module available in the MAS interpreter remains to bementioned. It's the operation LRNWRIT(L) (list of rational numbers write) where L is a�nite list of rational numbers. With this procedure for example a variable weight list canbe shown in the output stream.8.10.2 ExamplesThe following example demonstrates the interactive documentation handling during a runof DIPAGB when using trace ag 9.DomainDescriptor := ADDDREAD(). RN.VariableList := LIST("X","Y").V := DIPVDEF(VariableList).TermOrder := DIPTODEF(2).F := DILRD(VariableList,DomainDescriptor).((3/2 X**2 Y - 4) (- X Y + 2/5 X))DILWR(F,VariableList).SetDIPAGBTraceFlag(9).WX:=RNREAD(). 1/2.WY:=RNREAD(). 1.SetDIPAGBVariableWeight(LIST(WX,WY)).SetDIPAGBStrategy(1).DILWR(DIPAGB(F),VariableList).ANS: (8 0 -1)ANS: ((57) (59))ANS: ((57) (59))ANS: 2

8.10. BUCHBERGER ALGORITHM WITH SUGAR STRATEGY 219ANS: (((1 2) (8 (3 2) -1) (0 0) (8 (-4 1) -1)) ((1 1)(8 (-1 1) -1) (0 1) (8 (25) -1)))(3/2 X**2 Y -4)(-1 X Y +2/5 X)New documentation level: 9...New variable weight list: (1/2,1)New strategy: 1 (= normal with sugar)The rational-weighted total degree of the polynomial(3/2 X**2 Y -4)w.r.t. the variable list(X,Y)and the variable weight list(1/2,1)is 2.Extending the polynomial(3/2 X**2 Y -4)with sugar 2.The rational-weighted total degree of the polynomial(-1 X Y +2/5 X)w.r.t. the variable list(X,Y)and the variable weight list(1/2,1)is 3/2.Extending the polynomial(-1 X Y +2/5 X)with sugar 3/2.Extending the following critical pair:1st polynomial: (-1 X Y +2/5 X)with sugar 3/22nd polynomial: (3/2 X**2 Y -4)with sugar 2LCM of their leading terms: X**2 YSugar of their S-polynomial: 2Inserting the following extended critical pair:1st polynomial: (-1 X Y +2/5 X)with sugar 3/22nd polynomial: (3/2 X**2 Y -4)with sugar 2LCM of their leading terms: X**2 YSugar of their S-polynomial: 2==> New extended critical pair list:1st critical pair:1st polynomial: (-1 X Y +2/5 X)with sugar 3/22nd polynomial: (3/2 X**2 Y -4)with sugar 2LCM of their leading terms: X**2 YSugar of their S-polynomial: 2

220 CHAPTER 8. PACKAGESComputing the S-polynomial of the following two distributive polynomials:f = (-1 X Y +2/5 X)with sugar 3/2.g = (3/2 X**2 Y -4)with sugar 2.==> Spol(f,g) = (3/5 X**2 -4)with sugar 2.1st polynomial to reduce to normalform:(3/5 X**2 -4)The normalform is(3/5 X**2 -4)with sugar 2....Extending the following critical pair:1st polynomial: (4 Y -8/5)with sugar 32nd polynomial: (-1 X Y +2/5 X)with sugar 3/2LCM of their leading terms: X YSugar of their S-polynomial: 7/2Inserting the following extended critical pair:1st polynomial: (4 Y -8/5)with sugar 32nd polynomial: (-1 X Y +2/5 X)with sugar 3/2LCM of their leading terms: X YSugar of their S-polynomial: 7/2==> New extended critical pair list:1st critical pair:1st polynomial: (4 Y -8/5)with sugar 32nd polynomial: (-1 X Y +2/5 X)with sugar 3/2LCM of their leading terms: X YSugar of their S-polynomial: 7/22nd critical pair:1st polynomial: (4 Y -8/5)with sugar 32nd polynomial: (3/5 X**2 -4)with sugar 2LCM of their leading terms: X**2 YSugar of their S-polynomial: 4Computing the S-polynomial of the following two distributive polynomials:f = (4 Y -8/5)with sugar 3.g = (-1 X Y +2/5 X)with sugar 3/2.==> Spol(f,g) = 0

8.10. BUCHBERGER ALGORITHM WITH SUGAR STRATEGY 221with sugar 7/2.3rd polynomial to reduce to normalform:0The normalform is0with sugar 7/2.3 normalform computations in 60 milliseconds.Total time: 770 milliseconds.Cells: 781.(3/5 X**2 -4)(4 Y -8/5)Hairer, Runge-KuttaThis example is taken from [B�oge et al. 1986].Domain: RNVariable list: LIST("C2","C3","B3","B2","B1","A21","A32","A31")Polynomial list: ((+ C2 - A21)(+ C3 - A31 - A32)(+ B1 + B2 + B3 - 1)(+ B2 C2 + B3 C3 - 1/2)(+ B2 C2**2 + B3 C3**2 - 1/3)(+ B3 A32 C2 - 1/6))Results with the inverse lexicographical term order INVLEX:Normalform computations Time SpaceStrategy total number time in ms in ms in cellsnormal 14 430 620 17015normal with sugar,variable weight list (0; :::; 0) 14 550 750 19723normal with sugar,variable weight list (1; :::; 1) 17 670 970 26591DIPGB 640 13889Results with the Buchberger term order REVITDG:Normalform computations Time SpaceStrategy total number time in ms in ms in cellsnormal 15 180 360 14541normal with sugar,variable weight list (0; :::; 0) 15 190 480 16626normal with sugar,variable weight list (1; :::; 1) 15 220 540 19409DIPGB 620 15880

222 CHAPTER 8. PACKAGESFor the complete set of examples with many more comparisons see the technical report[Rose 1995].8.11 Buchberger algorithm with polynomial factoriza-tionThe programs were implemented by [Pfeil 1994]. The module DIPDCGB has been ex-tented to allow several ways to compute factored Gr�obner bases.8.11.1 OptionenIn diesem Abschnitt werden vier Optionen erl�autert, die beiden Varianten gemeinsam sind,eine Option f�ur die Variante nach [Melenk et. al. 1989] und zwei Optionen f�ur die Variantenach [Gr�abe, Lassner]. Diese Optionen k�onnen durch die Prozeduren SetTraceLevel, Set-DecompProc, SetUpdateProc, SetVarOrdOpt, SetFacSugar, SetReduceExp, SetBranch-Proc und SetDCGBopt gesetzt werden (vergl. Abschnitt 8.11.2).Trace-LevelDas Trace-Level gibt an, wieviel Information w�ahrend der Berechnung ausgegeben wird.Der Wert kann zwischen 0 und 4 (jeweils einschlie�slich) liegen, wobei ein h�oherer Wertmehr Ausgaben bedeutet und jeweils die Ausgaben der niedrigeren Trace-Level-Werte miteinschlie�st.Faktorisierungs-ProzedurStatt der in De�nition [Pfeil 1994] eingef�uhrten Faktorisierung { im folgenden alsvollst�andige Faktorisierung bezeichnet { kann auch die quadratfreie Zerlegung (vgl.[Becker, Weispfenning 1993], S.100) benutzt werden. Die quadratfreie Zerlegung (Proze-dur DIPSFF, vgl. [Pfeil 1994], Anhang A.1) hat gegen�uber der vollst�andigen Fak-torisierung (Prozedur DIPFAC, vgl. [Pfeil 1994], Anhang A.1) i.a. den Vorteil der gerin-geren Rechenzeit welcher durch den Nachteil der geringeren Zerlegung des Problems rela-tiviert wird.Aktualisierungs-ProzedurDurch diese Option wird die Prozedur zur Aktualisierung der kritischen Paare und derPolynommenge gew�ahlt. Wird diese Option nicht angegeben, so wird standardm�a�sig dieProzedur UPDATE aus dem Modul DIPAGB von K. Rose benutzt. Soll hierzu eine andereProzedur benutzt werden k�onnen, mu�s diese in dem Modul DIPDCGB importiert werdenund die Prozeduren SetUpdateProc und SetDCGBopt m�ussen dementsprechend erweitertwerden.

8.11. BUCHBERGER ALGORITHM WITH POLYNOMIAL FACTORIZATION 223Optimierung der VariablenordnungDie Variablenordnung gibt die Ordnung auf den Variablen an und ist von der Termord-nung zu unterscheiden. Zur Optimierung wird die Variablenordnung so ge�andert, da�sdie Faktorisierung m�oglichst schnell berechnet werde kann. Um die urspr�ungliche Vari-ablenordnung wiederherzustellen mu�s dann die Variablenordnung zur�uck ge�andert werden.Es wurden zwei Arten der Optimierung der Variablenordnung implementiert:1. Optimierung der Variablenordnung zu Beginn des Algorithmus und Wiederherstel-lung der urspr�unglichen Variablenordnung am Ende des Algorithmus, im folgendenmit VOOB bezeichnet.2. Optimierung der Variablenordnung unmittelbar vor jeder Faktorisierung undWiederherstellung der urspr�unglichen Variablenordnung unmittelbar nach der Fak-torisierung, im folgenden mit VOOF bezeichnet.Bei VOOB ist der Verwaltungsaufwand gegen�uber VOOF wesentlich geringer, aber dieerhaltenen Polynommengen bilden i.a. keine Gr�obner-Basis bzgl. der urspr�unglichen Vari-ablenordnung. Die Option VOOB wurde in der Prozedur GroebnerBases1 bzw. Groebner-Bases2 implementiert, w�ahrend die Option VOOF in den Prozeduren zur Faktorisierungimplementiert wurde. Da sich VOOB und VOOF nicht gegenseitig beeinu�sen, k�onnenauch beide gleichzeitig benutzt werden.Faktor-SugarDiese Option bezieht sich nur auf die Prozedur GroebnerBases1 und gibt an, ob die Sugar-Strategie (vergl. [Giovini et al. 1991]) benutzt wird und wenn ja, welchen Sugar die beieiner Faktorisierung entstehenden Faktoren bekommen. Entweder ist der neue Sugar derdes Ausgangspolynoms oder der Totalgrad des Faktors.Reduktions-ExponentDiese Option bezieht sich nur auf die Prozedur GroebnerBases2 und gibt an, von welcherPotenz ue in ProzedurTEII eine Normalform berechnet wird (vergl. [Pfeil 1994], Abschnitt4.2). Wenn e = 1 ist, wird nur die Optimierung nach [Pfeil 1994], Satz 3.2.11 verwendet,f�ur e > 1 wird entsprechend [Pfeil 1994], Satz 3.2.13 verfahren.Verzweigungs-ProzedurDiese Option bezieht sich nur auf die Prozedur GroebnerBases2 und gibt an, welche Proze-dur benutzt wird, um die neuen Zweige aus den Faktoren zu konstruieren. Die ProzedurSSCO konstruiert f�ur jede nichtleere Teilmenge der Faktoren einen neuen Zweig (vergl.[Pfeil 1994], Abschnitt 3.2), w�ahrend die Prozedur EQIEQ nur einen neuen Zweig je Fak-tor konstruiert (vergl. [Gr�abe, Lassner]).In EQIEQ werden die Gleichungen Gi und Ungleichungen Ui f�ur einen Zweig i aus denFaktoren F = ff1; : : : ; frg folgenderma�sen konstruiert:1. G1 := ff1g; U1 := ;2. Gi := ffig; Ui := ff1; : : : ; fi�1g; 2 � i � r

224 CHAPTER 8. PACKAGES8.11.2 Benutzung der Prozeduren im MAS-InterpreterIn diesem Abschnitt wird die Benutzung der vorgestellten Prozeduren erl�autert. Im weit-eren sind mit Polynomen stets Polynome in distributiver Darstellung gemeint. F�ur einenBenutzer des MAS-Interpreters sind die folgenden Prozeduren zug�anglich:Prozedur GroebnerBases1Diese Prozedur implementiert, wie bereits in den vorangegangenen Kapiteln erl�autert, dieVariante nach [Melenk et. al. 1989] und wird im MAS-Interpreter mit GB1 aufgerufen.Diese Prozedur hat als Eingabeparameter eine Liste von Polynomen F und liefert alsErgebnis eine Liste von Polynommengen fF1; : : : ; Fkg.Prozedur GroebnerBases2Diese Prozedur implementiert, wie bereits in den vorangegangenen Kapiteln erl�autert, dieVariante nach [Gr�abe, Lassner] und wird im MAS-Interpreter mit GB2 aufgerufen. DieseProzedur hat als Eingabeparameter zwei Listen von Polynomen F und U und liefert alsErgebnis eine Liste von Paaren von Polynommengen f(F1; U1); : : : ; (Fk ; Uk)g.Prozedur SetTraceLevelDiese Prozedur setzt die in Abschnitt 8.11.1 erl�auterte Option. Hierzu wird als Parametereine ganze Zahl angegeben, deren Wert zwischen 0 und 4 (jeweils einschlie�slich) liegt.Dabei bedeutet:0 : (default) keine Ausgabe, au�ser mit Option VOOB, um darauf hinzuweisen,da�s das Ergebnis i.a. keine Gr�obner-Basis darstellt> 0 : Ausgabe der Rechenzeit und der Ergebnisse nach der Berechnung> 1 : Ausgabe von Meldungen �uber den Berechnungsbaum:Anzahl der abgeschnittenen Zweige, \cancel factor", \cancel branch", \groebnerbase", \branch w.o. zeros".> 2 : Ausgabe von S-Polynomen und Normalformen> 3 : Ausgabe der Parameter der Prozeduren RECGB1, RECGB2, REC1, REC2,der Rechenzeit und der Gr�obner-Basen w�ahrend der BerechnungProzedur SetDecompProcDiese Prozedur setzt die in Abschnitt 8.11.1 erl�auterte Option. Hierzu wird als Parametereine ganze Zahl angegeben, deren Wert zwischen 1 und 2 (jeweils einschlie�slich) liegt.Dabei bedeutet:1 : (default) vollst�andige Faktorisierung (mit Prozedur DIPFAC)2 : quadratfreie Zerlegung (mit Prozedur DIPSFF)

8.11. BUCHBERGER ALGORITHM WITH POLYNOMIAL FACTORIZATION 225Prozedur SetUpdateProcDiese Prozedur setzt die in Abschnitt 8.11.1 erl�auterte Option. Hierzu wird als Parametereine ganze Zahl angegeben, deren Wert 1 ist. Dabei bedeutet:1 : (default) Update nach K. Rose (mit Prozedur UPDATE)Prozedur SetVarOrdOptDiese Prozedur setzt die in Abschnitt 8.11.1 erl�auterte Option. Hierzu wird als Parametereine ganze Zahl angegeben, deren Wert zwischen 0 und 3 (jeweils einschlie�slich) liegt.Dabei bedeutet:0 : (default) keine Optimierung der Variablenordnung1 : VOOB2 : VOOF3 : VOOB und VOOFProzedur SetFacSugarDiese Prozedur setzt die in Abschnitt 8.11.1 erl�auterte Option. Hierzu wird als Parametereine ganze Zahl angegeben, deren Wert zwischen 0 und 2 (jeweils einschlie�slich) liegt.Dabei bedeutet:0 : (default) keine Sugar-Strategie1 : Faktoren erhalten als Sugar ihren Totalgrad2 : Faktoren erhalten als Sugar den Sugar des faktorisierten PolynomsProzedur SetReduceExpDiese Prozedur setzt die in Abschnitt 8.11.1 erl�auterte Option. Hierzu wird als Parametereine ganze Zahl angegeben, deren Wert gr�o�ser gleich 1 ist. Dabei bedeutet:1 : (default) Optimierung nach [Pfeil 1994], Satz 3.2.11> 1 : Optimierung nach [Pfeil 1994], Satz 3.2.13 mit diesem Wert als Exponent eProzedur SetBranchProcDiese Prozedur setzt die in Abschnitt 8.11.1 erl�auterte Option. Hierzu wird als Parametereine ganze Zahl angegeben, deren Wert zwischen 1 und 2 (jeweils einschlie�slich) liegt.Dabei bedeutet:1 : (default) ein Zweig f�ur jede nichtleere Teilmenge der Faktoren (mit Prozedur SSCO)2 : ein Zweig f�ur jeden Faktor (mit Prozedur EQIEQ)

226 CHAPTER 8. PACKAGESProzedur SetDCGBoptMit dieser Prozedur k�onnen alle, in den vorangegangenen Abschnitten erl�auterten Optio-nen gesetzt werden. Hierzu wird als Parameter eine Liste von ganzen Zahlen angegeben.Diese Liste mu�s mindestens ein Element haben und kann h�ochstens sieben Elemente haben.Hierbei werden diese Zahlen in folgender Reihenfolge den Optionen zugeordnet:1. Trace-Level2. Nr. der Faktorisierungs-Prozedur3. Nr. der Aktualisierungs-Prozedur4. Optimierung der Variablenordnung5. Faktor-Sugar6. Reduktions-Exponent7. Nr. der Verzweigungs-ProzedurProzedur WriteDCGBoptMit dieser Prozedur k�onnen die aktuellen Werte der Optionen ausgegeben werden. DieseProzedur hat keinen Parameter.8.11.3 BeispielDas Beispiel und die Beschreibung (mit leichten Anpassungen) sind [Pfeil 1994] entnom-men; weitere Beispiele sind ebendort zu�nden.In diesem Abschnitt wird f�ur ein Beispiel die Rechenzeit und Ergebnisse f�ur jeweils mehrereOptionen angegeben. Hierbei gibt die Zahl hinter TO die gew�ahlte Termordnung an(vgl. 7.5). Zum Vergleich ist au�serdem jeweils die Zeit f�ur den Buchberger-Algorithmusohne Faktorisierung (DIPGB, vgl. 7.8.1) angegeben. In der Tabelle gibt die obere Zeileeines Tabelleneintrages die Rechenzeit an. In der unteren Zeile gibt der Kleinbuchstabean, welche L�osungsmenge zu diesem Eintrag geh�ort, wobei verschiedene L�osungsmengen,deren Polynome sich nur durch Einheiten unterscheiden und daher dieselben Nullstellenbeschreiben, zusammengefa�st wurden. Die Zahl in der unteren Zeile gibt in den Spal-ten GB1 die Anzahl der durch Algorithmus GB1 (nach [Melenk et. al. 1989]) berechnetenFi, in den Spalten GB2 die Anzahl der durch Algorithmus GB2 (nach [Gr�abe, Lassner])berechneten (Fi; Ui) und in der Spalte DIPGB die Anzahl der Polynome in der mit DIPGBberechneten L�osungsmenge an. Alle Beispiele wurden mit der Standardeinstellung von 4MByte f�ur den Speicherplatz berechnet.Dieses Beispiel wurde [Buchberger 1970] entnommen. Die Polynommenge F1 besteht ausdrei Polynomen in drei Variablen X > Y > Z:F1 = f X3Y Z �XZ2;XY 2Z �XY Z;X2Y 2 � Z gL�osungsmengen (vgl. Tabelle 8.11.3):

8.11. BUCHBERGER ALGORITHM WITH POLYNOMIAL FACTORIZATION 227vollst�andige Fakt. quadratfreie Zerl.GB1 GB2 GB1 GB2 DIPGBTO=2 690 820 230 290 140ohne a 3 f 5 b 2 d 3 c 5140 210 100 120VOOB a 3 g 5 b 2 e 3180 270 200 220VOOF a 3 f 5 b 2 d 3100 140 90 120beide a 3 g 5 b 2 e 3TO=8 650 800 240 290 120ohne a 3 f 5 b 2 d 3 c 5260 390 180 240VOOB a 3 f 5 b 2 d 3180 280 190 230VOOF a 3 f 5 b 2 d 3200 280 190 230beide a 3 f 5 b 2 d 3Table 8.15: Ergebnisse zu F1, Zeiten in msa) fX;Zg; fX2 � Z; Y � 1g; fZ; Y gb) fY � 1; X2 � Zg; fXY;Zgc) fY Z2 � Z2; XY 2Z �XY Z;X2Z2 � Z3; X2Y Z � Z2; X2Y 2 � Zgd) (fY � 1; X2 � Zg; fZg); (fY � 1; Z;Xg; fg); (fXY;Zg; fY � 1g)e) (fY � 1; X2 � Zg; fXY g); (fY � 1; Z;Xg; fg); (fXY;Zg; fY � 1g)f) (fY; Zg; fX;Y � 1g); (fX;Y; Zg; fY � 1g); (fX;Zg; fY; Y � 1g);(fY � 1; X; Zg; fY g); (fX2 � Z; Y � 1g; fX;Y; Zg)g) (fY; Zg; fX;Y � 1g); (fX;Y; Zg; fY � 1g); (fX;Zg; fY; Y � 1g);(fY � 1; X; Zg; fY g); (fX2 � Z; Y � 1g; fX;Y g)Katsura, Laurent Series case 3Dieses Beispiel stammt aus [B�oge et al. 1986].dp:=ADDDREAD(). RN.V:=LIST("Z","Y","X","W"). xx:=DIPVDEF(V).

228 CHAPTER 8. PACKAGESF10:=DILRD(V,dp).((W**2 - W + 2 X**2 + 2 Y**2 + 2 Z**2)(2 W X + 2 X Y + 2 Y Z - X)(2 W Y + X**2 + 2 X Z - Y)(W + 2 X + 2 Y + 2 Z - 1))DILWR(F10,V).SetTraceLevel(2).SetFacSugar(1).SetDecompProc(2).SetVarOrdOpt(3).WriteDCGBopt.gbl:=GB1(F10).Die Ausgabe sieht wie folgt aus.ANS: (8 0 -1)ANS: ()ANS: ((61) (59) (57) (55))ANS: ((61) (59) (57) (55))ANS: (((2 0 0 0) (8 (1 1) -1) (1 0 0 0) (8 (-1 1) -1) (0 2 0 0)(8 (2 1) -1) (0 0 2 0) (8 (2 1) -1) (0 0 0 2) (8 (2 1) -1))((1 1 0 0) (8 (2 1) -1) (0 1 1 0) (8 (2 1) -1) (0 1 0 0)(8 (-1 1) -1) (0 0 1 1) (8 (2 1) -1)) ((1 0 1 0) (8 (2 1) -1)(0 2 0 0) (8 (1 1) -1) (0 1 0 1) (8 (2 1) -1) (0 0 1 0)(8 (-1 1) -1)) ((1 0 0 0) (8 (1 1) -1) (0 1 0 0)(8 (2 1) -1) (0 0 1 0) (8 (2 1) -1) (0 0 0 1) (8 (2 1) -1)(0 0 0 0) (8 (-1 1) -1)))MAS:(W**2 - W +2 X**2 +2 Y**2 +2 Z**2)(2 X W +2 Y X - X +2 Z Y)(2 Y W + X**2 +2 Z X - Y)(W +2 X +2 Y +2 Z -1)MAS: TraceLevel : 2DecompProc : DIPSFFUpdateProc : UPDATEVarOrdOpt : 3FacSugar : 1ReduceExp : 1BranchProc : SSCO= groebner base == changed variable order =Number of canceled branches/factors : 0Time : 6984 ms with program GB1 :1. GB with 5 equation(s)(-697038804/54935 X**6 +71721504/54935 X**5 +80905692/54935 X**4-14887832/164805 X**3 -1487501/32961 X**2 +400672/164805 X + Y)(X W -28598724/54935 X**6 +15827184/54935 X**5 +3421752/54935 X**4

8.12. POLYNOMIAL INVARIANTS PACKAGE 229-4828462/164805 X**3 -82840/32961 X**2 +24707/164805 X)(X**7 -26/77 X**6 -53/693 X**5 +184/6237 X**4 +2/2079 X**3-1/1386 X**2 +1/24948 X)(W +1394077608/54935 X**6 -143443008/54935 X**5-161811384/54935 X**4 +29775664/164805 X**3 +2975002/32961 X**2-471734/164805 X +2 Z -1)(W**2 -4/3 W +550774224/54935 X**6 -136900224/54935 X**5-55289632/54935 X**4 +101348336/494415 X**3 +3030680/98883 X**2-2285476/494415 X +1/3)8.12 Polynomial Invariants PackageThis package contains functions and procedures for the reduction of G-invariant polyno-mials for any given group of permutations and substitutions, respectively. The reductionmethod �nds a representation of a given polynomial in terms of a basis of the ring of G-invariant polynomials. The algorithms are based on the the classical theorem of E. Noether[Noether 1916] and on recent results of G�obel [G�obel 1992, G�obel 1995].The algorithmic approach is a generalization of the classical algorithm for symmet-ric polynomials presented, for example, in [Becker, Weispfenning 1993], section 10.7, or[Sturmfels 1993], section 1.1. In contrary to the method of Noether, our rewriting tech-nique works independent of the given ground ring.The algorithms have been implemented by M. G�obel (diploma thesis [G�obel 1992] andDFG-project: Algorithmische Ideal- und Eliminationstheorie) at the university of Passauunder the guidance of V. Weispfenning and H. Kredel.The invariant package consists of three modules for rewriting permutation invariant poly-nomials (GSYMFUIN , GSYMFURN , NOETHER) and one module for rewriting sub-stitution group invariant polynomials (SUBST). The modules contain algorithms for� information and help for the user,� input and output of permutation and substitution groups,� generation of orbit polynomials,� checking of invariant properties of polynomials,� unique separation of polynomials in invariant and remainder polynomials,� computation of representations and reduction of invariant polynomials, and� checking of representation and reduction results.The algorithms can be used interactively in the interpreter environment of MAS.The following sections give a short description of the implemented MAS procedures andshow some examples.

230 CHAPTER 8. PACKAGES8.12.1 Permutation Invariant PolynomialsThe modules in this section use for the representation of G-invariant polynomials thefollowing de�nition of an orbit polynomial:orbitG(t) = Xs2f�(t) j�2Gg sA permutation group G is stored as the list of generating permutations. The order of Gis computed over the number of terms of orbit(Xn�11 Xn�22 : : : Xn�1).A description of the algorithms in Section 8.12.2 and Section 8.12.3 can be found in[G�obel 1992]. The algorithms in Section 8.12.4 are based on the proof of Noether's theorem[Noether 1916] as described in [Kraft 1984].8.12.2 The Integer Case (Module GSYMFUIN)GSYINF() The procedure writes information about this package to the output stream.GSYPGR(N: GAMMAINT): LIST The procedure reads the generating elements ofa permutation group operating on N variables from the input stream.GSYPGW(G: LIST) The procedure writes the generating elements of the permutationgroup G to the output stream.GSYSPG(N: GAMMAINT): LIST The procedure computes the generating ele-ments for the symmetric group operating on N variables.GSYORD(G: LIST): GAMMAINT The procedure computes the order of the per-mutation group G.GSYNSP(G: LIST) The procedure computes the number of special orbits for the per-mutation group G.GINORP(G, MO: LIST): LIST The procedure computes the G-invariant orbit of themonomial MO.GINCUT(G, Pol: LIST; VAR Pol1, Pol2: LIST)The procedure performs a unique separation of the polynomial Pol w.r.t. theterm order in a G-invariant polynomial Pol1 and a remainder polynomialPol2.GINCHK(G, Base, Pol: LIST): LIST The procedure computes the original polyno-mial from the representation polynomial Pol and the head term list Base ofthe G-invariant base polynomials. The algorithm could be used to check arepresentation.GINRED(G, Pol: LIST; VAR Base, BasePol, RemPol: LIST)The procedure computes the polynomial BasePol which is the G-invariantpolynomial representation w.r.t. the base polynomials and the unique re-mainder polynomial RemPol from the polynomial Pol. The head term listof the base polynomials are stored in Base.

8.12. POLYNOMIAL INVARIANTS PACKAGE 231GINBAS(G: LIST): LIST The procedure computes the head term list of the G-invariant base polynomials for the permutation group G.8.12.3 The Rational Case (Module GSYMFURN)GRNORP(G, MO: LIST): LIST See GINORP, rational case.GRNCUT(G, Pol: LIST; VAR Pol1, Pol2: LIST) See GINCUT, rational case.GRNCHK(G, Base, Pol: LIST): LIST See GINCHK, rational case.GRNRED(G, Pol: LIST; VAR Base, BasePol, RemPol: LIST)See GINRED, rational case.GRNBAS(G: LIST): LIST See GINBAS, rational case.GRNGGB(G: LIST): LIST The procedure computes the head term list of the G-invariant base polynomials for the permutation group G using Buchberger'salgorithm (cf. [G�obel 1993]).8.12.4 Noether's Theorem (Module NOETHER)NOEINF() The procedure writes information about this package to the output stream.NOENSP(G: LIST) The procedure computes the number of base polynomials ofNoether for the permutation group G.NOERED(G, Pol: LIST; VAR Base, BasePol, RemPol: LIST)The procedure computes the polynomial BasePol, which is the G-invariantpolynomial representation w.r.t. the base polynomials and the unique re-mainder polynomial RemPol from the polynomial Pol by Noether's theorem[Noether 1916]. The head term list of the base polynomials are stored inBase.8.12.5 Substitution Invariant Polynomials (Module SUBST)The modules in this section use for the representation of G-invariant polynomials thefollowing de�nition of an orbit polynomial:orbitG(t) =X�2G�(s)A substitution group G is stored as the list of all substitutions. The order of G is thelength of the list of substitutions.The algorithms are based on the proof of Noether's theorem [Noether 1916] as describedin [Kraft 1984].SUBINF() The procedure writes information about the package to the output stream.

232 CHAPTER 8. PACKAGESSUBSGR(N: GAMMAINT): LIST The procedure reads the generating elements ofa substitution group with N variables from the input stream. Then the listof all substitutions of the speci�ed group will be computed and returned.SUBSGW(G: LIST) The procedure writes the elements of the substitution group Gto the output stream.SUBORD(G: LIST): GAMMAINT The procedure computes the order of the sub-stitution group G.SUBORP(G, MO: LIST): LIST The procedure computes the G-invariant orbit ofthe monomial MO.SUBSYM(G, Pol: LIST): GAMMAINT The procedure returns 1, if Pol is G-invariant and otherwise 0.SUBCHK(G, Base, Pol: LIST): LIST See GINCHK, substitution group case.SUBRED(G, Pol: LIST; VAR Base, BasePol: LIST)The procedure computes the polynomial BasePol, which is the G-invariantpolynomial representation w.r.t. the base polynomials from the G-invariantpolynomial Pol by Noether's theorem [Noether 1916]. The head term list ofthe base polynomials are stored in Base.8.12.6 ExamplesBasis polynomialsThe example computes a complete set of basis polynomials for the given permutationgroup by using Buchberger's algorithm [G�obel 1993] GRNGGB.pg := GSYPGR(6).(1 2 3 5 6 4)(2 3 1 4 5 6)().base := GRNGGB(pg).pg denotes the permutation group PG generated by (1 2 3 5 6 4) and (2 3 1 4 5 6).base denotes the rational PG-symmetric base polynomials.ANS: ((1 2 3 5 6 4) (2 3 1 4 5 6))GRNGGB working... (Term 1/1): (0,0,1,0,0,0)GRNGGB working... (Term 2/2): (0,0,0,0,0,1)GRNGGB working... (Term 3/3): (0,1,1,0,0,0)GRNGGB working... (Term 5/4): (0,0,0,0,1,1)GRNGGB working... (Term 6/5): (1,1,1,0,0,0)GRNGGB working... (Term 9/6): (0,0,0,1,1,1)GRNGGB working... (Term 16/7): (1,0,2,0,0,0)GRNGGB working... (Term 20/8): (0,0,0,1,0,2)GRNGGB exit (BASE): (((0,0,1,0,0,0),(1,1)),((0,0,0,0,0,1),(1,1)),((0,1,1,0,0,0),(1,1)),((0,0,0,0,1,1),(1,1)),((1,1,1,0,0,0),(1,1)),

8.12. POLYNOMIAL INVARIANTS PACKAGE 233((0,0,0,1,1,1),(1,1)),((1,0,2,0,0,0),(1,1)),((0,0,0,1,0,2),(1,1)))Number of special polynomials: 555Number of base polynomials: 8ANS: (((0 0 1 0 0 0) (1 1)) ((0 0 0 0 0 1) (1 1)) ((0 1 1 0 0 0)(1 1)) ((0 0 0 0 1 1) (1 1)) ((1 1 1 0 0 0) (1 1)) ((0 0 0 1 1 1)(1 1)) ((1 0 2 0 0 0) (1 1)) ((0 0 0 1 0 2) (1 1)))Noether's TheoremThe example computes a representation for the polynomial 5 � orbitZ4(X21X22X4) over therationals. Both, the theorem of Noether [Noether 1916] and the rewriting technique forpermutation invariant polynomials [G�obel 1992] are used.pg := GSYPGR(4).(2,3,4,1)().f := GRNORP(pg,FIRST(GSRREAD())).(x1,x2,x3,x4) S (x1**2 x2**2 x4).NOERED(pg,f,a,b,c).z := GRNCHK(pg,a,b).PWRITE(LIST(f)).xl := VLREAD().(x1,x2,x3,x4).DIRLWR(a,xl,0).sl := VLREAD().(s1,s2,s3,s4,s5,s6,s7,s8,s9,s10,s11).DIRPWR(b,sl,5).GRNRED(pg,f,a,b,c).z := GRNCHK(pg,a,b).DIRLWR(a,xl,0).sl := VLREAD().(s1,s2,s3,s4,s5,s6,s7).DIRPWR(b,sl,5).After getting the permutation group pg the next example computes in �ve steps the fol-lowing objects. First, with GRNORP the rational PG-symmetric orbit polynomial f of themonomial (x1**2 x2**2 x4) w.r.t. the permuation group pg generated by (2,3,4,1).Second, with NOERED the PG-symmetric polynomial b (which is the PG-symmetric poly-nomial representation w.r.t. the base polynomials a) and the remainder polynomial cfrom the rational polynomial f w.r.t. to the permutation group pg after the theorem ofE. Noether. Third, with GRNCHK the original polynomial z from the polynomial b andthe PG-symmetric base polynomials a with respect to the permutation group pg. Fourth,with GRNRED the PG-symmetric polynomial b, which is the PG-symmetric polynomialreconstruction with respect to the base polynomials a, and the remainder polynomial care computed from the polynomial f with respect to the permutation group pg. Fifth,with GRNCHK the original polynomial z from the polynomial b and the PG-symmetric basepolynomials a with respect to the permutation group pg.SKP ((0,0,0,5),(-1,24),(0,0,1,3),(5,12),(0,1,0,2),(-5,6),(0,0,2,1),(-5,8),(1,0,0,1),(5,4),(0,1,1,0),(5,6))HT = (0,0,0,5)

234 CHAPTER 8. PACKAGESHT = (0,0,1,3)HT = (0,1,0,2)HT = (0,0,2,1)HT = (1,0,0,1)HT = (0,1,1,0)NOERED exit (BASE): (((0,0,2,2),(1,1)),((1,0,1,2),(1,1)),((1,1,0,2),(1,1)),((0,0,1,2),(1,1)),((0,1,0,2),(1,1)),((1,0,0,2),(1,1)),((0,0,0,2),(1,1)),((0,1,1,1),(1,1)),((0,0,1,1),(1,1)),((0,1,0,1),(1,1)),((0,0,0,1),(1,1)))NOERED exit (BASEPOL): ((0,0,0,0,0,0,0,0,0,0,5),(-1,24),(0,0,0,0,0,0,0,0,0,1,3),(1,6),(0,0,0,0,0,0,0,0,1,0,3),(1,4),(0,0,0,0,0,0,1,0,0,0,3),(1,12),(0,0,0,0,0,0,0,1,0,0,2),(-1,3),(0,0,0,0,0,1,0,0,0,0,2),(-1,4),(0,0,0,0,1,0,0,0,0,0,2),(-1,12),(0,0,0,1,0,0,0,0,0,0,2),(-1,6),(0,0,0,0,0,0,0,0,1,1,1),(-1,3),(0,0,0,0,0,0,1,0,0,1,1),(-1,6),(0,0,0,0,0,0,0,0,2,0,1),(-1,4),(0,0,0,0,0,0,1,0,1,0,1),(-1,12),(0,0,0,0,0,0,2,0,0,0,1),(-1,24),(0,0,1,0,0,0,0,0,0,0,1),(1,2),(0,1,0,0,0,0,0,0,0,0,1),(1,2),(1,0,0,0,0,0,0,0,0,0,1),(1,4),(0,0,0,1,0,0,0,0,0,1,0),(1,3),(0,0,0,0,0,0,0,1,1,0,0),(1,3),(0,0,0,0,0,1,0,0,1,0,0),(1,6),(0,0,0,0,0,1,1,0,0,0,0),(1,12),(0,0,0,0,1,0,1,0,0,0,0),(1,12))NOERED exit (REMPOL): 0ANS: ((1 0 2 2) (1 1) (2 1 0 2) (1 1) (0 2 2 1) (1 1) (2 2 1 0) (1 1))Polynomial in the variables: (x1,x2,x3,x4)Term ordering:Polynomial list:(x1**2 x2**2 x4 + x1**2 x3 x4**2 + x1 x2**2 x3**2 + x2 x3**2 x4**2)ANS: ((56 1) (56 2) (56 3) (56 4))MAS: x1**2 x2**2x1**2 x2 x4x1**2 x3 x4x1**2 x2x1**2 x3x1**2 x4x1**2x1 x2 x3x1 x2x1 x3x1ANS: ((46 1) (46 2) (46 3) (46 4) (46 5) (46 6) (46 7) (46 8) (46 9)(46 1 0) (46 1 1))MAS: (-0.04167 s1**5 +0.16667 s1**3 s2 +0.25000 s1**3 s3 +0.08333s1**3 s5 -0.33333 s1**2 s4 -0.25000 s1**2 s6 -0.08333 s1**2 s7-0.16667 s1**2 s8 -0.33333 s1 s2 s3 -0.16667 s1 s2 s5 -0.25000s1 s3**2 -0.08333 s1 s3 s5 -0.04167 s1 s5**2 +0.50000 s1 s9 +0.50000s1 s10 +0.25000 s1 s11 +0.33333 s2 s8 +0.33333 s3 s4 +0.16667 s3 s6+0.08333 s5 s6 +0.08333 s5 s7)GRNRED working... (BASE) (((1,0,2,2),(1,1)))HT = (1,0,2,2)C/R = 8/7 XLS = (0,0,(-1,2),0,(1,2),0,0,(1,2))GRNRED working... (BASE) (((0,2,1,2),(1,1)),((1,1,1,2),(1,1)),((1,1,0,2),(1,1)),((1,0,0,2),(1,1)),((0,1,1,1),(1,1)),((0,0,1,1),(1,1)),((0,1,0,1),(1,1)),((0,0,0,1),(1,1)))

8.12. POLYNOMIAL INVARIANTS PACKAGE 235...GRNRED working... (BASE) (((1,1,0,2),(1,1)),((1,0,0,2),(1,1)),((1,1,1,1),(1,1)),((0,1,1,1),(1,1)),((0,0,1,1),(1,1)),((0,1,0,1),(1,1)),((0,0,0,1),(1,1)))HT = (0,0,0,1)GRNRED exit (BASE): (((1,1,0,2),(1,1)),((1,0,0,2),(1,1)),((1,1,1,1),(1,1)),((0,1,1,1),(1,1)),((0,0,1,1),(1,1)),((0,1,0,1),(1,1)),((0,0,0,1),(1,1)))GRNRED exit (BASE_POL): ((0,0,1,0,0,0,1),(-1,1),(1,0,0,0,0,0,1),(1,2),(0,0,0,1,0,1,0),(-1,2),(0,1,0,0,0,1,0),(-1,2),(0,0,0,1,1,0,0),(1,2))GRNRED exit (REM_POL): 0ANS: ((1 0 2 2) (1 1) (2 1 0 2) (1 1) (0 2 2 1) (1 1) (2 2 1 0) (1 1))MAS: x1**2 x3 x4x1**2 x4x1 x2 x3 x4x1 x2 x3x1 x2x1 x3x1ANS: ((46 1) (46 2) (46 3) (46 4) (46 5) (46 6) (46 7))MAS: (- s1 s5 +0.50000 s1 s7 -0.50000 s2 s4 -0.50000 s2 s6 +0.50000 s3 s4)Substitution Invariant PolynomialsThe example computes a representation for the polynomial orbitZ4(X21X22X4) over therationals. The �st reduction algorithm treats Z4 as permutation group and the secondreduction works with Z4 stored as substitution group.pg := GSYPGR(4).(2,3,4,1)().sg := SUBSGR(4).((0,1,0,0), (0,0,1,0), (0,0,0,1), (1,0,0,0))().f := GRNORP(pg, FIRST(GSRREAD())).(x1,x2,x3,x4) S (x1**2 x2**2 x4).NOERED(pg,f,a1,b1,c1).ff := GRNCHK(pg,a1,b1).SUBRED(sg,f,a2,b2,c2).ff := SUBCHK(sg,a2,b2).After getting the permutation group pg and a subgroup sg, the next example computesin three steps the following objects. First, with GRNORP the rational PG-symmetric orbitpolynomial f of the monomial (x1**2 x2**2 x4) w.r.t. the permuation group pg gener-ated by (2,3,4,1). Second, with NOERED the PG-symmetric polynomial b1 (which is thePG-symmetric polynomial representation w.r.t. the base polynomials a1) and the remain-der polynomial c2 from the rational polynomial f w.r.t. to the permutation group pg after

236 CHAPTER 8. PACKAGESthe theorem of E. Noether. Third, with GRNCHK the original polynomial ff from the poly-nomial b1 and the PG-symmetric base polynomials a1 with respect to the permutationgroup pg. Fourth, with SUBRED SG-symmetric polynomial b2 (which is the SG-symmetricpolynomial representation w.r.t. the base polynomials a2) and the remainder polynomialc2 from the rational polynomial f w.r.t. to the substitution group sg after the theoremof E. Noether. Fifth, with SUBCHK the original polynomial ff from the polynomial b2 andthe PG-symmetric base polynomials a2 with respect to the substitution group sg.ANS: ((2 3 4 1))MAS:1 2 3ANS: ((((1 1) 0 0 0) (0 (1 1) 0 0) (0 0 (1 1) 0) (0 0 0 (1 1)))((0 0 0 (1 1)) ((1 1) 0 0 0) (0 (1 1) 0 0) (0 0 (1 1) 0))((0 0 (1 1) 0) (0 0 0 (1 1)) ((1 1) 0 0 0) (0 (1 1) 0 0))((0 (1 1) 0 0) (0 0 (1 1) 0) (0 0 0 (1 1)) ((1 1) 0 0 0)))Enter polynomial list:ANS: ((1 0 2 2) (1 1) (2 1 0 2) (1 1) (0 2 2 1) (1 1) (2 2 1 0) (1 1))SKP ((0,0,0,5),(-1,24),(0,0,1,3),(5,12),(0,1,0,2),(-5,6),(0,0,2,1),(-5,8),(1,0,0,1),(5,4),(0,1,1,0),(5,6))HT = (0,0,0,5)HT = (0,0,1,3)HT = (0,1,0,2)HT = (0,0,2,1)HT = (1,0,0,1)HT = (0,1,1,0)NOERED exit (BASE): (((0,0,2,2),(1,1)),((1,0,1,2),(1,1)),((1,1,0,2),(1,1)),((0,0,1,2),(1,1)),((0,1,0,2),(1,1)),((1,0,0,2),(1,1)),((0,0,0,2),(1,1)),((0,1,1,1),(1,1)),((0,0,1,1),(1,1)),((0,1,0,1),(1,1)),((0,0,0,1),(1,1)))NOERED exit (BASEPOL): ((0,0,0,0,0,0,0,0,0,0,5),(-1,24),(0,0,0,0,0,0,0,0,0,1,3),(1,6),(0,0,0,0,0,0,0,0,1,0,3),(1,4),(0,0,0,0,0,0,1,0,0,0,3),(1,12),(0,0,0,0,0,0,0,1,0,0,2),(-1,3),(0,0,0,0,0,1,0,0,0,0,2),(-1,4),(0,0,0,0,1,0,0,0,0,0,2),(-1,12),(0,0,0,1,0,0,0,0,0,0,2),(-1,6),(0,0,0,0,0,0,0,0,1,1,1),(-1,3),(0,0,0,0,0,0,1,0,0,1,1),(-1,6),(0,0,0,0,0,0,0,0,2,0,1),(-1,4),(0,0,0,0,0,0,1,0,1,0,1),(-1,12),(0,0,0,0,0,0,2,0,0,0,1),(-1,24),(0,0,1,0,0,0,0,0,0,0,1),(1,2),(0,1,0,0,0,0,0,0,0,0,1),(1,2),(1,0,0,0,0,0,0,0,0,0,1),(1,4),(0,0,0,1,0,0,0,0,0,1,0),(1,3),(0,0,0,0,0,0,0,1,1,0,0),(1,3),(0,0,0,0,0,1,0,0,1,0,0),(1,6),(0,0,0,0,0,1,1,0,0,0,0),(1,12),(0,0,0,0,1,0,1,0,0,0,0),(1,12))NOERED exit (REMPOL): 0ANS: ((1 0 2 2) (1 1) (2 1 0 2) (1 1) (0 2 2 1) (1 1) (2 2 1 0) (1 1))SKP ((0,0,0,5),(-1,24),(0,0,1,3),(5,12),(0,1,0,2),(-5,6),(0,0,2,1),(-5,8),(1,0,0,1),(5,4),(0,1,1,0),(5,6))HT = (0,0,0,5)HT = (0,0,1,3)HT = (0,1,0,2)HT = (0,0,2,1)HT = (1,0,0,1)HT = (0,1,1,0)...SKP ((0,0,0,5),(-1,24),(0,0,1,3),(5,12),(0,1,0,2),(-5,6),(0,0,2,1),(-5,8),(1,0,0,1),(5,4),(0,1,1,0),(5,6))

8.13. REAL ROOT COUNTING FOR MULTIVARIATE POLYNOMIALS 237HT = (0,0,0,5)HT = (0,0,1,3)HT = (0,1,0,2)HT = (0,0,2,1)HT = (1,0,0,1)HT = (0,1,1,0)SUBRED exit (BASE): (((0,0,2,2),(1,1)),((1,0,1,2),(1,1)),((1,1,0,2),(1,1)),((0,0,1,2),(1,1)),((0,1,0,2),(1,1)),((1,0,0,2),(1,1)),((0,0,0,2),(1,1)),((0,1,1,1),(1,1)),((0,0,1,1),(1,1)),((0,1,0,1),(1,1)),((0,0,0,1),(1,1)))SUBRED exit (BASEPOL): ((0,0,0,0,0,0,0,0,0,0,5),(-128,3),(0,0,0,0,0,0,0,0,0,1,3),(64,3),(0,0,0,0,0,0,0,0,1,0,3),(64,1),(0,0,0,0,0,0,1,0,0,0,3),(64,3),(0,0,0,0,0,0,0,1,0,0,2),(-64,3),(0,0,0,0,0,1,0,0,0,0,2),(-16,1),(0,0,0,0,1,0,0,0,0,0,2),(-16,3),(0,0,0,1,0,0,0,0,0,0,2),(-32,3),(0,0,0,0,0,0,0,0,1,1,1),(-32,3),(0,0,0,0,0,0,1,0,0,1,1),(-16,3),(0,0,0,0,0,0,0,0,2,0,1),(-16,1),(0,0,0,0,0,0,1,0,1,0,1),(-16,3),(0,0,0,0,0,0,2,0,0,0,1),(-8,3),(0,0,1,0,0,0,0,0,0,0,1),(8,1),(0,1,0,0,0,0,0,0,0,0,1),(8,1),(1,0,0,0,0,0,0,0,0,0,1),(4,1),(0,0,0,1,0,0,0,0,0,1,0),(8,3),(0,0,0,0,0,0,0,1,1,0,0),(16,3),(0,0,0,0,0,1,0,0,1,0,0),(8,3),(0,0,0,0,0,1,1,0,0,0,0),(4,3),(0,0,0,0,1,0,1,0,0,0,0),(4,3))SUBRED exit (REMPOL): 0ANS: ((1 0 2 2) (1 1) (2 1 0 2) (1 1) (0 2 2 1) (1 1) (2 2 1 0) (1 1))8.13 Real root counting for multivariate polynomialsThis package contains an implementation for counting real roots of zero dimensional mul-tivariate polynomial ideals with side conditions due to [Pedersen, Roy, Szpirglas 1993]and [Becker, W�ormann 1991]. The implementation was done by [Lippold 1993]. It usesGr�oebner Bases for computing in �nitely generated residue class algebras. The method of[Ben-Or, Kozen, Reif 1986] is adapted for computing the number of real roots in the caseof several side conditions.We cite from the introduction by the author [Lippold 1993] of the package:\Das Z�ahlen reeller Nullstellen von Polynomen geh�ort zu den bekanntesten Problemen derAlgebra und bildet die Grundlage f�ur eine Vielzahl von Anwendungen. Auf den Arbeitenvon Budan{Fourier und Sturm (...) aus dem 19. Jahrhundert basieren z.B. Algorithmenzur Isolation reeller Nullstellen (siehe [Buchberger et al. 1982]) und zur Quantorenelim-ination in reell abgeschlossenen K�orpern (vgl. [Davenport, Siret, Tournier 1988]). Auf-gabenstellungen in mehreren Variablen mu�sten dabei bislang immer auf den univariatenFall zur�uckgef�uhrt werden.Ein von [Pedersen, Roy, Szpirglas 1993] und [Becker, W�ormann 1991] vor kurzem un-abh�angig voneinander entwickeltes Verfahren gestattet es nun, die gemeinsamen reellenNullstellen multivariater Polynommengen im nulldimensionalen Fall zu z�ahlen. Die Au-toren verallgemeinern dabei Ausf�uhrungen von Hermite und Sylvester �uber den Zusam-menhang zwischen der Anzahl der reellen Nullstellen von Polynomen und der Signaturvon speziellen Matrizen (...) auf den multivariaten Fall. Bei der Berechnung dieser Ma-trizen spielt die Theorie der Gr�obner Basen eine zentrale Rolle. Eine St�arke dieses neuenAnsatzes liegt in der M�oglichkeit zus�atzlich noch eine Vorzeichenbedingung an ein Polynomber�ucksichtigen zu k�onnen. Mit dem von [Ben-Or, Kozen, Reif 1986] entwickelten kom-binatorischen Argument lassen sich schlie�slich reelle Nullstellen unter Ber�ucksichtigung

238 CHAPTER 8. PACKAGESendlich vieler Nebenbedingungen z�ahlen. �Ubertragen auf die Anwendungsgebiete derEntscheidungsverfahren bzw. der Quantorenelimination in reell abgeschlossenen K�orpernergeben sich damit interessante neue Perspektiven (siehe [Weispfenning 1993]).Konkret gehen wir von folgender Situation aus: Gegeben ist eine Menge ; 6= F =ff1; : : : ; fmg von Polynomen in den Variablen X1; : : : ; Xn mit Koe�zienten aus Q. Diefi besitzen nur endlich viele gemeinsame Nullstellen in C, was �aquivalent ist zu der Aus-sage, da�s das von F erzeugte Ideal nulldimensional ist. Eventuell sind mit den Poly-nomen h1; : : : ; hs noch eine Reihe von Nebenbedingungen zu ber�ucksichtigen. Die Frageist nun wieviele (x1; : : : ; xn) 2 Rn existieren mit fi(x1; : : : ; xn) = 0 f�ur 1 � i � m undhj(x1; : : : ; xn)%j0 f�ur 1 � j � s bei vorgegebenen %j 2 f<;=; >g."8.13.1 ExamplesV := LIST("x","y"). (* Variable list *)t := DIPTODEF(2). (* Termorder: 2: invers lexicographic4: total degree invers lexicographic *)(* Generating polynomials *)F := DIILRD(V).((3 x**2 - 4 x y),(5 x - 5 y**2 - 2 y - 1))(* Side conditions *)H := DIILRD(V).((x**2 + y**2 + 1))G:= DIIPGB(F,0). (* Groebner basis *)BEGINCLOUT("Generating polynomials:"); BLINES(0);DIILWR(F,V); BLINES(1);CLOUT("Side conditions:"); BLINES(0);DIILWR(H,V); BLINES(1);CLOUT("Groebner basis:"); BLINES(0);DIILWR(G,V); BLINES(1);IF RRZDIM(G) = 1 THEN ZNL := RRICOUNT(G,H,NIL,1)ELSE CLOUT("Not zero-dimensional.") END;Generating polynomials:(-4 x y +3 x**2)(-5 y**2 -2 y +5 x -1)Side conditions:(y**2 + x**2 +1)Groebner basis:(45 x**3 -56 x**2 +16 x)(4 x y -3 x**2)(5 y**2 +2 y -5 x +1)Condition No. 1Sign-Condition: (1) Real Zeroes: 2

8.14. REAL QUANTIFIER ELIMINATION 239Computing time for Gr�obner Basis 340 ms and for real root counting 420 ms.8.14 Real quanti�er eliminationIn the modules RQEPRRC and TFORM is an algorithm for real quanti�er eliminationimplemented. The theoretical background is presented in Weispfenning A New Approachto Quanti�er Elimination for Real Algebra [Weispfenning 1993], see also [Dolzmann 1994].The programs were implemented by [Dolzmann 1994].In this section the usage of this program is described. We demand that the user is familiarwith the MAS system.The program uses distributive polynomials for representing terms. So the global variablesVALIS, EVORD, and DOMAIN must be set before formulas can be manipulated. Formore informations cf. Subsection 8.14.1.The following procedures are available in the interpreter.psi:=RQEQE(phi) This is the main procedure for the quanti�er elimination. Thevariables phi and psi are formulas. The returned formula psi isequivalent to phi. After the expansion of the extended booleanoperators the following must hold: Each variable is either free oris quanti�ed by one quanti�er. Name conicts are not resolved.Note that the formula ((psi <=> (E x (phi)) does not su�ces thiscondition. The elimination procedure uses the cgb package for com-putations of Groebner systems. The behavior of this computationsis controlled by options of the cgb package. The term orders for thepolynomials used in the cgb package and used for the representa-tion of terms in the polynomial equation package must be identical.The computation of psi and the printing of verbose output duringthe computation is controlled by some options. You can set theseoptions with the procedure RQEOPTSET.OldOpt:=RQEOPTSET(NewOpt) This procedure sets the options for the quanti�erelimination. The variables OldOpt and NewOpt are lists with max-imal two elements. These lists have the form (Trace Level,PartialQuanti�er Elimination). The pseudo value �1 is used in order toleave an option unchanged. The trace level controls the verboseoutput of the quanti�er elimination. Following trace levels are sup-ported:0 No verbose output.1 Very short output. (For insiders only)2 Long output without long intermediate results.3 Long output with intermediate results.The second element of the option list controls the quanti�er elimi-nation itself. Following values are supported:

240 CHAPTER 8. PACKAGES0 The complete quanti�er elimination is done. The result formulacontains no quanti�er.1 Only partial quanti�er elimination of the zero dimensional casesis done.RQEOPTWRITE() This procedure print the current values of the options.TfUseDb() This procedure activates the type formula data base. Type formulasare stored in �les with the name "TF.d.db", where d is the degreeof the type formula. If a required type formula is not stored in thedata base, the formula is computed and stored.TfComputeTf() This procedure deactivates the type formula data base. Requiredtype formulas are computed unconditionally.Examples will be given after the next subsection.8.14.1 The Syntax of FormulasThe terms of the formulas of the pq-systems are represented as distributive polynomials.So the corresponding polynomial ring must be �xed. The procedure PQPRING de�nesthe polynomial ring for the pq-system. Argument of this procedure is a list with uptothree elements.1. The domain descriptor for the coe�cient of the polynomials used as terms for thepq-system. Only the domain INT is admissible for the quanti�er elimination.2. The list of all variables occuring in all terms of the formula.3. The term order for the polynomials. The term order used in the cgb package andused for the terms of the pq-system should be equal. Important term orders are2 inverse lexicographical term descending order4 total degree order8 total degree Buchberger lexicographical term order descending orderOne example for the usage of PQPRING:d:=ADDDREAD(). INTPQPRING(LIST(d,LIST("x","a","b"),4)).A value �1 on one position of the list means "Do not change the corresponding value."An alternative way of the declaration of the underlying polynomial ring is its speci�cationat the beginning of the input of one formula.The procedure PQIREAD reads a formula from the input stream. The syntax in EBNFnotation is contained in table 8.16, the syntax of polynomials is given in table 8.17 (seealso table 7.4.3).Some remarks on the syntax of formulas:

8.14. REAL QUANTIFIER ELIMINATION 241
Input = [PRing] Formula "."PRing = `{' PRingParam {`,' PRingParam} `}'PRingParam = `VALIS='VarList | `EVORD='TermOrd | `DOMAIN='RingVarList = `(' Ident {`,' Ident} `)'TermOrd = AtomRing = SymbolicDomainDescriptorFormula = `(' Formula `)' | AtomicFormula | UnaryOp Formula |Formula BinaryOp Formula | QuantifiedFormula | TruthVal |`#'MasVarQuantifiedFormula = Quantifier BoundVars `(' Formula `)' |Quantifier BoundVars `:' FormulaBoundVars = Ident {[`,'] Ident }TruthVal = TrueSym | FalseSymUnaryOp = NotSymBinaryOp = AndSym | OrSym | ImplSym | ReplSym | EquivSym | XorSymQuantifier = ForallSym | ExistsSymAtomicFormula = `[' DipPolynomial Relation DipPolynomial `]'Relation = LessSym | LessOrEqualSym | EqualSym | NotEqualSym |GreaterOrEqualSym | GreaterSymTrueSym = `t' | `true' | `verum'FalseSym = `f' | `false' | `falsum'NotSym = `--' | `~' | `not' | `non'AndSym = `/\' | `and' | `et'OrSym = `\/' | `or' | `vel'ImplSym = `=>' | `==>' | `impl'ReplSym = `<=' | `<==' | `repl'EquivSym = `<=>' | `equiv'XorSym = `<#>' | `xor'ForallSym = `a' | `all' | `fa' | `forall'ExistsSym = `e' | `ex' | `exists'LessSym = `<' | `les'LessOrEqualSym = `<=' | `leq' | `lsq'EqualSym = `=' | `equ'NotEqualSym = `<>' | `#' | `!=' | `neq'GreaterOrEqualSym = `>=' | `geq' | `grq'GreaterSym = `>' | `gre'Table 8.16: Syntax of Formulas

242 CHAPTER 8. PACKAGESDipPolynomial = 0 | `(' Term {(`+'|`-') Term}Term = Power { Power }Power = Factor [`**' Atom]Factor = Ident | AtomIdent = A|...|Z|a...z|{A|...|Z|a...z|0...9}(* Names of variables like "hugo")Atom = 1|...|9{0...9}(* integers like 4711 *)Table 8.17: Syntax of PolynomialsThe input of the symbols like AND, OR, etc. is not case sensitive, but the keywords VALIS,EVORD, DOMAIN must be written with upper case letters. The names of variables ofthe polynomial ring are case sensitive.The special formula symbol # is a pre�x to mark variables of the interpreter. With thisfeature a recycling of formulas is possible.SymbolicDomainDescriptos is a symbolic name for a domain of the arbitrary domain sys-tem. For quanti�er elimination with RQEQE only INT is admissible.Here an example for the usage of PQIREAD:phi:=PQIREAD().{VALIS=(a,b,c,d),EVORD=4,DOMAIN=INT}(ex c: all b,a : ((([(a) = (d)] /\ [(b) = (c)]) \/([(a) = (c)] /\ [(b) = (1)]))=>[(a**2) = (b)])) .In the last example the polynomial ring is described in the formula input. This descriptionof the underlying polynomial ring is superous if it was already speci�ed.An other example:phi:=PQIREAD().([(a**2 + 3 a b) > (c)]).psi :=PQIREAD().(#phi or TRUE).PQPPRT(psi).The result is the formula "([(a**2 + 3 a b - c) > 0] \/ TRUE)". Notice that allvariables must be declared in the variable list of the underlying polynomial ring.The operators have di�erent priorities against themselves:1 negation2 conjunctions

8.14. REAL QUANTIFIER ELIMINATION 2433 disjunctions4 implication and Replication5 equivalent and exclusive or6 quanti�ersThe following procedures are available in the interpreter.PQMKDNF(phi:LIST):LIST Polynomial equation make disjunctive normal form.phi is a formula; PQMKDNF returns a formula in strict disjunctive normalform which is equivalent to phi.PQMKCNF(phi:LIST):LIST Polynomial equation make disjunctive normal form.phi is a formula; a formula in strict conjunctive normal form which isequivalent to phi is returned.PQSIMPLIFY(phi:LIST):LIST Polynomial equation simplify. phi is a formula. Asimpli�cation of phi is returned.PQMKPOS(phi: LIST): LIST Polynomial equation make positive. phi is a formula;a equivalent positive formula is returned i.e. the operator does not occurin the formula.PQPPRT(phi:LIST) Polynomial equation pretty print. phi is a formula; this writesthe formula phi formatted in the output stream.PQTEXW(phi: LIST) Polynomial equation tex write. The formula phi is printed intex format in the output stream. (Polynomials are written in the normalmas syntax.)PQIREAD():LIST Polynomial equation in�x read. A formula is read from the inputstream.PQELIMXOPS(phi: LIST): LIST Polynomial equation eliminate extended opera-tion symbols. phi is a formula PQELIMXOPS returns a formula phi1equivalent to phi. This function replaces all subterms of phi with the op-erators IMP, REP, EQUIV or XOR with terms with the operators VEL,ET and NON.PQMKPRENEX(phi,pref:LIST): LIST Polynomial equation make prenex. phi isa formula; pref is an element of fFOREX, FORALLg; a formula psi inprenex normal form is returned. phi must be a relative positive formulawithout additional operation symbols like IMP, REP, etc. All bound vari-ables in phi must have di�erent speci�cations (i.e. di�erent names ordi�erent types). The only transformation which is used to calculate psiis the interchange of a junctor with a quanti�er. The formula psi has theminimal number of blocks of quanti�ers under all prenex formulas whichare built using only the interchange of a junctor with a quanti�er. Theargument pref is only respected, if there are two equivalent formulas withthe same optimal number of blocks of quanti�ers. In this case the for-mula is returned which has a \pref"-quanti�er as the outermost operationsymbol.

244 CHAPTER 8. PACKAGESPQMKVD(phi:LIST): LIST Polynomial equation make variable names disjoint.PQPRING(R: LIST): LIST Polynomial equation polynomial ring. The global vari-ables that describe the polynomial ring are set. The list R is of the fol-lowing format: The �rst entry is the domain descriptor of the �eld, thesecond entry is the list of the variables, and the third entry is the termorder. Using a -1 one can omit entries. Not all entries must speci�ed. Theold parameters are returned.PQPRINGWR() Polynomial equation polynomial ring write. The description of thepolynomial ring is written in the output stream.8.14.2 ExamplesWe include 2 short examples:PRAGMA(TIME).ev:=4.CGBOPT(LIST(0,1,0,2,0,ev,ev)).d:=ADDDREAD(). INTV:=LIST("a","b","x").PQPRING(LIST(d,V,ev)).RQEOPTSET(LIST(9,0)).phi:=PQIREAD().(E x ([(a x + b) = 0])).ws:=RQEQE(phi).PQPPRT(ws).FORCOUNTAF(ws).ANS: 4ANS: ()ANS: (2 0)ANS: ((10) (12) (56))ANS: ((8 0 -1) () 2)ANS: (3 0)ANS: FOREX(LVAR(FORVAR(3, 2)), EQU(((1 0 1) (2 1) (0 1 0) (2 1)))).Input in prenex normal form(EX x:[(a x + b) = 0])[Number of quantifier blocks: 1Elimination of an FOREX quantifierbound Variables(x)Number of arguments of the disjunction:1Eliminating one conjunction.([(a x + b) = 0])Computing a reduced Groebner system ...finished.SysInfo: Time: 67 ms.Number of cases in the Groebner system: 3Handle one case of the Groebner system.Condition:

8.14. REAL QUANTIFIER ELIMINATION 245a = 0b = 0Dimension of the ideal = 1Input in prenex normal form(EX x:([a = 0] /\ [b = 0]))[Number of quantifier blocks: 1Elimination of an FOREX quantifierbound Variables(x)Number of arguments of the disjunction:1Eliminating one conjunction.([a = 0] /\ [b = 0])Result of the elimination:([a = 0] /\ [b = 0])SysInfo: Time: 34 ms.]Handle one case of the Groebner system.Condition:a = 0b <> 0Dimension of the ideal = -1Handle one case of the Groebner system.Condition:a <> 0Dimension of the ideal = 0Groebner Basis:(a x + b)Side conditions '>':Side conditions '<>':Time for computation of characteristic polynomial:SysInfo: Time: 0 ms.Type formula to compute: T1(c), wherec0 = - 1c1 = 1Time for computing type formula:SysInfo: Time: 0 ms.Time for real root count:SysInfo: Time: 50 ms.Result of the elimination:([a <> 0] \/ ([a = 0] /\ [b = 0]))SysInfo: Time: 250 ms.]ANS: FOROR(NEQ(((0 0 1) (2 1))), FORAND(EQU(((0 0 1) (2 1))),EQU(((0 1 0) (2 1))))).Time: read = 0, eval = 267, print = 16, gc = 0.MAS: ([a <> 0] \/ ([a = 0] /\ [b = 0]))ANS: ()ANS: 3The second example:PRAGMA(TIME).ev:=4.CGBOPT(LIST(0,1,0,2,0,ev,ev)).

246 CHAPTER 8. PACKAGESRQEOPTSET(LIST(0,0)).phi:=PQIREAD().{DOMAIN=INT,VALIS=(d,c,a,b)}ex c:all a:all b:(((([(a - d) <> 0] \/ [(b - c) <> 0]) /\([(a - c) <> 0] \/ [(b - 1) <> 0]))\/ [(a**2 - b) = 0])).ws:=RQEQE(phi).PQPPRT(ws).FORCOUNTAF(ws).ANS: 4ANS: ()ANS: (3 0)DOMAIN: INT (* Integer *)VALIS: (d,c,a,b)EVORD: 2ANS: FOREX(LVAR(FORVAR(3, 2)), FORALL(LVAR(FORVAR(4, 2)),FORALL(LVAR(FORVAR(5, 2)), FOROR(FORAND(FOROR(NEQ(((0 1 0 0)(2 1) (0 0 0 1) (2 -1))), NEQ(((1 0 0 0) (2 1) (0 0 1 0)(2 -1)))), FOROR(NEQ(((0 1 0 0) (2 1) (0 0 1 0) (2 -1))), NEQ(((1 0 0 0) (2 1) (0 0 0 0) (2 -1))))), EQU(((1 0 0 0)(2 -1) (0 2 0 0) (2 1))))))).ANS: FOROR(FORAND(NEQ(((0 0 0 1) (2 1))), NEQ(((0 0 0 1) (2 1)(0 0 0 0) (2 1))), NEQ(((0 0 0 1) (2 1) (0 0 0 0) (2 -1))),EQU(((0 0 0 2) (2 1) (0 0 0 0) (2 1))), NEQ(((0 0 0 4)(2 1) (0 0 0 0) (2 1)))), FORAND(EQU(((0 0 0 1) (2 1)(0 0 0 0) (2 -1))), NEQ(((0 0 0 4) (2 1) (0 0 0 0) (2 1)))),FORAND(EQU(((0 0 0 1) (2 1) (0 0 0 0) (2 1))),NEQ(((0 0 0 4) (2 1) (0 0 0 0) (2 1))))).Time: read = 17, eval = 1666, print = 50, gc = 0.MAS: (([d <> 0] /\ [(d +1) <> 0] /\ [(d -1) <> 0] /\[(d**2 +1) = 0] /\ [(d**4 +1) <> 0]) \/([(d -1) = 0] /\ [(d**4 +1) <> 0]) \/ ([(d +1) = 0]/\ [(d**4 +1) <> 0]))Time: read = 17, eval = 50, print = 0, gc = 0.ANS: 9This completes the section on parametric real root counting.8.15 Construction of involutive basesWe cite from the introduction of the author [Gro�e-Gehling 1995] of the package:\In dieser Arbeit wird ein neuer Algorithmus zur L�osung von Systemen von polynomi-alen Gleichungen im nulldimensionalen Fall vorgestellt. Diese neue Methode konstru-iert eine involutive Basis eines durch eine Polynommenge erzeugten Ideals. Eine invo-lutive Basis ist eine spezielle Form einer, m�oglicherweise redundanten, Gr�obner-Basis.Anstelle der im Buchberger-Algorithmus [Buchberger 1985] zur Berechnung von Gr�obner-Basen ben�otigten S-Polynome arbeitet dieser Algorithmus mit nicht-multiplikativen

8.15. CONSTRUCTION OF INVOLUTIVE BASES 247Verl�angerungen von Polynomen. Weiterhin werden nicht alle m�oglichen Reduktionen be-trachtet, sondern eine Teilmenge hiervon, die sogenannten Janet-Reduktionen.Diese Arbeit basiert im wesentlichen auf zwei Ver�o�entlichungen von A. Yu. Zharkov undYu. A. Blinkov ([Zharkov, Blinkov 1993] und [Zharkov, Blinkov 1993a]), die diese Methodeentwickelt und vorgestellt haben."This package includes the following modules:ADEXTRA some tools, not absolutely necessary for computing involutive bases.DIPCJ tools, used from the involutive base algorithms.DIPDCIB contains the procedure for computing decompositional involutive bases.DIPIB procedures for computing involutive bases for arbitrary domain polynomials.DIPIIB procedures for computing involutive bases for integral domain polynomials.DIPRNIB procedures for computing involutive bases for rational number domain poly-nomials.MASLOADJ module which makes procedures available for interactive use.8.15.1 Computing Janet-irreducible-setsDILISJ(F,G,red) F is the set to be Janet-reduced, G is the result, red is is a ag whichshows if a reduction took place. This procedure is for arbitrary domainpolynomials.G:=DIILISJ(F) F is the set to be Janet-reduced, G is the result. This procedure isonly for integral domain polynomials.G:=DIRLISJ(F) F is the set to be Janet-reduced, G is the result. This procedure isfor rational number domain polynomials.8.15.2 Computing a Janet-normalform of f modulo GADNORJ(G,f,h,red) h is a Janet-normalform of f modulo G, red is a ag which showsif a reduction took place. This procedure is for arbitrary domain polynomials.h:=DIIPNFJ(G,f) h is a Janet-normalform of f modulo G. This procedure is for inte-gral domain polynomials only.h:=DIRPNFJ(G,f) h is a Janet-normalform of f modulo G. This procedure is forrational number domain polynomals only.

248 CHAPTER 8. PACKAGES8.15.3 Computing involutive BasesF is always a set of polynomials and G is an involutive base of Ideal(F). The di�erentalgorithms for computing involutive bases are only di�erent implementations of the sameidea. They di�er in internal details and in computing time. The quickest version is alwaysthe version without a number in the procedure name.arbitrary domainG:=DIPIB(F) Version from Zharkov, Blinkov: Solving zero-dimensional involutive sys-tems. This procedure makes use of Gerdt's criteriums.G:=DIPIB2(F) Version from Zharkov, Blinkov: Involutive Bases of zero-dimensionalideals.G:=DIPIB3(F) Version from Zharkov, Blinkov: Involution Approach to solving sys-tems of algebraic equations.G:=DIPIB4(F) Another version from Zharkov, Blinkov: Solving zero-dimensional in-volutive systems.integral domainG:=DIIPIB(F) Version from Zharkov, Blinkov: Solving zero-dimensional involutivesystems.G:=DIIPIB2(F) Version from Zharkov, Blinkov: involution approach to solving sys-tems of algebraic equations.G:=DIIPIB3(F) Version from Zharkov, Blinkov: Involution approach to Solving Sys-tems of Algebraic Equations.rational numbers domainG:=DIRPIB(F) Version from Zharkov, Blinkov: Involution Approach to solving sys-tems of algebraic equations.G:=DIRPIB2(F) Version from Zharkov, Blinkov: Involutive Bases of zero-dimensionalideals.Note: integral domain and rational number domain implementations are only experimen-tal implementations. They are not optimized.8.15.4 Setting optionsSetDIPIBopt(opt) opt is a list with �ve options: trace-level, procedure to use forJanet-reduction, Select Strategy for polynomials, Cancel Coe�cient and useof Gerdt-Criteriums (only for DIPIB). The options can also be set with thefollowing procedures: SetDIPIBTraceLevel, SetDIPIBISJ, SetDIPIBSelect,

8.15. CONSTRUCTION OF INVOLUTIVE BASES 249SetDIPIBCancel, SetDIPIBcrit. A trace-level can be given as number be-tween 0 (no information) and 3 (max. information). With a higher trace-levelyou get more information about progress of computation. For proceduresDIPIB2 and DIPIB3 there are two possible selections for a Janet-reductionsprocedure: 1 - DILISJ, 2 - DIPIRLJ. Select-strategy means the strategy forselecting polynomials from a set of polynomials. Except for DIPIB there aretwo possible strategys: select the polynomial with minimal total degree ofthe leading term (1) or select the �rst polynomial from the set (0). DIPIBalways select the polynomial with minimal total degree of the leading term.For integral domain polynomials you can choose two di�erent procedures tocancel down coe�cients. 1: Cancel down with the gcd of the coe�cients or0: Cancel down with the leading coe�cient (if possible). The last option,the Gerdt-criteriums, is only possible for DIPIB. The default (1) is an use ofthese criteriums. With a 0 you can swith the use o�.SetDCIBopt(opt) opt is a list with four options: trace-level, decomposition, vari-able ordering optimization, depth of tree. To set an option you can alsouse: SetDCIBTraceLevel, SetDCIBDecomp, SetDCIBVarOrdOpt, SetDCIB-depth. The trace-level has the same meaning as before. Decompositionmeans the choice between factorisation (1) and squarefree decomposition(2). Default is factorisation. If you set DCIBVarOrdOpt to 1 then the vari-able ordering is optimized before factorisation. The old order is restoredafter factorisation. With the last option there is a possibility to restrict thedepth of the computation tree. A negative number (default) means an un-restricted growth of tree. A positive number means a restriction of depth tothis number.8.15.5 ExampleThe following example is taken from [B�oge et al. 1985] Bsp 4, page 91.DIPTODEF(4).dp:=ADDDREAD().RN 6V:=LIST("z","y","x","w","v").F:=DILRD(V,dp).((v**2 - v + 2 w**2 + 2 x**2 + 2 y**2 + 2 z**2),(2 v w + 2 w x + 2 x y + 2 y z - w),(2 v x + w**2 + 2 w y + 2 x z - x),(2 v y + 2 w x + 2 w z - y),(v + 2 w + 2 x + 2 y + 2 z -1))G:=DIPIB(F).DILWR(G,V).The involutive base G is as follows. The computing time was 15374ms on a PC runningNeXTStep.Time: read = 0, eval = 15374, print = 360, gc = 1641.(y**2 x +0.363636 y**3 +0.018595 z y**2 -2.016379 z**2 y -1.540684 z**3 -0.04

250 CHAPTER 8. PACKAGES5971 x**2 -0.240458 y x -0.161195 z x -0.193745 y**2 +0.079433 z y +0.413740 z**2 -0.003973 w -0.026042 x +0.007344 y +0.033274 z)(x w + x**2 + y x +0.222222 z x +0.111111 y**2 -0.333333 z y -0.333333 z**2 -0.055556 w -0.222222 x +0.111111 z)(v +2.000000 w +2.000000 x +2.000000 y +2.000000 z -1.000000)(y w +0.500000 x**2 +2.000000 y x +1.222222 z x +1.611111 y**2 +2.666667 z y+1.166667 z**2 -0.055556 w -0.222222 x -0.500000 y -0.388889 z)(w**2 - x**2 -4.000000 y x -3.555556 z x -2.777778 y**2 -6.666667 z y -3.666667 z**2 -0.111111 w +0.555556 x + y +1.222222 z)(z w + y x +2.222222 z x +1.111111 y**2 +3.666667 z y +2.666667 z**2 -0.055556 w -0.222222 x -0.500000 y -0.888889 z)(z**2 x +0.500000 z y**2 +2.181818 z**2 y +1.772727 z**3 +0.045455 y x -0.073232 z x +0.054293 y**2 -0.219697 z y -0.583333 z**2 +0.012626 w +0.016414 x +0.011364 y -0.002525 z)(z x**2 -1.272727 y**3 -4.326446 z y**2 -8.019534 z**2 y -4.479715 z**3 -0.137397 x**2 -0.277611 y x -0.482261 z x +0.302822 y**2 +1.224706 z y +1.403237 z**2 -0.034300 w -0.073618 x +0.001878 y +0.030000 z)(y x**2 -0.181818 y**3 -1.884298 z y**2 -1.037265 z**2 y -0.422840 z**3 -0.008264 x**2 +0.108866 y x +0.203072 z x +0.385383 y**2 +0.890208 z y +0.407713 z**2 -0.011587 w -0.032749 x -0.100263 y -0.088922 z)(x**3 +0.363636 y**3 +3.154959 z y**2 +4.905935 z**2 y +2.924606 z**3 -0.091426 x**2 +0.190120 y x +0.312772 z x -0.231968 y**2 -0.953212 z y -0.927169 z**2+0.032804 w +0.034495 x +0.051352 y -0.015900 z)(z y x +0.500000 y**3 +2.181818 z y**2 +3.029752 z**2 y +1.353719 z**3 +0.022727 x**2 -0.042562 y x -0.012489 z x -0.273186 y**2 -0.810193 z y -0.537879 z**2 +0.010147 w +0.041827 x +0.033678 y +0.028880 z)(z**3 y +1.076923 z**4 -0.019231 y**3 -0.011924 z y**2 -0.160639 z**2 y -0.418033 z**3 +0.005290 x**2 -0.003227 y x +0.030081 z x -0.007102 y**2 +0.024303 zy +0.010086 z**2 +0.000245 w -0.000906 x -0.001463 y +0.003200 z)(y**4 +1.794872 z**4 -0.107827 y**3 +0.638567 z y**2 +1.201326 z**2 y +0.077215 z**3 +0.069958 x**2 +0.077700 y x +0.120242 z x -0.109202 y**2 -0.084208 z y-0.226895 z**2 +0.007726 w +0.005048 x +0.000818 y +0.000575 z)(z**2 y**2 -0.538462 z**4 +0.065268 y**3 -0.030036 z y**2 -0.182495 z**2 y +0.178685 z**3 -0.011406 x**2 -0.017091 y x -0.039788 z x -0.017810 y**2 -0.048132 z y -0.018073 z**2 +0.000773 w +0.003669 x +0.007610 y +0.006114 z)(z y**3 -0.750583 z**4 -0.212775 y**3 -0.627319 z y**2 -0.474680 z**2 y -0.014284 z**3 -0.013292 x**2 +0.023914 y x -0.006341 z x +0.092225 y**2 +0.127603 zy +0.131262 z**2 -0.004899 w -0.009098 x -0.010085 y -0.014367 z)(z**5 -0.430661 z**4 +0.049304 y**3 +0.091976 z y**2 +0.206040 z**2 y +0.090198 z**3 +0.001628 x**2 -0.003740 y x -0.001277 z x -0.014330 y**2 -0.053060 z y-0.027672 z**2 +0.000690 w +0.003135 x +0.002239 y +0.002807 z)

8.16. OTHER PACKAGES 2518.16 Other PackagesIn this section we list other important packages with only minimal descriptions.8.16.1 Greatest common divisors and resultantsThis package is from the original ALDES/SAC-2 greatest common divisor and resultantpackage. It contains algorithms as described in [Collins 1973] and the references giventhere. The programs are contained in the Modula-2 library SACPGCD.8.16.2 Polynomial factorizationThis package is from the original ALDES/SAC-2 polynomial factorization package. Itcontains algorithms as described in [Collins 1973] and the references given there. Theprograms are contained in the Modula-2 libraries SACUPFAC, SACMUFAC and SACPFAC.8.16.3 Polynomial real root isolationThis package is from the original ALDES/SAC-2 univariate polynomial real root isolationpackage. It contains algorithms as described in [Collins, Loos 1982] and the referencesgiven there. The programs are contained in the Modula-2 libraries SACROOT and in someof the SACEXT* libraries.8.16.4 Symmetric functionsThis package contains programs for the reduction of polynomials with respect to the ele-mentary symmetric functions. By this reduction method it is possible to decide if a givenpolynomial can be expressed in terms of the the elementary symmetric functions and alsoto determine such a representation. The algorithms have been developed during a seminarof V. Weispfenning in Passau 1990. The programs are contained in the Modula-2 librarySYMMFU.8.16.5 Linear algebraThis is a standard linear algebra package, which contains programs for Gaussian LU-decomposition, determination of special solutions of inhomogeneous systems of linear equa-tions, determination of bases for the `nullspace' (solutions of the homogeneous system ofequations). Further functions contained are matrix multiplication, transposition, rang,determinants and input / output. The programs are written for matricies over the ratio-nal numbers and over the integers. The programs are contained in the Modula-2 librariesLINALGI and LINALGRN.8.16.6 Linear diophantine equationsThis package is from the original ALDES/SAC-2 linear diophantine equation package. Itcontains algorithms as described in [Chou, Collins 1982] and the references given there.

252 CHAPTER 8. PACKAGESThe programs are contained in the Modula-2 libraries SACLINDIO.8.16.7 Non-Noetherian polynomial ringsThe solvable polynomial rings introduced earlier are examples of non-commutative rings,which are still Noetherian (every (left, right) ideal is �nitely generated). General non-commutative polynomial rings are known to be no more Noetherian. Nevertheless there isa class of polynomial rings for which there exist �nite Gr�obner bases for �nitely generatedideals. The package contains algorithms as described in [Bader 1994] and the referencesgiven there. The programs are contained in the Modula-2 libraries DINNG.This is the end of the packages chapter.

Chapter 9The ALDES LanguageThis chapter contains the ALDES language description. The ALDES language has beende�ned by R. Loos in [Loos 1976]. We describe the revised version as distributed in 1988.The parser has been implemented by K. Rieger. Only the the syntax of the language andnotes on di�erences to the FORTRAN implementation of ALDES are given.The ALDES parser is invoked via the PRAGMA(ALDES). switch. Then a collection of ALDESalgorithms is read until the ALDES end of �le mark `||' is encountered. ALDES algorithmscan be executed as normal MAS algorithms from the MAS interpreter.In the following sections we discuss �rst the lexical conventions and then the languagesyntax.9.1 Lexical ConventionsThe 'atomic' constituents of the language are characters and tokens (character sequenceswith special meaning).9.1.1 Character SetThe character set of ALDES is the same as the MAS character set. It consists of thedigits 0123456789letters aAbBcCdDeEfFgGhHiIjJkKlLmMnNoOpPqQrRsStTuUvVwWxXyYzZothers .,=+-*/$() !"#%&':;<>?@[\]^_`{}|~The number of characters is denoted by � (= 95 here).9.1.2 TokensLexical tokens of the language are: 253

254 CHAPTER 9. THE ALDES LANGUAGE# < > = <= >=+ - * / ^~ \/ /\() [] { } , . ; :$:= ,..., ||keyword number identifierstring char commentCharacters not contained in this list of tokens may only appear in strings and comments.The keywords are:if, then, else, while, do, for, repeat, until, case, of,return, print, goto, go to,safe, global, array, const, pragma, intrinsic.The meanings of most of the tokens and keywords should be 'as expected' and are discussedlater. At this place we will only say some words on numbers, identi�ers, strings andcomments.9.1.3 NumbersNumbers may be only so called �{integers as in the MAS language.9.1.4 Identi�ersIdenti�ers are used as names of variables and names of procedures. The character sequenceof an identi�er must start with a letter and may be followed by digits and letters. Identi�ersare case sensitive, i.e. upper case and lower case letters are distinct. The length ofidenti�ers is restricted by the requirement that they must �t on one input line.Example: NIL, p123, AL9, XSH, AlongName.Ornamented identi�ers are not supported by the ALDES parser. Naming conventions areas discussed in the MAS language section.9.1.5 StringsCharacter sequences enclosed in double or single quotes are called strings. Within thequotes any character from the character set may appear.Example:"this is a string" denotes the string this is a string,"'" denotes the string ','"' denotes the string ","x'7""'" denotes the string x'7"'Strings are internally represented as lists of numbers (�{integers). So all list operationsare applicable to strings, e.g. concatenating, reversing etc.

9.2. SYNTAX 2559.1.6 CommentsComments are sequences of characters enclosed in [and]. Comments may be nested, i.e.the comment character sequence may contain pairs of [,].Comments can appear everywhere except in other tokens.9.1.7 BlanksBlanks can appear everywhere except in numbers, identi�ers, keywords or multiple lettertokens.Characters in input lines which do not belong to the MAS character set are converted toblanks. ASCII characters like CR (return), LF (line{feed), EOL (end{of{line) are ignoredduring input form data sets.9.2 SyntaxIn this section we discuss the ALDES language syntax. First we give the complete syntaxdiagram and the list of syntax errors.9.2.1 Syntax DiagramThe syntax de�nition is given in extended BNF notation. That means name denotessyntactic entities, {} denotes (possibly empty) sequences, () denotes required entities, |denotes case selection and [] denotes optional cases. Terminal symbols are enclosed indouble quotes and productions are denoted by =. The syntax diagram is listed in table9.2.1.For ALDES program constructs, which have no or a di�erent meaning in the MAS envi-ronment, a syntax warning message is generated. These are intrinsic, pragma, const,global and safe. global declarations in algorithms are completely ignored sincethe parser checks for lexicalscope of the variables. safe declarations are treated as VARdeclarations in MAS. There is no distinction between `safe' and `unsafe' variables. Forundeclared variables VAR declarations are generated.The syntax errors and syntax warnings detected by the parser are summarized in tables9.2.1 and 9.3.If a syntax error is detected one of the error messages is displayed followed by the actualinput line where the last character read is underscored. However this last character is onecharacter and one lexical token to far. That means the syntax error is caused by one tokenbehind.Error repair is limited to skipping tokens until something meaningful is found.In case syntax errors are detected, the execution of the program is totally suppressed, thatmeans no executable code is generated. If a syntax warning is given execution proceeds.The program constructs goto and arrays are only simulated, so they will be interpretedslowly. There exists no ALDES main program; any ALDES procedure can be executed asa MAS procedure, can call MAS procedures and can be called from MAS procedures.

256 CHAPTER 9. THE ALDES LANGUAGE
program = { declaration | algorithm } "||"algorithm = header { declaration } "(" number ")" statementseq{ "." "(" number ")" statementseq } "||"header = ident ("(" identlist [";" identlist] ")" |":=" ident "(" identlist ")")statementseq = statement { ";" statement }statement = ("print" string |ident [["[" termlist "]"] ":=" expression |"(" termlist [";" termlist] ")"] |"if" expression "then" statement["else" statement] |"while" expression "do" statement |"repeat" (statementseq "until" expression |"{" statementseq "}" ["until" expression]) |"for" ident ":=" expression ["," expression]",...," expression "do" statement |"case" expression "of" "{"{ termlist "do" statement ";" } "}" |"return" ["(" [expression] ")"] |("goto" | "go to") (number | "(" number ")") |"{" statementseq "}")expression = [prefixop] part { oper part }prefixop = ("~" | "+" | "-")oper = ("+" | "-" | "*" | "/" | "^" | "=" | "#" |"<" | ">" | "<=" | ">=" | "\/" | "/\")part = (number | string | char | "$" ident |ident [("(" [termlist] ")" |"[" termlist "]")] |"(" expression { "," expression } ")")termlist = expression { "," expression }identlist = ident { "," ident }variable = ident ["[" termlist "]"]declaration = ("global" variable { "," variable } |"safe" variable { "," variable } |"array" ident "[" termlist "]"{ "," ident "[" termlist "]" } |"const" variable "=" expression }{ "," variable "=" expression } |"pragma" variable "=" expression{ "," variable "=" expression } |"intrinsic" identlist) "."string = ('"' {character} '"' | "'" {character} "'")char = "'" character "'"ident = letter { letter | digit }number = digit { digit }Table 9.1: ALDES Syntax Diagram

9.2. SYNTAX 2571 identi�er expected2) expected4 factor expected8 declaration expected9 = expected10 , or . expected11 [expected12] expected13 string expected14 number expected15 to expected16 then expected17 of expected18 { expected19 ; or } expected20 do expected22 ,..., expected23 , or ,..., expected24 (expected25 || expected26 statement expected27 } expected29 ; or until expected30 and or or un{expected31 / un{expected32 | un{expected33 = or := expected34 expression expected35 , or identi�er expected36 declaration or algorithm expected37 . expectedTable 9.2: ALDES Syntax Error Messages2 intrinsic declaration unsupported3 pragma declaration unsupported6 . in header unsupported7 array as function unsupported8 global declaration in algorithm unsupported9 const declaration unsupportedTable 9.3: ALDES Syntax Warning Messages

258 CHAPTER 9. THE ALDES LANGUAGE9.3 ExampleWe list a sample ALDES input:PRAGMA(ALDES). b:=AFINV(M,a)[Algebraic number field inverse. a is a nonzeroelement of q(alpha) for some algebraic number alpha. M is therational minimal polynomial for alpha. b=1/a.](1) a1:=M; a2:=a; v1:=0; r:=RNINT(1);v2:=LIST2(0,r); repeat { c:=RNINV(PLDCF(a2));v2:=RPRNP(1,c,v2); if PDEG(a2) = 0 then { b:=v2;return }; a2:=RPRNP(1,c,a2); RPQR(1,a1,a2;q,a3);v3:=RPDIF(1,v1,RPPROD(1,q,v2)); a1:=a2; a2:=a3;v1:=v2; v2:=v3 }||c:=AFPROD(M,a,b)[Algebraic number field element product. a and b are elements ofq(alpha) for some algebraic number alpha. M is the minimalpolynomial of alpha. c=a+b.](1) cP:=RPPROD(1,a,b); RPQR(1,cP,M;q,c)||s:=AFSIGN(M,I,a)[Algebraic number field SIGN. M is the integral minimal polynomialof a real algebraic number alpha. I is an acceptable isolatinginterval for alpha. a is an element of q(alpha). s=SIGN(a).]safe sS,sP,n,sH,s.(1) [a rational.] if a = 0 then { s:=0; return};if PDEG(a) = 0 then { s:=RNSIGN(SECOND(a));return }.(2) [Obtain the greatest squarefree divisor of an integralpolynomial similiar to a.] IPSRP(1,a;r,aP); sS:=RNSIGN(r);aS:=IPPGSD(1,aP); IS:=I; FIRST2(IS;u,v); sP:=0.(3) [Obtain an isolating interval for alpha containing no rootsof als. RETURN SIGN(a(alpha)).]repeat { n:=IUPVSI(aS,IS); w:=RIB(u,v);if n = 0 then {s:=IUPBES(aP,w);s:=sS * s; return }; if sP = 0 then sP:=IUPBES(M,v);sH:=IUPBES(M,w); if sH # sP then u:=welse { v:=w; sP:=sH }; IS:=LIST2(u,v) }||c:=AFSUM(a,b)[Algebraic number field element sum. a and b are elements ofq(alpha) for some algebraic number alpha. c=a+b.](1) c:=RPSUM(1,a,b); return|||| (* *)The PRAGMA(ALDES) statement switches to the ALDES parser. Then comes a sequence ofALDES algorithms. The ALDES parser is terminated by the end of �le mark ||. Thedummy (MAS) comment might be necessary in some situations to stop the scanner fromreading the next token.

9.3. EXAMPLE 259The ornamented identi�ers are denoted according to the implementation ALDES translit-eration scheme. For example a* = aS, s^ = sH and s' = sP.The used library functions (like RNINT or RPRNP) must be accessible from the MAS inter-preter to be executable.

Chapter 10System CommandsIn this chapter we summarize display commands, pragmas, how to access the operatingsystem and command line parameters.10.1 Information DisplayThe �rst important system commands are concerned with displaying information on thesystem con�guration and what is going on during computations. There are three groups ofcommands: 1) for con�guration display, 2) for speci�cation display and 3) for environmentdisplay.Con�guration display commands show which external functions or prede�ned functions areavailable. Speci�cation display commands show de�ned units, sorts, variables, signaturesand generic items. Environment display commands show storage usage, stream usage,symbol table contents, and top level variable bindings. A summary of this commandsfollows:help andHELP lists all information available on de�ned and accessible functions. Thatis all compiled procedures and functions, all interpreter procedures andfunctions and all signature de�nitions. The syntax ishelp(name[,mod]) or help(start,end[,mod])'Name' means the �rst characters of a range of names, 'start,end' meansa range of names and 'all' means all names (this implies Loaded). ',mod'is optional and 'mod' can be 'ModulName' to list module names of the pro-cedures, 'Loaded' to list loaded procedures, 'Comment' to list procedurecomments (this is the default except for all).EXTPROCS lists all accessible external compiled functions and procedures.SIGS lists all signature de�nitions of functions.260

10.2. PRAGMAS 261GENERICS lists all generic function de�nitions.VARS lists all de�ned variables together with the type information.SORTS lists all de�ned sorts names.UNITS lists all de�ned unit names.BIOS displays information on stream I/O usage,GCM displays information on the storage usage,SYMTB displays the LISP symbol table including properties,DUMPENV lists all variable bindings, that is all variables in the top level environmenttogether with their current value. The output is in LISP syntax:(SETQ var value)so it should be possible to dump the variables to a disk �le, and later readthem in again. Declarations are lost.LISTENV same as DUMPENV except output is in Modula{2 like syntax. Note thatprobably some constructs can not be read in again.PRAGMA(SHOW) displays the actual pragma settings.Note that all display information can be printed to a �le using output stream setting.10.2 PragmasBesides displaying information the MAS system provides commands to modify the stateof the running MAS program. These settings are organized by the PRAGMA command.The pragmas come in two groups, one for the selection of the actual parser and one fordebugging purposes.The general syntax of the pragma command is as follows:PRAGMA(subcommand).Where subcommand is one of the commands discussed in the sequel. If an unknown sub-command is entered, then a list of all available pragmas is displayed. A list of the actualpragma settings is available with the SHOW subcommand.The subcommands which modify and select the parser are as follows:MODULA input / output is in Modula{2 like syntax, that means the MAS parser forthe MAS language is used.LISP input / output is in LISP syntax.ALDES input is in ALDES{2 syntax, that means the ALDES parser is used to readthe next input until the ALDES end of �le mark `||' is encountered.

262 CHAPTER 10. SYSTEM COMMANDSoperator LISP name generic name+ ADD SUM- SUB DIF- SUB NEG* MUL PROD/ QUOT Q% REM REMAINREZIP^ POW EXPTable 10.1: Generic Operators and FunctionsGENPARSE for the artihmetical operators the generic names or LISP names are gen-erated. The correspondence is as shown in table 10.1.The following subcommands turn ags ON and OFF:TIME if ON the times for parsing, evaluation and printing are shown (initial OFF),TRACE if ON the arguments of the evaluator are displayed, may produce messy output(initial OFF),DEBUG if ON prints the result produced by the actual parser (initial OFF)FUSSY switches to strong(er) type checking as usual.SLOPPY switches to weak(er) type checking.The actual setting of these ags can be displayed with the SHOW subcommand.10.3 Operating SystemWith EXIT it is possible to leave the MAS main program and return to the operatingsystem. On some computers the MAS system further provides access to the operatingsystem during a running MAS session. Most important is the possibility to call an editorfrom within MAS. The commands are summarized as follows:EXIT Leaves the MAS system.DOS("prog parms") calls the program `prog' with the parameters `parms'. The mean-ing of the string depends on the operating system.EDIT("data set name") edits the speci�ed data set. The editor is expected to be`EDITOR.PRG' on the current directory. The editor on disk is `microEMACS3.9'. The data set name string is pre�xed by the string " @MAS.RC " whichspeci�es the startup �le for EMACS to be `MAS.RC'.

10.4. INPUT / OUTPUT 26310.4 Input / OutputThe MAS input / output is organized in so called streams. A discussion of streams andtheir usage is contained in the chapter on the MAS language 3. In this section we giveonly a summary of the functions.The stream switching functions are:IN("stream") the current input stream is switched to the stream `stream',OUT("stream") the current output stream is switched to the stream `stream',SHUT("stream") the speci�ed stream is closed.The `stream' name may be pre�xed by a `device name' to specify non{disk data sets:CON: is the terminalWIN: is a window (not yet implemented)RAM: is an internal memory stream, `RAM{disk'GRA: is a graphic window (not yet implemented)NUL: is a dummy stream to suppress output, always empty on input, never full on output,Other `device names' are passed to the operating system and are usually interpreted asdisk data sets.10.5 Command Line ParametersThe executable MAS program accepts several command line parameters to con�gure therunning system.The MAS command line syntax is as follows:mas [Options] [File]where [File] is a �le with MAS input (the default extension is .mas and [Options] aresome of the following options.1. --helpDisplay a list of available command line parameters and exit.2. --versionOutput version information and exit.3. -C or --copyrightDisplays copyright and copying conditions.4. -c COMMAND or --command=COMMANDExecute MAS command COMMAND before reading File..

264 CHAPTER 10. SYSTEM COMMANDS5. -e or --exitExit after all input �les have been read and processed.6. -E or --exit-on-errorExit when an error occurs.7. -f FILE or --file=FILEProcess input initialization �le FILE instead of default. The �le name option `-f'can be used to overwrite the default �le name ` /.masrc' during startup.8. -m SIZE or --memorysize=SIZESet size of MAS memory to SIZE kbytes. The memory option `-m' gives the numberof Kilobyte storage, requested from the operating system.9. -o[FILE] or --output[=FILE]Write output to �le (named FILE or some default name).10. -R or --no-readlineDo not use the GNU readline library for interactive input.The parameters may appear in any order. On multiple occurrences of parameters, the lastoccurrence is used.10.6 The LISP InterpreterThis section describes some issues of the LISP interpreter which are not covered elsewhere.It is usually not required for the use of the MAS system. LISP whizzards may �nd somebackground information regarding the MAS LISP implementation. In the chapter on theinternal structure of MAS there is also a section on implementation dependent issues.10.6.1 Functions and VariablesSince in LISP everything is a function and there is no special syntax beyond the S{expression syntax we describe the MAS LISP by the functions. The semantics of thefunctions is as expected from other LISP systems. The list of all available LISP functionsis as follows:List Processing:CAR, CDR, CONS, REVERSE, JOIN, NIL (LISP like versions)FIRST, RED, COMP, INV, CONC, ADV (SAC{2 like versions).For convenience both the LISP names and the ALDES /SAC{2 names are available. Thenames are in corresponding order. NIL is the empty list. The ALDES constant `()' is notparsed, so NIL must be used.The next functions correspond to the operators +, -, *, /, % in the MAS language.Arithmetic:ADD, SUB, MUL, QUOT, REM.

10.6. THE LISP INTERPRETER 265Relations:EQ, NE, LE, LT, GE, GT, NOT, AND, OR.These functions are generated from the MAS relations =, #, <=, <, >=, >.The following is a complete list of the intrinsic LISP functions. The functions with Stan-dard LISP names have the same meaning as in SLISP. Others are described elsewhere.Functions:DE, DF, DM, DG, LAMBDA, FLAMBDA, MLAMBDA, GLAMBDA,VAR, SORT, SIG, MAP, RULE,UNIT, SPEC, IMPL, MODEL, AXIOMS,SETQ, ASSIGN, QUOTE, COND,PROGN, LIST, IF, WHILE, REPEAT,PROGA, GOTO, ARRAY, LABEL,The VAR, SIG, MAP, RULE, UNIT, SPEC, IMPL, MODEL and AXIOMS functionsare used by the speci�cation component. The PROGA, GOTO, LABEL and ARRAYfunctions are used for the interpretation of ALDES algorithms.10.6.2 What is Not ContainedSeveral functions which are normally available from LISP interpreters are not accessiblein MAS LISP, but they are normally available (probably with di�erent name) at theModula{2 programming level:CATCH, THROW, ASSOC, PUT, GET, EXPLODE, IMPLODE, GENSYM,SUBLIS.De�nitely not available are:DO{loops or FOR{loops, a LISP compiler.Of course a FOR{loop construct can be de�ned as macro, if one accepts an ugly syntax.GOTO is only available in PROGA for ALDES sequential statements.Probably available in future releases will be:LOOP{EXIT{END, CASE, graphics, . . .A CASE construct is available in ALDES, it is simulated using the COND function.Not contained as primitive but de�nable areAPPLY, MAP, EVAL.Here MAP means the LISP MAP function family and not the speci�cation componentMAP function. The MAP function family can be de�ned as procedures, as explained inthe section `Talking LISP'.

Chapter 11Internal Structure of MASIn this chapter we will provide some background on the internal structure of MAS. First wediscuss the components of MAS, then the program layout, the con�guration and availablelibraries.11.1 System ComponentsThe MAS system components are identi�ed in table 11.1. Active components (programs)are enclosed in square boxes and passive components (data) are enclosed in oval boxes.Arrows indicate ow of data and lines between boxes show that the components are relatedin some way.As already mentioned MAS itself is a Modula{2 program. Thus the MAS program can berecompiled and linked together with other symbolic and numerical libraries by a suitableModula{2 compiler. This is shown as an arrow from the compiler box on the right to theenclosing MAS box on the left.On the top line the editor box both acts on the Modula{2 source code (on the right)and the MAS input data (on the left). The input is processed by the following internalcomponents:1. The parser for the MAS language (Parse box): character strings in concrete syntaxare transformed into abstract syntax trees. Static syntax check together with variablescope analysis is performed.2. The speci�cation processor (Speci�cation box) with an attached data base of dec-larations (Declarations box): declarations are extracted from the parse tree andstored in the declaration base, information is retrieved during interpretation. Thedeclarations reect the Modula{2 source code and the library structure.3. The LISP interpreter (LISP box): according to the type or the function name of anS{expression inner most (that is eager) evaluation is performed.4. The interface to the compiled library procedures (Call box): if external functions areencountered then compiled procedures are restored and called with the appropriateparameters. 266

11.1. SYSTEM COMPONENTS 267

�� �� EditorMAS input
compiler� -

Parse
LispCallPrint

Decla-rations
�� ��MAS output

-�?

?
??

����������aaaaaaaaaaMAS '& $%

�� ��
#" !Speci�cation Modula{2

M{2 libraries

M{2 source
?
?

Table 11.1: System Components

268 CHAPTER 11. INTERNAL STRUCTURE OF MAS5. Finally the results are displayed by the (pretty) printing part (Print box).11.2 Module Layout of MASIn this section we will discuss the internal structure of MAS as a Modula-2 program. Theprincipal module structure is shown in table 11.2.InterpreterMAS LanguageLISP EvaluatorModula-2 Subroutine LibrariesSAC{2 Libraries MAS Libraries OthersInteger Floating PointRational Number OthersOthers MAS KernelTable 11.2: Module StructureThe MAS interpreter main program uses the parser module `MAS Language' and the LISPevaluator module. Various library modules can then be connected to the LISP interpreter.All list processing modules use the MAS kernel with its storage management system andbasic input/output system.MAS is an open system. Beside the ALDES /SAC{2 and the MAS libraries other librariescan be connected to the interpreter. In a �rst test we used a numerical library developedat the Technische Hochschule Aachen by [Engeln, Reutter 1988]. It was not only possibleto call numerical programs from MAS, but moreover it was also possible to call MASroutines from the numerical programs.In a di�erential equation solver we called the LISP evaluator from within the functionwhich computes the right hand side of the di�erential equation. This might not be thefastest way to do it but it was possible to de�ne di�erent right hand sides interactively asMAS procedures and then integrate them numerically.The design of the garbage collector allows arbitrary mixtures of list processing programswith numerical or other programs. It also allows mixtures with other Modula{2 data typessuch as real numbers, vectors, arrays or records. However it only collects garbage producedby the MAS list processing system, not any other dynamically allocated data structures.The collector uses a mark and sweep technique and is not compacting despite of the opensystem design.Restriction: MAS list pointers may not be part of other dynamically allocated datastructures, since then the garbage collector can not get information about them.This restriction can be overcome in the following way: Dynamically allocated data struc-tures must be linked together in some way, so use the MAS list processing for the links and

11.3. IMPLEMENTATION ISSUES OF THE LISP INTERPRETER 269put pointers to the dynamically allocated data in the FIRST �elds of the MAS lists. If nolist pointers are stored in other dynamically allocated data structures, then no restrictionsexist.11.2.1 Program DependenciesA simpli�ed list of the dependencies of the program modules is contained in the followinglist. Modules with smaller numbers depend on those with higher numbers.1. MAS.MODmain program.2. SACSYM, MASSPEC, MASLISP, MASPARSE, MASLOAD,(.DEF and .MOD),symbol system, interpreter and parser.3. SACD, SACI, SACM, SACRN, SACPRIM, MASAPF,MASF (.DEF and .MOD),arithmetic system, or various other programs which are connected to the interpreter.4. SACBIOS, SACLIST (.DEF and .MOD),rest of ALDES /SAC-2 basic system.5. MASELEM, MASSTOR, MASBIOS (.DEF and .MOD),basic system adapted for Modula{2 compiler and Atari computer, containing agarbage collector and �le handling.Modules under 3 and 4 belong to the MAS kernel, modules under 1 and 2 constitute theMAS interpreter and parser. Under 3 only an example con�guration is given. The MAScon�guration set up is discussed in a later section.11.3 Implementation Issues of the LISP InterpreterThe idea of combining an ALGOL like programming language with LISP is borrowed fromA.C. Hearn's RLISP, which is part of the Reduce computer algebra system [Hearn 1987].Our LISP interpreter is also inuenced by SLISP (Standard LISP) [Marti et al. 1978]. Theactual implementation of the interpreter followed the book `LISP' of [Stoyan, Goerz 1984].A similar approach, implementing LISP in BCPL, was persuaded by [Fitch, Norman 1977].The current implementation uses the MAS storage management and input /output man-agement which have their origin in the ALDES / SAC-2 Basic and List Processing Systemby [Collins, Loos 1980], [Loos 1976].The symbol handling was �rst done by the ALDES / SAC-2 Symbol System, which usesan unbalanced tree for the symbol table. In the present version (� 0:6) we use a hashtable with balanced symbol tree entries. Therefore the generation of alphabetical lists (asin the HELP command) needs some more time as in the previous system. Without thespeci�cation component there are typically less than 100 { 200 symbols de�ned, since sub{procedures in compiled code which are not accessible from the interpreter do not count.

270 CHAPTER 11. INTERNAL STRUCTURE OF MASWith the speci�cations of algebraic structures loaded about 700 { 1000 symbols are de�ned.In contrast in a running Reduce system about 4000 symbols and 2000 functions are de�ned.The variable binding mechanism is the so called `deep access' binding using a linear listfor the symbols and values (ALIST). At the moment there are typically less than 50 valuesbound to symbols, since variables in compiled code are not stored in the ALIST. The MASparser performs static scope anlysis and declares textualy local variables, but at LISP leveldynamic scope is implemented.The minimal MAS executable module is about 90 KB code. This includes storage man-agement, input / output, symbol handling, LISP interpreter, speci�cation component andthe parser. Not included are the arithmetic routines. In contrast XLISP is about 76 KB,microEMACS 3.8 is about 80KB, muSIMP-86 is about 57 KB, the muLISP-87 kernel isabout 50 KB and SLISP/370 is about 50 KB of code.A full edged MAS including arbitrary precision arithmetic, a polynomial system, twoGr�obner bases packages, a numerical di�erential equation solver is about 176 KB. Incontrast Derive is about 209 KB, the Reduce save�le is about 610 KB (+ 213 KB forPSL) and the bare Reduce (without factorizer and integrator) is reported to be about 459KB.11.3.1 LISP to Modula{2 InterfaceThe interface between LISP and the compiled code is realized with the Modula{2 proceduretypes. The procedure code pointers are stored in the property list of a symbol together withsome signature information. Upon application of such a function symbol, the procedureis restored, the actual parameters are supplied and the procedure is called.A simpli�ed example of this mechanism is explained by the following Modula{2 code piece:TYPE procf1 = PROCEDURE(LIST): LIST;PROCEDURE name(a: LIST): LIST;BEGIN ... RETURN(x) END;VAR f: procf1;a: ADDRESS;l: LIST;BEGIN a:=ADDRESS(name); ...f:=procf1(a);l:=f(2); ...With a:=ADDRESS(name) the code pointer of the function `name' is saved in a, and canfurther be stored in the property list of a symbol. Later an executable function can berestored with f:=procf1(a) and can then be executed like any other function: l:=f(2).In this example the user himself is responsible for using the correct type conversion procf1.For execution it is absolutely necessary that the number and types of the actual and formalarguments are identical. For this MAS exports type dependent functions for the declarationof compiled code for interactive usage.Such a declaration looks likeFROM MASLISPU IMPORT Compiledf1;FROM MASSTOR IMPORT FIRST;

11.3. IMPLEMENTATION ISSUES OF THE LISP INTERPRETER 271Compiledf1(FIRST,"CAR");here the compiled function FIRST (with 1 input parameter) is made available as LISPfunction CAR. And provisions are made to prevent CAR from being called with the wrongnumber of arguments. The Modula{2 compiler itself checks that the type of the functionFIRST matches the type of the �rst parameter of `Compiledf1'. So the procedure typesare an incredibly helpful feature of Modula{2.11.3.2 Con�guration ManagementDespite of the large amount of available procedures it seems necessary to provide somemechanisms to select only the ones which one is actually interested in. The Modula{2procedure types together with the MAS interpreter design allow for a transparent con�g-uration management.The association of a compiled procedure with a function symbol of the MAS language isaccomplished in a way described in the section on LISP implementation.In this section we will �rst discuss some key aspects of the MAS con�guration managementand then we will give a sample listing of a `load module'.In the MAS main program a procedure named InitExternals is called, which in turnactivates several other InitExternals procedures. The name externals indicates codethat is not required to run the LISP kernel.With the InitExternals procedures any desired con�guration of the MAS system can beachieved. For example if no arithmetic routines are required their declaration can be leftout from the InitExternals. Or if only Gr�obner bases are to be studied, one can includedeclarations of the respective procedures.Four points should be observed:�rst, the complete type checking mechanism of Modula{2 is in e�ect. The compiler willdetect discrepancies between the declaration of the procedures and their usage. Considerthe procedure IWRITE. In the import list it is speci�ed from which module IWRITE is tobe taken, here SACI. Then it is used as input to the Compiledp1 procedure. If accidentallysome other procedure is used (p.e. Compiledp2) then the compiler will complain about atype mismatch error.second, the linker will take care that all subroutines used in the IWRITE procedure arecollected together for the executable program. So if only a top level procedure is madeaccessible to LISP, the linker looks for all lower level routines required to execute thetop level routine.third, the con�guration of the MAS system can be done using a familiar program de-velopment system. It is not necessary to learn about a special con�guration manager.Simply specify all required routines in the InitExternals and re{link the MAS main pro-gram and you have a �tting MAS system.fourth, only the minimal number of procedures is packed together. On other LISPsystems or LISP based computer algebra systems the whole packages (or modules) are puttogether, since it is not distinguished between used (accessible) and unused (not accessible)procedures.A listing of part of the arithmetic InitExternals is shown:

272 CHAPTER 11. INTERNAL STRUCTURE OF MASIMPLEMENTATION MODULE MASLOADA;FROM MASLISPU IMPORT Compiledp1, ...FROM SACI IMPORT IWRITE, IREAD, INEG, IPROD, ISUM, IDIF,IQ, IREM, IQR, ISIGNF, IABSF, IEXP,ICOMP, IGCD, ILCM, IRAND, ILWRIT;FROM SACRN IMPORT RNWRIT, RNDWR, RNREAD, RNSIGN, RNCOMP,RNNEG, RNABS, RNINT, RNRED,RNSUM, RNDIF, RNPROD, RNQ;PROCEDURE InitExternalsA;(*Tell Modula about external compiled procedures. *)BEGIN(*1*) (*from SACI. *)Compiledp1(IWRITE,"IWRITE");Compiledp1(ILWRIT,"ILWRIT");Compiledf0(IREAD,"IREAD");Compiledf1(ISIGNF,"ISIGN");Compiledf2(ICOMP,"ICOMP");Compiledf1(INEG,"INEG");...Compiledf2(IGCD,"IGCD");Compiledf2(ILCM,"ILCM");Compiledf1(IRAND,"IRAND");(*2*) (*from SACRN. *)Compiledp2(RNDWR,"RNDWR");Compiledp1(RNWRIT,"RNWRIT");Compiledf0(RNREAD,"RNREAD");Compiledf2(RNRED,"RNRED");...Compiledf1(RNSIGN,"RNSIGN");Compiledf2(RNDIF,"RNDIF");Compiledf2(RNPROD,"RNPROD");Compiledf2(RNQ,"RNQ");(*3*) (*from MASAPF. *) ...(*4*) (*from SACPRIM. *) ...(*5*) (*from MASF. *) ...(*9*) END InitExternalsA;END MASLOADA.11.4 LibrariesThe libraries are organized in groups, which are placed in separate directories. The cur-rently available libraries are summarized in the sequel. Besides the SAC, DIP and MASlibraries also any other Modula{2 program libraries can be interfaced to the MAS system.

11.4. LIBRARIES 27311.4.1 KernelThe kernel is contained in the directory MASKERN.List ToolsMAS Basic I/O SystemMAS BIOS UtilityMAS Con�gurationMAS Elementary FunctionsMAS ErrorMAS Signal HandlingMAS StorageMAS mtc [Modula-2 to C]PortabilitySAC Basic I/O SystemSAC List ProcessingSystem InformationsclockkpathsearchreadlineMAS Signal HandlingSetjmp11.4.2 Interpreter, LISP, Main ProgramThe LISP interpreter, the parser and the main program are contained in the directoriesMASLISP and MASMAIN.Aldes ParserMAS LispMAS Lisp UtilityMAS ParserMAS RepresentationMAS Speci�cationMAS SymbolMAS/SAC Symbol System 2Modula Global Variable Implementation ModuleSAC Symbol SystemSAC Symbol 2

274 CHAPTER 11. INTERNAL STRUCTURE OF MASMAS LoadMAS Load AMAS Load BMAS Load CMAS Load DMAS Load EMAS Load Symmetric FunctionsMAS Load JMAS Load LMAS Load MMAS Load QMAS Load SyzygyMAS UtilityMAS Symbol to DIPMAS Logic Con�guration Implementation ModuleMAS Logic Demonstration Implementation ModuleMasload Polynomial Equation Simplify11.4.3 Basic arithmeticThe basic artihmetic is contained in the directory MASARITH.MAS Arbitrary Precision Floating PointMAS Complex NumberMAS Combinatorial SystemMAS Floating PointMAS IntegerMAS Octonion NumberMAS Quaternion NumberMAS Rational NumberMAS SetSAC Combinatorical SystemSAC DigitSAC IntegerSAC Modular Digit and IntegerSAC Factorization and Prime NumberSAC Rational NumberSAC Set

11.4. LIBRARIES 27511.4.4 Polynomial arithmeticThe polynomial arithmetic is contained in the directory MASPOLY.DIP Common Polynomial SystemDIP IntegralDIP Integer PolynomialDIP RationalDIP Rational Number PolynomialDIP Termorder OptimizationSAC Dense PolynomialSAC Integer Polynomial SystemSAC Modular PolynomialSAC Polynomial SystemSAC Rational Polynomial11.4.5 Ring theory, algebraic geometryThe modules for ring theory and algebraic geometry are contained in the directoriesSACRING and MASRING.SAC Algebraic Number FieldSAC Extensions 1SAC Extensions 2SAC Extensions 3SAC Extensions 4SAC Extensions 5SAC Extensions 6SAC Extensions 7SAC Extensions 8SAC Modular Univariate Polynomial FactorizationSAC Polynomial FactorizationSAC Polynomial GCD and RES SystemSAC Polynomial Real RootSAC Univariate Polynomial FactorizationDIP Ideal Decomposition 0 SystemDIP DimensionDIP GCDDIP Ideal System

276 CHAPTER 11. INTERNAL STRUCTURE OF MASDIP Integral D-Groebner BasesDIP Integral Groebner BasesDIP Rational FunctionDIP Rational Groebner BasesDIP Ideal Real Root SystemDIP Zero Dimensional IdealMAS Finite FieldMAS Polynomial GCD and RES SystemUniversal Groebner Bases11.4.6 Non-commutative PolynomialsThe non-commutative polynomial arithmetic is contained in the directory MASNC.DIP Groebner bases for non noetherian polynomial ringsDIP Exterior AlgebraMAS Non-commutative ProductMAS Non-commutative CenterMAS Non-commutative Groebner Bases11.4.7 Arbitrary domain PolynomialsThe arbitrary domain polynomial arithmetic and the comprehensive Gr�obner base packageare contained in the directory MASDOM.Arbitrary Domain ToolsComprehensive-Groebner-Bases ApplicationsComprehensive-Groebner-Bases Data-StructuresComprehensive-Groebner-Bases Utility FunctionsComprehensive-Groebner-Bases Main ProgrammsComprehensive-Groebner-Bases Miscellaneous ProgramsComprehensive-Groebner-Bases SystemDIP Arbitrary DomainDIP Arbitrary Domain Groebner BasisDIP Decompositional Groebner BasesDIP Domain D-Groebner BasesDIP Groebner BasesDistributive Polynomials ToolsMAS Domain Algebraic Number

11.4. LIBRARIES 277MAS Domain Arbitrary Precision Floating PointMAS Domain Complex NumberMAS Domain Finite FieldMAS Domain IntegerMAS Domain Integral PolynomialMAS Domain Modular DigitMAS Domain Modular IntegerMAS Domain Octonion NumberMAS Domain Quaternion NumberMAS Domain Rational FunctionMAS Domain Rational NumberMAS Domain Rational PolynomialMAS Arbitrary Domain11.4.8 Module ArithmeticThe linear algebra packages, the syzygy package and the polynomial invariants packageare contained in the directory MASMODUL.G-Symmetric Integral Polynomial SystemG-Symmetric Rational Polynomial SystemMAS Linear Algebra IntegerMAS Linear Algebra Rational NumberNoether Polynomial SystemSAC Linear Diophantine Equation SystemSubstitution Group Polynomial SystemSymmetric FunctionsSyzygy FunctionsSyzygy Groebner BaseSyzygy Utility ProgramsSyzygy Main ProgramsDIP Rational Extended Groebner Bases11.4.9 Involutive BasesThe involutive bases package is contained in the directory MASIB.

278 CHAPTER 11. INTERNAL STRUCTURE OF MASArbitrary domain extra de�nition moduleDIP Common Polynomial System in the sense of JanetDIP Decompositional Involutive BasesDIP Common Polynomial System in the sense of JanetDIP Integral Polynomial System in the sense of JanetDIP Rational Numbers Polynomial in the sense of Janet11.4.10 Real root countingThe Real root counting package is contained in the directory MASROOT.Linear algebra de�nition moduleReal Root Arbitrary DomainReal Root IntegralReal Root Univariate Arbitrary DomainReal Root Univariate Integral11.4.11 Logic formulas and quanti�er eliminationThe �rst order logic formulas and quanti�er elimination package is contained in the direc-tory MASLOG.MaslogMaslog DemonstrationMaslog BaseMaslog Input Output SystemPolynomial Equation BasePolynomial Equation Simpli�cationReal Quanti�er Elimination with Parametric Real Root CountType Formula

Appendix ADistribution
A.1 Distribution �lesThe distribution is by means of gnuzip'ed tar �les. Form the distribution �les you need atleast an executable, the tutorial and the examples.If you pick the source code we recommend to pick also the de�nition module and indexesdocument along with it. To compile the source code you will also need the Modula-2to C translator "mtc", the "reuse" library, gnumake, and a C-compiler (preferably gcc).Further we recommend the GNU readline library and the kpathsea library.The following �les are available- executablesmas-hppa1.1-hp-hpux9.03-1.00.tar.gz HP Versionmas-i386-unknown-os2-1.00.tar.gz OS/2 Versionmas-i486-unknown-linux-1.00.tar.gz Linux Versionmas-mab-next-nextstep3-1.00.tar.gz NeXT Versionmas-rs6000-ibm-aix3.2.5-1.00.tar.gz IBM Versionmas-sparc-sun-sunos4.1.3C-1.00.tar.gz SUN Version- documentation:mastut.tar.gz MAS tutorial and interactive users guide in LaTeX.mastut.ps.gz as PostScriptmasdef.tar.gz MAS Modula-2 definition modules, 3 indexesand specifications in LaTeX.masdef.ps.gz as PostScript- examples and test files: 279

280 APPENDIX A. DISTRIBUTIONmasexam.tar.gz examples, help files, test files.- Modula-2 source code:massrc.tar.gzA.2 InstallationA.2.1 UnpackTo install MAS unpack the respective �les. E.g. withgnutar xfvz masexam.tar.gzor gzip -d -c masexam.tar.gz | tar -cvf -in some directory. The �les will unpack into the following subdirectories:mas/doc/mastut Tutorial and Users Guide./masdef Definitions and indexes document./massys System document./<machine> Executables in respective machine directorymas Unix executable.mas.exe OS2 executable, requires /dll.emx.exe mas.out DOS extender and executable./exam Examples *.inCopying informationmas.ini initialization file.spec.ini specification initialization file.helpup.in Help initialization file.testall.mas Driver file for /test directory./help Comments and module information./spec Example specifications./test Test files./dll emx dyn. link libs for OS2./src Modula-2 source code/maskern System dependent files, memory, IO, .../maslisp LISP interpreter, parsers, .../masmain Main program, interfaces, .../masarith Basic Arithmetic, integer, rational, .../maspoly Polynomial systems, recursive, distributive, .../masring Ideals, Groebner bases, algeb. geometry, .../masmodul Linear algebra, diophantine equations, syzygies, .../masnc Non-commutative solvable polynomial rings, .../sacring Polynomial factorization, real roots, gcd, res, .../masroot Real root counting, .../maslog Logic formuals, Real Quantifier Elimination, .../masdom Domain coefficients, comprehensive G bases, .../masib Involutive bases, ...

A.3. START { STOP 281File naming conventions:*.md Modula-2 definition modules.*.mi Modula-2 implementation modules.*.h C header files.*.c C code files.*.o object code files.*.a library archives.*.ini MAS initialization files.*.hlp MAS help information.*.in MAS input files.*.mas MAS input files.*.out MAS output files.A.2.2 TestTest the installation with the following command[path]mas -m 4000 -f test-all.mas -e -omytestfrom the /exam directory. This produces a �le 'mytest' which you can compare to thesupplied 'test-all.orig' �le. The warnings are intentional and only lines with timings should"di�"er.A.3 Start { StopAdd the mas/bin directory to the PATH or use the complete pathname in the followingexamples.- start 'mas' or 'mas.exe' or 'emx mas.out'- banner 'This is MAS the Modula-2 Algebra System, Version 1.xx.'- system prompt 'MAS: '- system answer 'ANS: '- input (e.g.) 'a:=2*3.' A statement is terminated by period '.'- help with 'help.' or 'help(name).' or 'help(name,Loaded).'- interupt ^C CNTRL-C- leave with 'EXIT.' or 'exit.' or 'quit.'A.3.1 Path and CompileOn all systems add the mas/<machine> directory to the PATH or use the complete path-name to call the MAS executables.On OS2 systems also add the mas/dll directory to the LIBPATH and reboot or use yourexisting emx dlls.

282 APPENDIX A. DISTRIBUTIONTo compile MAS unpack the source code and create a directory "<machine>" for yourmachine type. From the directory mas/<machine> execute ../con�gure to generate theMake�le, then execute gnumake to compile a mas executable.Further details can be found in the readme �le accompanied with the source code.A.3.2 Notes- Some help facilities need an 'awk' program.- The Makefiles for the source code may need an'awk' or 'sed' program or other unix utilities.A.4 Release and Change NotesMajor mathematical library changes of the current version 1.0 (June 1996) are:- added a package for counting real roots based on Hermites methodby F. Lippold,- added a package on permutation invariant polynomials by M. Goebel,- added an optimized Groebner base package(including the "sugar"-method) by C. Rose,- added a package to compute factorized Groebner bases by J. Pfeil,- added a logic formula representation with simplification packageand real quantifier elimination package by A. Dolzmann,- a package for involutive bases by R. Grosse-Gehling,- Improved comprehensive Groebner Base algorithms using factorizationcondition evaluation and case elimination by M.~Pesch,- arbitrary domain polynomial system extended to ageneric Groebner base package.Major system changes of the current version 1.0 (June 1996) are:- MAS language accepts small letter key wordsand braces {} to denote list expressions.- Improved error handling and user signal processing toexamine long running computations.- GNU readline for easier command line editing.- Improved batch processing capabilities.- Distribution now uses GNU autoconfig for easy compilation.- Using Kpathsearch Library from K.~Berry.- Generic garbage collection support for most architectures.The major system changes between release 0.6 and 0.7 (April 1993) are:- Distribution based on Modula-2 to C translator anda C distribution which will work on 'most' workstations.- New support for PC 386 and higher (OS2 2.0 and higher) withemx dll runtime libraries.

A.4. RELEASE AND CHANGE NOTES 283- New support for PC 386 and higher (DOS 5.0) withemx DOS extender.- Dropped support for the Atari, Amiga and PC XT up to 286.That means, that we do no more distribute executables forthese systems, but if you have the maskern(el) you can getthe new source code (except maskern) and compile it onyour system.- The HELP and help command has been changed to providename ranges and more information from the procedure comments.Major mathematical library changes between release 0.6 and 0.7 are:- added comprehensive Groebner base package by E. Schoenfeld,- arbitrary domain polynomial system implemented,- added several new basic arithmetic packages:complex numbers, quaternion numbers, octonion numbers,finite fields,- added package for computation in non-commutative polynomialrings of solvable type: *-product, left Groebner base,two-sided Groebner base, elements in the center,- added a package for the computation of generators for themodule of syzygies of systems of homogeneous polynomialequations and Groebner bases for modules over polynomial rings(also available for solvable polynomial rings) by J. Phillip,- added universal Groebner base package by T. Belkahia,- added d-Groebner base and e-Groebner base packagesfor Groebner bases over the integers and univariate rationalpolynomial rings by W. Mark.The major changes between release 0.3 and 0.6 (March 1991) are:- added language extensions for specification capabilities,- added a parser for the ALDES language andpossibility for interpretation of ALDES programs,- added a linear algebra package,- added an interface between the MAS languageand the distributive polynomial system,- improved symbol handling by hash tables combined withbalanced trees,- EMS support for IBM PC implementations.The minor changes between release 0.3 and 0.6 are:- PRAGMA construct for the state definition of theMAS executable.- Overloading of MAS arithmetical operators bygeneric function names.- Typed string constants in MAS expressions.

284 APPENDIX A. DISTRIBUTION- VAR parameters in MAS procedure declarations in ALDES style.- Static scope analysis by the parser.- Explicit stack overflow check since not all compilershandled stack overflow correctly.Release notes for Version 0.3 (November 1989):- The MAS parser has been changed for better Modula-2compatibility.- MAS LISP has been made more robust against incorrectuser input.- The MAS main program has been enhanced to recognizethe following command line parameters:-m number-of-KB-f data-set-name- the memory option '-m' gives the number of Kilo-Bytestorage, requested from the operating system.- the file name option '-f' can be used to overwrite thedefault file name 'MAS.INI' during startup. With thisoption MAS can be run in batch mode if the EXITstatement is contained in the data set.A.5 CopyrightsMAS: (c) 1989-1996, by H. Kredel, M. Pesch.ALDES/SAC-2: (c) 1982, by G.E.Collins, R.Loos.All Rights Reserved. Permission is granted for unrestricted noncommercial use and non-commercial redistribution if and only if the copyright notice is retained when a copy ismade. There are no known bugs, however I disclaim any usefulness and make no war-ranty on the correctness of the Modula-2 Algebra System. For certain machines and/oroperating systems further copying restrictions apply, e.g. see the �lescopying.mas, copying.reuse, copying.mtc,copying.emx, copying.gnu, copying.lib and copying.bsdin the exam directory. The C code has been generated from the Modula-2 sources of MASwith the 'mtc' 'Modula-2 to C' translator by GMD Karlsruhe. Although it is not required,you should get a copy of it from some ftp site to have the sources of the used libraries.The executables for PC have been compiled using the GNU gcc compiler with the emxruntime system by Ernst Mattes. The latest versions and documentation of emx can alsobe found on ftp servers.

Bibliography[Apel, Lassner 1988] J. Apel, W. Lassner, An extension of Buchberger's algorithm andcalculations in enveloping �elds of Lie algebras, J. Symb. Comp., 6, pp 361{370,1988.[Appel et al. 1988] A.W. Appel, R. Milner, R.W. Harper, D.B. MacQueen, Standard MLReference Manual (preliminary draft), University of Edinburgh, LFCS Report,1988.[Armbruster, Kredel 1986] D. Armbruster, H. Kredel, Constructing universal unfoldingsusing Gr�obner bases, J. Symb. Comp., 2, pp 383{388, 1986.[Bader 1994] I. Bader, Gr�obner bases for non noetherian polynomial rings, Diplomarbeit,Universit�at Passau, 1994.[Becker, Weispfenning 1993] T. Becker, V. Weispfenning, in cooperation with H. Kredel,Gr�obner Bases { A Computational Approach to Commutative Algebra, SpringerVerlag, Graduate Texts in Mathematics 141, New York, 1993.[Becker, W�ormann 1991] E. Becker, T. W�ormann, On the Trace Formula for QuadraticForms and some Applications, Proc. RAGSQUAD, 1991.[Belkahia 1992] T. Belkahia, Implementierung eines Algorithmus zur Konstruktion uni-verseller Gr�obner Basen in SAC-2/ALDES, Diplomarbeit, Universit�at Passau,1992.[Ben-Or, Kozen, Reif 1986] M. Ben-Or, D. Kozen, J. Reif, The Complexity of ElementaryAlgebra and Geometry, Journal of Computer and System Sciences 32, pp 251{264,1986.[Buchberger 1965] B. Buchberger, Ein Algorithmus zum Au�nden der Basiselemente desRestklassenringes nach einem nulldimensionalen Polynomideal, Dissertation, Uni-versity of Insbruck 1965.[Buchberger 1970] B. Buchberger, Ein algorithmisches Kriterium f�ur die L�osbarkeit einesalgebraischen Gleichungssystems, Aequ. Math. 4, pp 374{383, 1970.[Buchberger 1979] B. Buchberger, A criterion for detecting unneccessary reductions in thereduction of Gr�obner bases, Proc. EUROSAM'79, Springer, Lect. Notes Comp.Sci. 72, pp 3{21, 1979. 285

286 BIBLIOGRAPHY[Buchberger et al. 1982] B. Buchberger, G.E. Collins, R.G. Loos, Computer algebra - sym-bolic and algebraic computation Computing Supplement, Vienna: Springer, 1982.[Buchberger 1985] B. Buchberger, Gr�obner bases: An algorithmic method in polynomialideal theory, In: (N.K.Bose ed.) Progress, directions and open problems in multi-dimensional systems theory. pp 184{232. Dordrecht: Reidel Publ. Comp., 1985.[B�oge et al. 1985] W. B�oge, R. Gebauer, H. Kredel, Gr�obner bases using SAC-2, Proc.EUROCAL '85, European Conference on Computer Algebra, Linz 1985, SpringerLect. Notes Comp. Sci. 204, pp 272{274, 1986.[B�oge et al. 1986] W. B�oge, R. Gebauer, H. Kredel, Some Examples for Solving Systemsof Algebraic Equations by Calculating Gr�obner Bases, J. Symbolic Computation,1, pp 83{98, 1986.[Butcher 1984] C.J. Butcher, An application of the Runge Kutta space, BIT ComputerScience Numerical Mathematics 24, pp 425{440, 1984.[Calmet, Lugiez 1987] J. Calmet, D. Lugiez, A knowledge{based system for Computer Al-gebra, SIGSAM Bulletin 1987, 21 / 1, pp 7{13, February 1987.[Carra-Ferro 1986] G. Carra-Ferro, Some Upper Bounds for the Multiplicity of an Autore-duced Subset of Nm and their Application, AAECC-3, Grenoble 1985, SpringerLNCS, Vol. 229, 1986.[Carra-Ferro 1987] G. Carra-Ferro, Some Properties of lattice points and their applicationto di�erential algebra, Communications in Algebra, 15(12), pp 2625{2632, 1987.[Chou, Collins 1982] T.-W.J. Chou, G.E. Collins, Algorithms for the solution of systemsof linear diophantine equations, SIAM J. Computing, Vol. 11, No. 4, pp 687{708,1982.[Collins 1971] G.E. Collins, SAC-1, Technical Reports 129, 115, 156, 135, 145. ComputerSci. Dep., U. of Wisconsin, Madison, Wis., 1971.[Collins 1973] G.E. Collins, Computer algebra of polynomials and rational functions,American Math. Monthly, 80, pp 725{755, 1973.[Collins 1974] G.E. Collins, Quanti�er Elimination for Real Closed Fields by Cylindri-cal Algebraic Decomposition, Preliminary Report, Proc. EUROSAM 1974, Stock-holm, August 1974, pp 80{90.[Collins, Loos 1980] G.E. Collins, R.G. Loos, ALDES/SAC-2 now available,SIGSAM Bulletin 1982, and several reports distributed with theALDES/SAC-2 system.[Collins, Loos 1982] G.E. Collins, R.G. Loos, Real Zeros of Polynomials, in B. Buchberger,G.E. Collins, R.G. Loos, Computer algebra { symbolic and algebraic computation,Vienna: Springer, pp 83{94, 1982.[Davenport, Siret, Tournier 1988] J.H. Davenport, Y. Siret, E. Tournier, Computer Alge-bra { Systems and Algorithms for Algebraic Computation, Academic Press, 1988.

BIBLIOGRAPHY 287[Davenport 1990] J.H. Davenport, B.M. Trager, Scratchpad's View of Algebra I: BasicCommutative Algebra, Proc. DISCO `90 Capri, LNCS 429, pp 40{54, Springer,1990.[Dolzmann 1994] A. Dolzmann, Reelle Quantorenelimination durch parametrisches Z�ahlenvon Nullstellen, Diplomarbeit, Fakult�at f�ur Mathematik und Informatik, Univer-sit�at Passau, 1994.[Engeln, Reutter 1988] G. Engeln-M�ullges, F. Reutter, Formelsammlung zurNumerischen Mathematik mit Modula-2 Programmen, BI-Wissenschaftsverlag,Mannheim 1988.[Fitch, Norman 1977] J.P. Fitch, A.C. Norman, Implementing LISP in a High-level Lan-guage, SOFTWARE-PRACTICE AND EXPERIENCE Vol.7, pp 713{725, 1977.[Garey, Johnson 1978] M.R. Garey, D.S. Johnson, Computers and Intractability: A Guideto the Theory of NP-Completeness, H. Freeman, San Francisco, 1978, printing1984.[Gebauer, Kredel 1983] R. Gebauer, H. Kredel, Distributive Polynomial System, SeveralTechnical Reports, Institut f�ur Angewandte Mathematik, Universit�at Heidelberg,1983.[Gebauer, Kredel 1983a] R. Gebauer, H. Kredel, Buchberger algorithm system, TechnicalReport, Institut f�ur Angewandte Mathematik, Universit�at Heidelberg, 1983. (seealso SIGSAM Bulletin Vol. 18, No. 1, p 19.)[Gebauer, M�oller 1988] R. Gebauer, H.-M. M�oller, On an installation of Buchberger's al-gorithm, J. Symb. Comp., 6/2/3, pp 275-286, 1988.[Geddes et al. 1986] B.W. Char, G.J. Fee, K.O. Geddes, G.H. Gonnet, M.B. Monagan, ATutorial Introduction to Maple, J. Symbolic Computation 2, pp 179{200, 1986.[Geddes et al. 1992] K.O. Geddes, S.R. Czapor, G. Labahn, Algorithms for Computer Al-gebra, Kluwer Academic Publishers, Boston, 1992.[Gianni 1986] P. Gianni, Using Gr�obner to reduce solving equations to root �nding, Meet-ing on Computer and Commutative Algebra, Genova, May 1986.[Gianni 1987] P. Gianni, Properties of Gr�obner bases under specialization, Proc. EU-ROCAL'87, European Conference on Computer Algebra, Leipzig, GDR, 1987,Springer LNCS 378, pp 293{297, 1989.[Gianni et al. 1986] P. Gianni, B. Trager, G. Zacharias, Gr�obner Bases and Primary De-composition of Polynomial Ideals, J. Symbolic Computation, 6, No 2/3, pp 149{167, 1988.[Giovini et al. 1991] A. Giovini, T. Mora, G. Niesi, L. Robbiano, C. Traverso, \One sugarcube, please" or Selection strategies in the Buchberger algorithm, J. of the ACM,pp 49{54, 1991.[Giusti 1984] M. Giusti, Some E�ectivity Problems in Polynomial Ideal Theory, EU-ROSAM'84, Springer LNCS, Vol. 174, pp 159{171, 1984.

288 BIBLIOGRAPHY[Goldberg 1981] A. Goldberg, Introducing the Smalltalk{80 System, Byte 6, 8 pp 14{35,August 1981.[G�obel 1992] M. G�obel, Reduktion G-symmetrischer Polynome f�ur beliebige Permutation-sgruppe G, Diplomarbeit, Fakult�at f�ur Mathematik und Informatik, Universit�atPassau, 1992.[G�obel 1993] M. G�obel, Using Buchberger's Algorithm in Invariant Theory,ACM SIGSAM Bulletin 27/4, pp 3{9, 1993.[G�obel 1995] M. G�obel, Computing Bases for Permutation-Invariant Polynomials, Journalof Symbolic Computation 19, pp 285-291, 1995.[Gr�abe, Lassner] H.-G. Gr�abe, W. Lassner, A Parallel Gr�obner Factorizer, Universit�atLeipzig, Preprint, 1994.[Gr�obner 1968/70] W. Gr�obner, Algebraische Geometrie I, II, Bibliographisches Institut,Mannheim, 1968, 1970.[Gro�e-Gehling 1995] R. Gro�e-Gehling, Konstruktion involutiver Basen imComputeralgebra-System MAS, Diplomarbeit, Fakult�at f�ur Mathematik und In-formatik, Universit�at Passau, 1995.[Hearn 1987] A.C. Hearn, REDUCE 3.3, The Rand Corporation, 1987.[Hermann 1926] G. Hermann, Die Frage der endlich vielen Schritte in der Theorie derPolynomideale, Math. Ann. Bd. 95, pp 736{788, 1926.[Jenks et al. 1984] R.D. Jenks et al., SCRATCHPAD II, An Experimental Computer Al-gebra System, Abbreviated Primer and Examples, Mathematical Sciences Depart-ment, IBM, Yorktown Heights, 1984.[Jenks et al. 1985] R.D. Jenks et al., Scratchpad II Programming Language Manual, Com-puter Algebra Group, IBM, Yorktown Heights, NY, 1985.[Kalkbrenner 1987] M. Kalkbrenner, Solving systems of algebraic equations by usingGr�obner bases, Proc. EUROCAL'87, European Conference on Computer Alge-bra, Leipzig, GDR, 1987, Springer LNCS 378, pp 282{292, 1989.[Kandri-Rody 1984] A. Kandri-Rody, E�ective Methods in the Theory of Polynomialideals,Ph.D.Thesis, RPI, Troy, NY, May 1984.[Kandri-Rody 1985] A. Kandri-Rody, Dimension of ideals in polynomial rings,Proc. Combinatorial Algorithms in algebraic structures, Otzenhausen 1985,J.Avenhaus, K.Madlener Eds., Fachbereich Informatik, University of Kaiser-slautern, 1985.[Kandri-Rody, Weispfenning 1988] A. Kandri-Rody, V. Weispfenning,Non-commutative Gr�obner bases in algebras of solvable type, J. Symb. Comp., 9,pp 1{26, 1990. also available as: Technical Report University of Passau, MIP-8807, March 1988.[Knuth 1981] D.E. Knuth, The Art of Computer Programming, Vol. 2, SeminumericalAlgorithms (second edition), Addison-Wesley, 1981.

BIBLIOGRAPHY 289[Kraft 1984] H.-P. Kraft, Geometrische Methoden in der Invariantentheorie, Aspects ofMathematics, Vieweg, Braunschweig/Wiesbaden, 1984.[Kredel 1985] H. Kredel, �Uber die Bestimmung der Dimension von Polynomidealen, Diplo-marbeit, Fakult�at f�ur Mathematik Universit�at Heidelberg, 1985.[Kredel 1987] H. Kredel, Primary Ideal Decomposition, Proc. EUROCAL'87, EuropeanConference on Computer Algebra, Leipzig, GDR, 1987, Lecture Notes ComputerScience 378, pp 270{281, 1989.[Kredel 1988] H. Kredel, From SAC-2 to Modula-2, Proc. ISSAC'88 Rome, Lecture NotesComputer Science 358, pp 447{455, 1989.[Kredel 1989] H. Kredel, Real Roots of Zero-dimensional Ideals, Manuscript, Universit�atPassau, 1989.[Kredel 1990] H. Kredel, MAS Modula-2 Algebra System, Proc. DISCO 90 Capri, SpringerLNCS 429, pp 270{271, 1990.[Kredel 1990a] H. Kredel, Computing in polynomial rings of solvable type, Proc. IV. Int.Conv. Computer Algebra in Physical Research 1990, JINR, Dubna, MoscowUdSSR, May 1990, World Scienti�c, Singapore, pp 211{221, 1991.[Kredel 1991] H. Kredel, The MAS Speci�cation Component, Proc. PLILP `91, Passau,1991, LNCS 528, pp 39{50, 1991.[Kredel 1992] H. Kredel, Solvable Polynomial Rings, Dissertation Universit�at Passau,1992, Verlag Shaker, Aachen 1993.[Kredel, Weispfenning 1988] H. Kredel, V. Weispfenning, Computing Dimension and In-dependent Sets for Polynomial Ideals, J. Symbolic Computation (1988), 6, pp231{247, 1988. See also MIP-8809, Universit�at Passau, April 1988.[Kronecker 1882] L. Kronecker,Grundz�uge einer arithmetischen Theorie der algebraischenGr�o�en, J. reine angew. Math. Bd. 92, pp 1{122, 1882.[Kutzler, Stifter 1986] B. Kutzler, S. Stifter, Automated geometry theorem proving usingBuchberger's algorithm, CAMP{Publ.{Nr. 85{29.0, University of Linz 1986; Proc.SYMSAC '86, Waterloo, Canada, 1986.[Lasker 1905] , E. Lasker, Zur Theorie der Moduln und Ideale, Math. Ann. Bd. 60, pp20-116, 1905.[Lawrence 1987] D.M. Lawrence, micro EMACS 3.8 Editor, 1987.[Lazard 1982] D. Lazard, Commutative algebra and computer algebra, Springer Lect. NotesComp. Sci. 144, pp 40{48, 1982.[Lazard 1985] D. Lazard, Ideal Bases and Primary Decomposition: Case of Two Variables,J. Symbolic Computation 1, pp 261{270, 1985.[Lippold 1993] F. Lippold, Implementierung eines Verfahrens zum Z�ahlen reeller Null-stellen multivariater Polynome, Diplomarbeit, Fakult�at f�ur Mathematik und In-formatik, Universit�at Passau, 1993.

290 BIBLIOGRAPHY[Loos 1976] R.G. Loos, The Algorithm Description Language ALDES (Report), SIGSAMBulletin 14/1, pp 15{39, 1976.[Loos 1982] R.G. Loos, Computing in Algebraic Extensions, in B. Buchberger, G.E.Collins, R.G. Loos, Computer algebra { symbolic and algebraic computation, Vi-enna: Springer, pp 173{187, 1982.[Macaulay 1916] F.S. Macaulay, Algebraic theory of modular systems, Cambridge Tract.1916.[Mark 1992] W. Mark, Gr�obner Basen �uber Hauptidealringen und euklidischen Ringen,Diplomarbeit, Universit�at Passau, 1992.[Marti et al. 1978] J.B. Marti, A.C. Hearn, M.L. Griss, C. Griss, Standard Lisp Report,University of Utah, Salt Lake City, 1978.[Mateti 1988] P. Mateti, Gul�am Shell, 1987.[Melenk et. al. 1989] H. Melenk, H.M. M"oller, W. Neun, Symbolic Solution of Large Sta-tionary Chemical Kinetics Problems, Impact of Computing in Science and Engi-neering 1, pp 138-167, 1989.[Morgan 1983] A.P. Morgan, A Method for Computing all Solutions to Systems of Poly-nomial Equations, ACM/TOMS 9, pp 1{17, 1985.[M�oller, Mora 1983] H.M. M�oller, F. Mora, The computation of the Hilbert function, inProc. EUROCAL '83, Computer algebra, Springer LNCS 162, 1983.[M�oller, Mora 1986] H.M. M�oller, T. Mora, New constructive methods in classical idealtheory, J. of Algebra, 100, pp 138{178, 1986.[Mora 1985] T. Mora, Gr�obner bases for non-commutative polynomial rings,Proc. AAECE-3, Grenoble 1985, LNCS 229, pp 353{362, 1985.[Mora 1986] T. Mora, Standard bases and non-Noetherianity: Non-commutative polyno-mial rings, Proc. AAECE-4, Karlsruhe 1986, LNCS 307, pp 98{109, 1986.[Mora, Robbiano 1988] T. Mora, L. Robbinano, The Gr�obner fan of an ideal, J. SymbolicComputation 6/2, pp 183{208, 1988.[Noether 1916] E. Noether, Der Endlichkeitssatz der Invarianten endlicher Gruppen,Mathe. Ann. 77, pp 89{92, 1916.[Noether 1921] E. Noether, Ideal Theorie in Ringbereichen, Math. Ann. Bd. 8, pp 24{66,1921.[Patera et al. 1976] J. Patera, R.T. Sharp, P. Winternitz, H. Zassenhaus, Invariants ofreal low dimnension Lie algebras, J. Math. Phys., vol. 17, no. 6, pp 986{993,1976.[Pavelle, Wang 1985] R. Pavelle, P.R. Wang, MACSYMA From F to G, J. Symbolic Com-putation 1, pp 69{100, 1985.

BIBLIOGRAPHY 291[Pedersen, Roy, Szpirglas 1993] P. Pedersen, M.-F. Roy, A. Szpirglas, Counting Real Ze-ros in the Multivariate Case, Proc. MEGA'92, F. Eyssette, A. Galligo, Eds.,Birkh�auser Boston, pp 203-224, 1993.[Pfeil 1994] J. Pfeil, Implementierung von Varianten des Buchberger-Algorithmus mitPolynomfaktorisierung, Diplomarbeit, Fakult�at f�ur Mathematik und Informatik,Universit�at Passau, 1994.[Philipp 1991] J. Philipp, Syzygien Berechnung im Computer Algebra System MAS, Diplo-marbeit, Fakult�at f�ur Mathematik und Informatik, Universit�at Passau, 1991.[Pohst, Yun 1981] M.E. Pohst, D.Y.Y. Yun, On solving systems of algebraic equations viaideal bases and elimination theory, Proc. 1981 ACM Symposium on Symbolic andAlgebraic Computations, pp 206{211, 1981.[Rich et al. 1988] A. Rich, J. Rich, D.R. Stoutemyer, DERIVE A Mathematical Assistant,The Soft Warehouse. Honolulu, Hawaii, 1988.[Rose 1995] C. Rose, The MAS module DIPAGB: An Implementation of the Normal withSugar Selection Strategy in the Buchberger Algorithm, Fakult�at f�ur Mathematikund Informatik, Universit�at Passau, 1995.[Robbiano 1985] L. Robbiano, Term orderings on the polynomial ring, Proc. EUROCAL'85, European Conference on Computer Algebra, Linz 1985, Springer Lect. NotesComp. Sci. 204, pp 513{517, 1986.[Schemmel 1987] K.-P. Schemmel, An extension of Buchberger's algorithm to computeall reduced Gr�obner bases of a polynomial ideal, Proc. EUROCAL '87, Leipzig,Springer LNCS Vol. 378, pp 300{310, 1987.[Sch�onfeld 1991] E. Sch�onfeld, Parametrische Gr�obnerbasen im Computer Algebra SystemALDES/SAC-2, Diplomarbeit, Fakult�at f�ur Mathematik und Informatik, Univer-sit�at Passau, 1991.[Schrader 1976] R. Schrader, Zur konstruktiven Idealtheorie, Diplomarbeit, Mathematis-ches Institut II, Universit�at Karlsruhe, 1976.[Schwartz 1988] N. Schwartz, Stability of Gr�obner bases, J. pure and appl. Algebra, 53,pp 171{186, 1988.[Seidenberg 1974] A. Seidenberg, Constructions in Algebra, Trans. Amer. Math. Soc. 197,pp 273{313, 1974.[Stoutemyer 1986] D.R. Stoutemyer, �-MATH-86, The Soft Warehouse. Honolulu, Hawaii,1986.[Stoyan, Goerz 1984] H. Stoyan, G. Goerz, LISP, Springer Verlag, Heidelberg, 1984.[Sturmfels 1993] B. Sturmfels, Algorithms in Invariant Theory, Vienna: Springer, 1993.[TDI 86] TDI, Modula-2/ST Compiler, Clifton, Bristol, UK, 1986.[Trinks 1978] W. Trinks, �Uber Buchbergers Verfahren Systeme algebraischer Gleichungenzu l�osen, J. Number Theory, Vol. 10, pp 475{488, 1978.

292 BIBLIOGRAPHY[Weinberger et al. 1976] J.P. Weinberger, L.P. Rothschild, Factoring Polynomials OverAlgebraic Number Fields, ACM/TOMS 2, No. 4, pp 335{350, 1976.[Weispfenning 1975] V. Weispfenning, Model-completeness and elimination of quanti�ersfor subdirect products of structures, J. of Algebra, 36, pp 252{277, 1975.[Weispfenning 1987] V. Weispfenning, Admisible orders and linear forms, ACM SIGSAMBulletin, Vol. 21, No. 2, pp 16{18, May 1987.[Weispfenning 1986] V. Weispfenning, Some bounds for the construction of Gr�obner Bases,Proc. AAECC{4, Karlsruhe 1986, Springer LNCS Vol. 307, pp 195{201, 1988.[Weispfenning 1987a] V. Weispfenning, Constructing universal Gr�obner Bases, Proc.AAECC{5, Springer LNCS Vol. 356, pp 408{417, 1987.[Weispfenning 1987b] V. Weispfenning, Gr�obner bases in polynomial rings over commu-tative regular rings, Proc. EUROCAL '87, Leipzig, Springer LNCS Vol. 378, pp336{347, 1987.[Weispfenning 1990] V. Weispfenning, Comprehensive Gr�obner bases, preprint in: Techni-cal Report University of Passau, MIP-9003, 1990.[Weispfenning 1993] V. Weispfenning, A New Approach to Quanti�er Elimination for RealAlgebra, Proceedings of the Collins Symposium "QEPCAD"; Linz, Austria Oct.1993 (to be appear). preprint in: Technical Report University of Passau, MIP-9305, 1993.[Winkler et al. 1985] F. Winkler, B. Buchberger, F. Lichtenberg, H. Rolletschek, An al-gorithm for constructing canonical bases (Gr�obner bases) of polynomial ideals,ACM/TOMS 11, pp 66{78, 1985.[Wirsing 1986] M. Wirsing, Structured Algebraic Speci�cations: A Kernel Language, The-oretical Computer Science 42, pp 123{249, Elsevier Science Publishers B.V.(North{Holland) (1986).[Wirth 1985a] N. Wirth, Programming in Modula-2, Springer, Berlin, Heidelberg, NewYork, 1985.[Wirth 1985b] N. Wirth, Compilerbau, Teubner Verlag, Stuttgart, 1985.[Wirth 1988] N. Wirth, From Modula to Oberon, pp 661{670, The Programming LanguageOberon, pp 670{690, Software-Practice and Experience Vol. 18(7), July 1988.[Wirth 1989] N. Wirth, J. Gutknecht, The Oberon System, pp 857{893, Software-Practiceand Experience Vol. 19(9), September 1989.[Wolfram 1988] Wolfram Research Inc., Mathematica, Addison-Wesley, Reading, 1988.[Zacharias 1978] G. Zacharias, Generalized Gr�obner bases in commutative polynomialrings, Bachelor thesis, MIT, Dep. of Comp. Sci., 1978.[Zharkov, Blinkov 1993] A. Yu. Zharkov, Yu. A. Blinkov, Involution Approach to SolvingSystems of Algebraic Equations, Proceedings of the IMACS'93, pp 11{16, 1993.

BIBLIOGRAPHY 293[Zharkov, Blinkov 1993a] A. Yu. Zharkov, Yu. A. Blinkov, Involutive Bases of zero-dimensional Ideals, submitted to: Journal Symbolic Computation.[Zharkov, Blinkov 1993b] A. Yu. Zharkov, Yu. A. Blinkov, INVBASE: A Package forComputing Involutive Bases, contained in the Reduce INVBASE-Package, avail-able from Konrad-Zuse-Zentrum Berlin.[Zharkov 1994] A. Yu. Zharkov, Solving Zero-Dimensional Involutive Systems, to appearin Proc. MEGA '94.

Index<domain description>, 133<domain symbol>, 133.masrc, 264/, 31, 63, 254/\, 254\/, 254#, 31, 254$, 254%, 31', 33, 254(*, 33(, 31, 254), 31, 254*), 33*, 31, 63, 254+, 31, 63, 254,...,, 254,, 31, 254--command=COMMAND, 263--copyright, 263--exit-on-error, 264--exit, 264--file=FILE, 264--help, 263--memorysize=SIZE, 264--no-readline, 264--output[=FILE], 264--version, 263-, 31, 63, 254->, 31-C, 263-E, 264-R, 264-c COMMAND, 263-e, 264-f FILE, 264-m SIZE, 264-o[FILE], 264., 31, 254

, 33, 254:, 31, 254;, 31, 254<, 31, 254<=, 31, 254<>, 31=, 31, 254=>, 31>, 31, 254>=, 31, 254[, 254, 255], 254, 255^, 63, 254{}, 31, 254||, 254~, 254abelian group, 56abelian monoid, 56abstract objects, 22, 51actual parameter, 37, 39, 45ADCNST, 131ADCONV, 132ADD, 264ADDDREAD, 133ADDDWRIT, 133ADDIF, 131ADEXP, 132ADEXTRA, 247ADFACT, 132ADFI, 132ADFIP, 132ADGCD, 132ADGCDC, 132ADGCDE, 132ADINV, 131ADINVT, 131ADLCM, 132ADNEG, 131ADNOR, 247294

INDEX 295ADONE, 131ADPROD, 131ADQUOT, 132ADREAD, 132ADSIGN, 131ADSUM, 131ADTOIP, 132ADV, 24, 66, 72, 264ADVLDD, 133ADWRIT, 133AF (x, p(x), [(l,r) [, s]]), 143AIX, 1ALDES, 253, 261syntax error, 255syntax warning, 255algebra, 22, 51algebraic number, 276Algebraic Numbers, 134, 144ALGOL, 269algorithm, 15, 18Buchberger, 153, 200ALIST, 270AmigaDOS, 1AND, 265keyword, 31APABS, 92APCMPR, 92APDIFF, 93APEXP, 93APF [s], 138APFINT, 92, 94APFRN, 24, 92, 93APNEG, 92APPI, 17, 93APPLY, 265APPROD, 92approximation, 89APQ, 92APREAD, 93APROOT, 93APSIGN, 92APSPRE, 92APSUM, 92APWRIT, 17, 93arbitrary domain, 129polynomial, 129, 277Arbitrary Precision Floating Point Num-bers, 134, 139

arithmetic, 20, 74, 269, 270, 274ARRAY, 265array, 255keyword, 254ASCII, 30, 253ASSIGN, 265assignment, 16, 17, 38ASSOC, 265atom, 20, 31average computing time, 71AXIOMS, 265keyword, 31axioms, 51, 61back track, 62base, involutive, 247basic arithmetic, 74, 274basissubmodule, 200BCPL, 269BEGINkeyword, 31BEGIN-ENDstatement, 43big O notation, 72binding, 40BIOS, 261, 269blank, 33, 255browse, 23, 25Buchberger algorithm, 153, 154, 200, 276Buchbergers graduated term order, 108C, 28CAR, 264, 271CASE, 265case keyword, 254CATCH, 265category theory, 22, 51CCONC, 66, 73CDR, 264cell, 71center, 189computation, 190CenterPol, 128centralizer, 189character set, 30, 253CINV, 66, 73closure, 57

296 INDEXCLOUT, 69command, 27line, 263comment, 16, 31, 33, 254, 255common multiples, 198commutator relation, 127COMP, 65, 72, 264compatiblehomogeneity, 199compiledcode, 269, 270function, 16procedure, 271compiler, 18, 265, 269complex number, 74Complex Numbers, 134complexity, 71, 85, 92, 102, 112, 127comprehensive Gr�obner base, 171, 277computationcenter, 190computing in solvable polynomial rings,126, 183computing time, 71CON, 48, 263CONC, 66, 73, 264concrete objects, 22, 51COND, 265condition, 38conditional rewriting, 62con�guration, 269, 271conuence, 62confusion, 27CONS, 264const, 255keyword, 254construction, 65counting, real roots, 237, 239critical pairs, 154cross reference, 25data type, 268DE, 265DEBUG, 262debug, 27declaration, 16de�nition, 23denotational semantics, 51dependencies, 269Derive, 15, 270

DESC, 60descriptor, 59design, 268destruction, 66det, 82determinant, 80DF, 265DG, 265diagram, 66DIFIP, 130digit, 21, 30, 74, 253, 274DIIFGB, 130DIIFLS, 130DIIFNF, 130DIIFRP, 115DIILIS, 247DIIPI, 248DIIPIB, 248DIIPNF, 247DILIS, 130, 247DILRD, 131DILWR, 131dimension, 155DINCCO, 127DINCCP, 128DINCCPpre, 128DINCGB, 128DINLGB, 128DINLIS, 128DINLNF, 127DINPEX, 127DINPPR, 127DIP2SYM, 121DIPBSO, 113DIPC, 247DIPDCI, 247DIPDEG, 113DIPDIF, 129DIPEVL, 113DIPFMO, 113DIPFP, 115DIPGB, 130DIPI, 247, 248DIPIB, 248DIPII, 247DIPLBC, 113DIPMAD, 113DIPMCP, 113

INDEX 297DIPNEG, 129DIPNOR, 130DIPRNI, 247DIPROD, 129DIPSUM, 129DIPTODEF, 122DIPVDEF, 122directory, 15, 16, 50, 262DIRFIP, 115DIRLIS, 114, 247DIRPAB, 113DIRPDF, 114DIRPGB, 114DIRPI, 248DIRPIB, 248DIRPNF, 114, 247DIRPNG, 113DIRPPR, 114DIRPSG, 113DIRPSM, 113distributive polynomial, 112, 121, 127,129, 275DO keyword, 31do keyword, 254domaindescription, 133symbol, 133DOS, 1, 262DPGEN, 78DUMPENV, 261dynamic scope, 46EBNF, 34, 52, 255EDIT, 262editor, 19, 25, 50, 262elimination, quanti�er, 239ELSEkeyword, 31else keyword, 254EMACS, 262embedding, 200emergency, 27ENDkeyword, 31EQ, 265EQUAL, 73

error, 27, 36, 257EVAL, 265evaluation, 19, 52, 63, 64EVLGIL, 128EVLGTD, 128EVOWRITE, 122executable program, 271EXIT, 27, 262, 265EXP, 59Exp, 90EXPLODE, 265exponential series, 89EXPOSE, 57, 59, 61, 63keyword, 31expression, 34EXTENT, 73external function, 40EXTPROCS, 23, 260factor, 37fatal error, 27FIELD, 56�eld, 55, 60�nite �eld, 74Finite Field Numbers, 134FIRST, 66, 72, 264, 271FLAMBDA, 265oating point, 17, 74, 91, 272, 274algorithms, 91representation, 91syntax, 93uidvariable, 46FOR, 28for keyword, 254formal parameter, 45list, 45formulassyntax, 241FORTRAN, 253function, 37overload, 60FUSSY, 262GCD, 26GCM, 261GEM, 1, 19generic, 23, 261

298 INDEXfunction, 60operators, 262parse, 63GENERICS, 23, 261GENPARSE, 262GENSYM, 265GET, 265GINBAS, 231GINCHK, 230GINCUT, 230GINORP, 230GINRED, 230GLAMBDA, 265global, 255keyword, 254variable, 46go tokeyword, 254GOTO, 265goto, 255keyword, 254Gr�obner base, 154comprehensive, 171left, 185partial, 199submodule, 201two-sided, 185universal, 207GRA, 48, 263graded structure, 199graphic, 48, 263, 265greatest common divisor, 80, 276GRNBAS, 231GRNCHK, 231GRNCUT, 231GRNGGB, 231GRNORP, 231GRNRED, 231GSYINF, 230GSYNSP, 230GSYORD, 230GSYPGR, 230GSYPGW, 230GSYSPG, 230header, 54HELP, 23, 40, 74, 260help, 17, 23{25, 260facilities, 23

homogeneity compatible, 199homogeneous, 199ideal, 199IABS, 76IBMRS6000, 1ICOMP, 76, 79idealdecomposition, 276homogeneous, 199intersection, 197quotient, 198identi�er, 31, 32, 254list, 45IDIF, 76IEXP, 77IF, 16, 265keyword, 31statement, 43if keyword, 254IFACT, 78IGCD, 77ILCM, 77ILWRIT, 78IMPL, 265IMPLEMENTATIONkeyword, 31implementation, 19, 51, 57, 126, 184, 269IMPLODE, 265IMPORT, 55, 57, 59, 61keyword, 31IN, 263independent sets, 155INEG, 76in�nite loop, 41InitExternals, 271input, 15, 19, 27, 28, 48, 269, 273INT, 134integer, 20, 21, 74, 75, 102, 272, 274algorithms, 75factorization, 74, 272, 274representation, 75syntax, 77Integral Digit modulo Digit, 133Integral Numbers, 133, 134Integral Numbers modulo Integer, 133,137

INDEX 299Integral Polynomial, 140integral polynomial, 102Integral Polynomials, 134interactive, 30, 268, 270internal function, 40interpretation, 64interpreter, 271, 273, 274intersectionideal, 197intrinsic, 255keyword, 254INV, 66, 73, 264invariant polynomials, 229, 277inverse graduated term order, 109inverse lexicographical term order, 109involutive base, 247involutive bases, 277, 278IP (x1,...,xr), 140IPABS, 103IPDIF, 103IPNEG, 103IPPGSD, 105IPPROD, 103, 105IPPSR, 104IPQR, 104IPREAD, 104IPROD, 20, 76, 80IPRODK, 76IPSIGN, 103IPSUM, 103IPWRIT, 104IQ, 77IQR, 77IRAND, 77IREAD, 77IREM, 77ISIGN, 76ISUM, 76IWRITE, 20, 77JOIN, 264join, 22, 51speci�cations, 55kernel, 271, 273keyword, 31, 254knowledge, 15, 18, 19LABEL, 265

LAMBDA, 265lambda calculus, 52language, 16, 28, 30, 264, 269, 271left, 70left common multiples, 198left Gr�obner base, 185LENGTH, 65, 72letter, 30, 253lexical conventions, 30LFCHECK, 120LGBASE, 128library, 19, 268, 272linear algebra, 277linear form, 119, 199linker, 271LIRRSET, 128LISP, 16, 18, 27, 28, 261, 264, 269LIST, 65, 73, 265list, 16, 20processing, 16, 65, 72, 273representation, 75, 84, 91list expression, 37LISTENV, 23, 261listexpr, 37localvariable, 46logic formulas, 278LOOP, 265lower level routine, 271LT, 265macro, 25, 28, 265Macsyma, 15main program, 273MAP, 60, 265keyword, 31mapcar, 69, 265Maple, 15MASexpression, 121MAS.RC, 262MASLOAD, 247Mathematica, 15maximal computing time, 71MD m, 137memory, 71MI m, 137minimal computing time, 71MLAMBDA, 265

300 INDEXMODEL, 265keyword, 31model, 52, 59model theory, 22, 51MODULA, 28, 261modular integer, 61, 74, 274module, 200arithmetic, 277of syzygies, 195structure, 268MUL, 264muLISP, 270NE, 265NIL, 264NOEINF, 231NOENSP, 231NOERED, 231Noether, 229Noetherian relation, 62non-commutative polynomial, 276NOT, 265keyword, 31NPREAD, 127NUL, 48, 263number, 31, 254numeric, 268, 270, 272OBJECT, 56octonion number, 74Octonion Numbers, 134of keyword, 254operating system, 19, 48, 263operatoroverloading, 63, 262optimal variable ordering, 124optimized linking, 271OR, 265keyword, 31ORDER, 73Ore condition, 198OS2, 1OUT, 263output, 17, 19, 48, 263, 269, 273overow, 94overload, 60package, 271

parameter, 24, 28, 37, 39parametric real root counting, 239parser, 16, 18, 28, 30, 63, 262, 269, 273,274ALDES, 253partialGr�obner base, 199reduction, 199PDEG, 102Peano arithmetic, 64Peano axioms, 63Peano structure, 62permutations, 229PFDIP, 115PL/0, 30PLBCF, 103PLDCF, 103POLY, 121polynomial, 102, 112, 121, 127, 129arithmetic, 275ideals, 276polynomial invariants, 229, 277polynomialssyntax, 242power, 37PQELIMXOPS, 243PQIREAD, 243PQMKCNF, 243PQMKDNF, 243PQMKPOS, 243PQMKPRENEX, 243PQMKVD, 244PQPPRT, 243PQPRING, 244PQPRINGWR, 244PQSIMPLIFY, 243PQTEXW, 243PRAGMA, 28, 63, 253, 261pragma, 255keyword, 254PREAD, 115, 119PRED, 103primary idealdecomposition, 158, 160printkeyword, 254PROCEDURE, 58declaration, 45

INDEX 301procedure, 64call, 39type, 18, 270, 271PROCEDUREkeyword, 31PROGA, 265PROGN, 265program, 34, 52PSL, 270PTBCF, 103PTRCF, 103PUT, 265PWRITE, 115quanti�er elimination, 239, 278quaternion number, 74Quaternion Numbers, 134QUOT, 264QUOTE, 265quote character, 33, 254quotientideal, 198RAM, 48, 263rational, 21Rational Functions, 134, 142rational number, 55, 57, 58, 60, 74, 85,112, 121, 127, 272, 274algorithms, 85representation, 84syntax, 87Rational Numbers, 133, 136Rational Polynomial, 141rational polynomial, 112, 121, 127Rational Polynomials, 134read, 48real rootisolation, 276real root counting, 237, 239, 278real rootsof zero{dimensional ideals, 166recursive polynomial, 275RED, 66, 72, 264Reduce, 15, 269, 270reduced univariate polynomial, 124reductionpartial, 199relation table, 185relink, 271

REM, 264rename, 22, 51REPEAT, 265keyword, 31statement, 44repeatkeyword, 254representation, 75, 84, 91resultant, 276RETURNstatement, 46returnkeyword, 254REVERSE, 264rewrite rule, 64RF (x1,...,xr), 142right, 70ring, 275RLISP, 269RN [s], 135RNABS, 21, 85RNCOMP, 21, 85RNDEN, 85RNDIF, 87RNDRD, 87RNDWR, 21, 87, 93RNEXP, 86RNFAP, 92RNINT, 21, 85RNINV, 86RNNEG, 85RNNUM, 85RNPROD, 21, 86, 88RNQ, 86RNRAND, 87RNREAD, 87RNRED, 21, 85RNSIGN, 85RNSUM, 21, 87, 89RNWRIT, 21, 87root counting, 278rootsof ideals, 276RP (x1,...,xr), 141RQEOPTSET, 240RQEOPTWRITE, 240RQEPRRC, 239RQEQE, 239

302 INDEXRULE, 62, 265keyword, 31S-expression, 16, 19, 65, 121S-polynomial, 154safe, 255keyword, 254scope, 46Scratchpad, 15Scratchpad II, 22, 51Scratchpad II term order, 109semantics, 22, 51set of integer, 74, 274SetDCIBop, 249SetDIPIBop, 249SETQ, 28, 265SHOW, 261SHUT, 263SIG, 265SIGNATURE, 55keyword, 31signature, 17, 23de�nition, 260SIGS, 23, 26, 260SLISP, 269, 270SLOPPY, 262SML, 52SMPRM, 78solvable polynomial ring, computing in,126, 183SORT, 54, 57, 59, 61, 265keyword, 31sort name, 261SORTS, 261space, 71SPEC, 265SPECIFICATIONkeyword, 31speci�cation, 17, 51, 54component, 51syntax, 53statement, 38sequence, 42static scope, 46storage, 16, 19, 261, 269storage management, 273string, 31, 33, 69, 254structure, 15, 268

graded, 199SUB, 264SUBCHK, 232SUBINF, 231SUBLIS, 265sublist, 71submodule, 200basis, 200Gr�obner base, 201syzygies, 201SUBORD, 232SUBORP, 232SUBRED, 232SUBSGR, 232SUBSGW, 232substitution, 62substitutions, 229substr, 71SUBSYM, 232SYM2DIP, 121symbol, 15, 32, 261, 269handling, 273, 274SYMTB, 261syntax, 16, 27, 28, 34, 35, 52, 77, 87, 93,255, 256, 261diagram, 35, 53, 241, 242, 256error, 34, 36formulas, 241polynomials, 242warning, 34, 36syntax error, 257ALDES, 255syntax warning, 257ALDES, 255systemcomponents, 267systems of equations, 276syzygies, 195submodule, 201syzygy, 277syzygy module, 195TERM, 121term, 34algebra, 62rewriting, 62term order, 199TfComputeTf, 240TFORM, 239

INDEX 303TfUseDb, 240THENkeyword, 31thenkeyword, 254THROW, 265TIME, 262time, 71token, 31, 253TOS, 1, 19TRACE, 262transliteration, 32, 259TSGBASE, 128two-sided Gr�obner base, 185type, 18, 19, 23, 270checking, 271TYPES, 23UGBBIN, 209underow, 94uni�cation, 62, 64UNIT, 265unit, 54name, 261UNITS, 261universal algebra, 22, 51universal Gr�obner base, 207UNTILkeyword, 31untilkeyword, 254VAL, 60VAR, 58, 265declaration, 45keyword, 31parameter, 42, 45variable, 17, 19, 23, 32, 37, 39, 62, 261VARS, 23, 261warning, 36, 257WHEN, 60, 62keyword, 31WHILE, 16, 265keyword, 31statement, 44whilekeyword, 254WIN, 48, 263

write, 48

